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Abstract
The burgeoning fields of robot learning and em-
bodied AI have triggered an increasing demand for
large quantities of data. However, collecting suffi-
cient unbiased data from the target domain remains
a challenge due to costly data collection processes
and stringent safety requirements. Consequently,
researchers often resort to data from easily acces-
sible source domains, such as simulation and labo-
ratory environments, for cost-effective data acqui-
sition and rapid model iteration. Nevertheless, the
environments and embodiments of these source do-
mains can be quite different from their target do-
main counterparts, underscoring the need for effec-
tive cross-domain policy transfer approaches. In
this paper, we conduct a systematic review of exist-
ing cross-domain policy transfer methods. Through
a nuanced categorization of domain gaps, we en-
capsulate the overarching insights and design con-
siderations of each problem setting. We also pro-
vide a high-level discussion about the key method-
ologies used in cross-domain policy transfer prob-
lems. Lastly, we summarize the open challenges
that lie beyond the capabilities of current paradigms
and discuss potential future directions in this field.

1 Introduction
The past few years have seen rapid progress in the fields
of robot learning and embodied AI, integrating advances in
computer vision, decision-making, and even language pro-
cessing to build capable embodied agents [Duan et al., 2022;
Open X-Embodiment and others, 2023]. This naturally leads
to a surge in demand for high-quality and large-scale training
data. However, collecting large amounts of data in the target
domain (where the policy is deployed, i.e., the real world/task
environment) at will can be prohibitively costly due to effi-
ciency issues and safety concerns, e.g., in autonomous driv-
ing and industrial robot control [Chen et al., 2023; Nguyen-
Tuong and Peters, 2011]. Instead, a popular practice is to uti-
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lize data from easily accessible source domains (e.g., simu-
lation or laboratory environments) that allow safe exploration
and cheap data collection. Despite the advances in simulation
modeling technologies, high-fidelity simulators still struggle
to capture nuanced physical properties, as well as delicate en-
vironmental and embodiment details of target domains [Tobin
et al., 2017; Peng et al., 2018]. In some settings, although
human demonstration videos can be easily recorded in a con-
trollable manner in the target environment, the distinct em-
bodiment from the target robot agents hinders their direct use
in policy learning [Yu et al., 2018]. Such intricate environ-
ment and embodiment discrepancies, also referred to as do-
main gaps, negatively impact policies trained on source do-
main data and inevitably lead to their deployment failures in
the target domains. The data bottlenecks in real-world tasks
and the wide existence of domain gaps naturally stimulated
cross-domain policy transfer studies, aiming to fully exploit
existing off-domain data to learn transferable policies.

Cross-domain policy transfer has emerged as a crucial class
of methods for erasing the influences of domain gaps on poli-
cies, serving as a bedrock for large-scale real-world deploy-
ment of embodied agents [Chebotar et al., 2019; Bewley et
al., 2019]. However, existing approaches in this direction
are highly fragmented, primarily due to diverse types of do-
main gaps, various learning paradigms, as well as distinct
data constraints and setting assumptions. Such fragmentation
seriously shadows our understanding of the underlying con-
nections and differentiations among existing policy transfer
strategies, making it difficult for researchers to gain a holistic
view of this field and embark on new research endeavors.

In light of this, we present the first comprehensive re-
view of cross-domain policy transfer methods for embodied
agents. We begin by unifying the related notations and def-
initions in cross-domain settings, based on which we pro-
vide clear categorization of different types of domain gaps,
with discussion on their distinctions and connections. Then,
we consolidate a vast diversity of existing methods, organiz-
ing them into four commonly encountered domain gap cate-
gories in the literature, i.e., appearance, viewpoint, dynamics,
and morphology gaps. Furthermore, we provide overarching
methodological insights developed in existing approaches,
and discuss open challenges and promising future research
directions. A detailed architecture of the survey, including
domain gap taxonomy, methodology classification, and fu-
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Figure 1: The main architecture of the survey: domain gap taxonomy, overarching insights on methodologies, and future trends.

ture trends are illustrated in Figure 1. We hope our survey
can bring new insights and expedite future research in cross-
domain policy transfer for embodied agents.

2 Overviews
2.1 Notations and Definitions
Definition 1 (Domain). With environment Eenv, embodi-
ment Eemb, and the embodiment dynamics influenced by
both properties T (Eenv, Eemb), we can define a domain Ω =
{Eenv, Eemb, T (Eenv, Eemb)}.

Definition 2 (Domain-Dependent Markov Decision Process
(D-MDP)). Adapting standard MDP with domain-dependent
information as M(Ω) := ⟨SΩ,AΩ, TΩ, RΩ, γ⟩ where SΩ,
AΩ, TΩ are domain-dependent state, action spaces, and dy-
namics; RΩ is the task-relevant reward function also influ-
enced by SΩ and AΩ; γ denotes the discount factor.

To keep the notations uncluttered, we denote Ωsrc =
{Ωi

src}Ni=1, N ∈ N+ as the source domain(s), Ωtgt as the tar-
get domain, and use subscript src and tgt to indicate elements
from source and target domains in the rest of the paper. Next,
we introduce the definition for cross-domain policy transfer:

Definition 3 (Cross-Domain Policy Transfer). Given a policy
class Π, one or multiple policies πsrc ∈ Π obtained in Ωsrc,
and an explicit or implicit policy transfer method h : Π → Π,
an effective cross-domain policy transfer is achieved when
Jtgt(πsrc) ≪ Jtgt(h(πsrc)) ≤ Jtgt(π

∗
tgt), where π∗

tgt ∈ Π
is the optimal target policy and Jtgt(·) is some policy perfor-
mance evaluation metric based on the criteria (e.g., expected
cumulative rewards, success rate, etc.) of target domain Ωtgt.

2.2 Categorization of Domain Gaps
As indicated in the above definitions, domain gaps arise from
both the inconsistencies in environments [Tobin et al., 2017;
Peng et al., 2018; Chebotar et al., 2019] and embodi-
ments [Gupta et al., 2021b]. In the following, we establish

fine-grained classifications of domain gaps and discuss their
connections as well as distinctions.

In terms of environment inconsistencies, appearance gaps
arise when observations in the source domain (e.g., simula-
tions) exhibit differences in colors, background objects, illu-
mination conditions, and rendering textures as compared to
the target domain (e.g., reality), such as variations in coarse
and fine rendering or high and low resolutions [Tobin et al.,
2017; Andrychowicz et al., 2020]. Additionally, the configu-
ration of sensor setups (e.g., camera position and angles, etc.)
can significantly influence the downstream policy learning of
embodied agents, we refer to these as viewpoint gaps [Ser-
manet et al., 2018]. Appearance and viewpoint gaps are
sometimes jointly termed visual gaps that systematically dis-
tort the state space Ssrc in the source domain, or more gen-
erally, perception gaps [Wang et al., 2022a] in cases where
observations come from other perception sensors besides vi-
sual cameras, such as lidars.

At the intersection of embodiment and environment varia-
tions, dynamics gaps [Peng et al., 2018; Eysenbach et al.,
2020; Niu et al., 2022] occur when interactions between
embodiments and their deploying environments, or interac-
tions among different parts of the embodiment itself, fol-
low different transitional dynamics (Tsrc ̸= Ttgt), such as
stiffness, gear dead zones of embodiments, body mass, and
friction. Focusing on the embodiment aspect, morphology
gaps [Hejna et al., 2020b; Gupta et al., 2021a] arise when
target embodiments exhibit different morphological designs
compared to the source domain agents, e.g., variations in joint
types, module shapes, and lengths, which may ultimately lead
to a dynamics mismatch. Morphological differences may also
encompass variations in the dimensions and semantic mean-
ings of state and action spaces Ssrc,Asrc, such as the number
of observational sensors, limbs, and end effectors. In some
literature, these are referred to as modality gaps [Wang et
al., 2022b; Salhotra et al., 2023] for different sensing and ac-
tuation modalities. Occasionally, researchers merge the gaps
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resulting from morphology discrepancies and parts of non-
morphological dynamics disparities, which stem from inter-
nal physical properties, into a unified term: embodiment gaps.
This term represents a more ego-centric robotic perspective,
independent of external environmental variations, and should
be clearly distinguished from morphology gaps.

3 Policy Transfer Across Different Gaps

3.1 Cross-Appearance Policy Transfer

To remedy the appearance gap, a class of unsupervised trans-
fer learning techniques originating from visual domain adap-
tation has been proposed. These techniques map observa-
tional representations from the source domain (e.g., simula-
tions) to the target domain (real world) while ensuring con-
sistent data distributions. This growing collection of ap-
proaches is particularly adept at image-to-image translation
across domains, making the observation information trans-
ferable for end-to-end vision-based autonomous robots and
vehicles [Triess et al., 2021].

Various schemes for the mapping function have been pro-
posed, addressing the problem from different perspectives.
Some studies adopt the cycle consistency philosophy from
CycleGAN [Zhu et al., 2017] to ensure a photo-realistic im-
age translation process, achieving good real-world transfer
performance with only a modest number of real-world ob-
servations [Rao et al., 2020]. Conversely, real-to-sim trans-
lation [Zhang et al., 2019] requires a pre-trained adapta-
tion module to convert real images captured by cameras
into simulation-like images at test time, which can be com-
putationally inefficient during real-world deployment. As
an alternative, training a canonical domain-invariant repre-
sentation, such as semantic segmentation [Pan et al., 2017;
Mueller et al., 2018; Wang et al., 2022a], enables obser-
vations from both domains to be translated into an inter-
mediate and lower-dimensional representation. This unifies
the semantic meaning of the observation space while easing
the burden of the downstream policy learning module. In
contrast to explicit representations like semantic segmenta-
tion, intra-domain image reconstruction with direct and cyclic
losses [Bewley et al., 2019] offers another way to enhance
transferability, where a bi-directional image translation strat-
egy is introduced to form an implicit structure of representa-
tion.

Domain randomization and visual data augmentation [To-
bin et al., 2017; Laskin et al., 2020; Kar et al., 2019;
Yue et al., 2019] instead opt for a domain generalization
approach that focuses on manipulating pixel-level physical
mechanisms. These methods do not require massive data
from the target domain or learning transferable embeddings.
Additionally, proper model setups can also enhance the pol-
icy feasibility for real-world execution. For instance, interac-
tive imitation learning [Lee et al., 2022] is specially tailored
in simulation to distill state-based experts into a “student”
vision-based policy, allowing for in-domain data augmenta-
tion from randomized simulations.

3.2 Cross-Viewpoint Policy Transfer
In many cases, training data may not always be available
from a first-person or ego-centric viewpoint, which is often
the most convenient and desirable observational input [Pathak
et al., 2018]. Embodied agents often have different camera
setup positions and angles, resulting in observational infor-
mation with systematic bias. Policy learning that relies on
robust cross-appearance visual encoders can still be vulner-
able to viewpoint discrepancies, such as a wrist camera on
source-domain demonstrators and a side camera in the target
environment. To address this, agents need to translate (imag-
ine) third-person observations from their own viewpoint.

To relax the assumption in “learning from demonstrations”
that demonstrations come solely from an identical observa-
tional configuration, third-person imitation learning [Stadie et
al., 2016] constructs an architecture based on generative ad-
versarial imitation learning, which minimizes class loss (ex-
pert vs. non-expert) while maximizing domain confusion.
Minimizing class loss enables the model to accurately predict
the correct class label for a given input, which is crucial for
task completion; maximizing domain confusion allows the
model to generalize better across different domains, adapt-
ing to real-world situations where internet-scale data comes
from third-person demonstrators with different viewpoints
from embodied agents designated for later deployment.

In a different vein, [Liu et al., 2018] learns a context trans-
lation model that can convert a demonstration from one con-
text (e.g., a third-person viewpoint and a human demonstra-
tor) to another context (e.g., a first-person viewpoint and a
robot). This approach directly predicts demonstrator behavior
sequences from the target robot’s viewpoint, which is claimed
to excel in more complex manipulation skill acquisition. An-
other line of work [Sadeghi et al., 2018] suggests that train-
ing a deep convolutional recurrent neural network implicitly
learns to identify the effects of actions in image space from
the past history of observations and actions. This enables
robots to understand how actions affect their motion from the
current viewpoint, given a small number of labeled target im-
age queries. Contrastive learning [Sermanet et al., 2018] is
also employed to discover attributes that remain consistent
across viewpoints or even change throughout task progress.

However, in situations where source domain demonstra-
tors have not only different viewpoints but also distinct mor-
phological embodiments, learning domain-invariant features
alone may not suffice for transferrable agent learning. To ad-
dress these challenges, meta-learning approaches [Yu et al.,
2018] have been introduced, although models for each un-
seen task must be trained separately, necessitating more data
and high-capacity models for generalization. Alternatively,
a hierarchical setup has also been proposed [Sharma et al.,
2019], in which an embodiment-agnostic high-level module
learns to generate first-person sub-goals conditioned on third-
person demonstrations and an embodiment-specific low-level
controller predicts actions to achieve those sub-goals.

3.3 Cross-Dynamics Policy Transfer
Embodied tasks, regardless of whether they have visual ob-
servation or not, involve complex transition dynamics that
dictate interactions with the environment and constraints
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within the embodiment’s components. These intricacies pose
considerable challenges in building high-fidelity simulators
or finding unbiased source domains. Traditional system iden-
tification methods [Ljung, 1998; Kolev and Todorov, 2015;
Yu et al., 2017] address domain inconsistency through dy-
namics model fitting and calibration, which often involve ex-
tensive target domain data collection and perform poorly in
complex physical dynamics.

An alternative approach is to modify the source domain
configuration directly, assuming access to manipulable source
domains. Many works have attempted to randomize the phys-
ical parameter space of the source domain simulators with
different configurations to improve generalization across var-
ious target domains [Rajeswaran et al., 2017; Peng et al.,
2018; Andrychowicz et al., 2020]. However, this approach
often requires manually specified, sufficiently large param-
eter spaces for adjustment [Vuong et al., 2019], which can
be impractical for complex embodied systems. Active do-
main randomization [Mehta et al., 2020] addresses the sam-
ple complexity issue by adaptively selecting parameters from
the most informative configurations according to the discrep-
ancies of policy rollouts in randomized and reference envi-
ronment instances. Another perspective is to revisit clas-
sical system identification and lower its demand for target
data, such as incorporating target-domain prior information
to guide accurate and efficient source-domain posterior distri-
bution calibration [Muratore et al., 2021; Ramos et al., 2019;
Tan et al., 2016; Du et al., 2021]. Grounded action transfor-
mation (GAT) [Hanna and Stone, 2017] learns target-domain
forward dynamics models and adjusts source-domain inverse
dynamics accordingly, modifying source dynamics to better
match target dynamics.

When source domains are not white-box or modifiable,
many recent dynamics adaptation approaches focus on reg-
ularizing policy learning rather than dynamics modeling, as-
suming a fixed source domain. GARAT [Desai et al., 2020]
learns an adversarial imitation-from-observation policy by
discriminating between generated actions and target environ-
ment actions, bypassing the need for a modifiable source do-
main. DARC and related methods [Eysenbach et al., 2020;
Liu et al., 2022] solve cross-dynamics reinforcement learn-
ing (RL) via reward correction to compensate for dynam-
ics shifts across domains in online or offline settings. H2O
and H2O+ [Niu et al., 2022; Niu et al., 2023] introduce a
dynamics-aware hybrid offline-and-online RL paradigm, in-
tegrating learning from online simulation and offline real-
world data in a single-stage learning process while correct-
ing dynamics gaps during policy learning. VGDF [Xu et al.,
2023a] samples source domain transitions (ssrc, asrc, s

′
src)

with small value difference between s′src and s′tgt (obtained
from a learned target domain dynamics model), and combines
the selected source domain data and target domain counter-
parts for policy learning.

To address dynamics gaps more affordably, some ap-
proaches harness task-relevant, domain-agnostic information
in state transitions. SAIL [Liu et al., 2020] advocates for
state alignment in cross-domain imitation learning (IL), as
optimal policies heuristically induce similar state trajecto-
ries under different imitator and expert dynamics. SAIL en-

forces global state distribution matching based on Wasser-
stein distance and local state transition alignment based on
β-VAE. Concurrent work [Gangwani and Peng, 2020] lever-
ages the Wasserstein distance of state visitation distributions
from both domains and an adversarial IL paradigm for policy
optimization. Additionally, incorporating an inverse dynam-
ics policy learned with target demonstrations [Christiano et
al., 2016] offers an alternative for matching (next-)state dis-
tributions. HIDIL [Jiang et al., 2020] extends this idea with
Horizon-Adaptive Inverse Dynamics, matching states from
both domains in an H-step horizon and recovering feasible
actions in the target domain based on the inverse dynamics
policy. SOIL [Radosavovic et al., 2021] and SRPO [Xue et
al., 2023] further develop these ideas, with the latter extend-
ing this insight to RL and providing theoretical grounding for
the assumption that optimal policies under different dynamics
induce similar stationary state visitation distributions.

However, the assumption of identical state reachability
in source and target domains does not always hold in real-
world situations. Feasibility MDP (f-MDP) [Cao et al., 2021;
Cao and Sadigh, 2021] addresses this issue by calculat-
ing feasibility scores to weigh the learning signal of each
demonstration. Cold diffusion techniques can also be adapted
for feasibility-guided trajectory planning by degrading every
state in source trajectories to the nearest recorded state in the
target replay buffer [Wang et al., 2023].

3.4 Cross-Morphology Policy Transfer
Morphology gaps typically only affect low-level control,
which naturally favors a decoupled hierarchical solution
with a morphology-specific low-level policy and a trans-
ferable high-level policy [Hejna et al., 2020b]. The high-
level policy takes morphology-agnostic state observations
and generates sub-goals for the low-level policy to follow.
MAIL [Salhotra et al., 2023] leverages domain-invariant fea-
tures in the observation space, such as end effector positions,
as optimal position trajectories should be task-relevant and
morphology-independent. It performs position-based match-
ing at the high level and uses inverse dynamics to recover
morphology-specific low-level action commands. Alterna-
tively, TAME [Hejna et al., 2020a] explores joint optimiza-
tion for the best morphology design that benefits the embodi-
ment for successful task execution, and optimal policies cor-
responding to this morphology.

Morphology can also be considered as another modality
that can be conditioned on models with the Transformer ar-
chitecture [Vaswani et al., 2017]. Morphology-aware Trans-
former [Yu et al., 2023] captures meaningful patterns be-
tween robot embodiment and actions using a causally masked
Transformer, allowing conditional action generation based
on desired robot embodiment, past states, and past ac-
tions. However, learning a universal controller for a pop-
ulation of morphologies is resource-intensive and infeasible
due to the exponentially increasing morphology represen-
tation space [Gupta et al., 2021b]. Focusing on learning
embodiment-dependent policies, MetaMorph [Gupta et al.,
2021a] first encodes morphology representation into a vector
sequence, concatenates it with proprioceptive position em-
beddings, and processes it using a morphology-aware Trans-
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former. The Transformer output is successively concatenated
with exteroceptive observations before passing through the
final action decoder. Large-scale pre-training over libraries
of different morphologies is also utilized to facilitate sample-
efficient transfer to new robot morphologies and tasks.

3.5 Cross-Multi-Gap Policy Transfer
In many complex tasks, we might simultaneously encounter
multiple types of domain gaps due to substantially different
embodiments and deployed environments. However, most
previous works focus on paired and temporal-aligned data
from source and target domains, and only address a certain
type of domain gaps, which limits their applicability in gen-
eral settings unless extra designs are introduced.

From a general perspective, correspondence learning
across domains can empirically align the properties of both
source and target domains by constructing direct mappings.
GAMA [Kim et al., 2020] learns state and action correspon-
dence mapping f : Ssrc → Stgt, g : Atgt → Asrc from un-
paired and unaligned demonstrations, and then adapts source
policy πsrc to feasible target policy as πtgt = g ◦ πsrc ◦ f .
To jointly optimize state and action correspondence models,
adopting dynamics cycle consistency [Zhang et al., 2020] al-
lows for splitting action mapping g into coupled dual map-
pings p : Ssrc × Asrc → Atgt and q : Stgt × Atgt → Asrc,
which builds correlations between action and state correspon-
dences. For various scenarios that only involve suboptimal
policies as demonstrators, such as internet videos of humans
performing tasks, [Raychaudhuri et al., 2021] enforces cycle
consistency on the state space together with a normalized po-
sition estimator function to align trajectories across domains
without the need for expert actions. To handle the remain-
ing domain misalignment issue of adopting unsupervised cy-
cle consistency techniques, WeaSCL [Wang et al., 2022b] in-
troduces weak supervision into correspondence learning with
temporal ordering and paired abstraction data.

Instead of learning direct correspondences, an emerging
avenue of studies has extended learning domain-invariant fea-
tures from closing appearance and viewpoint gaps to simul-
taneously addressing other domain gaps, e.g., dynamics and
morphology gaps. From internet-scale cross-embodiment
videos, XIRL [Zakka et al., 2021] leverages temporal cy-
cle consistency to ensure task-progress aware and domain-
agnostic representation learning so that distance from goal
state represented in that embedding space can be regarded
as rewards used for policy training on novel embodiments.
Motivated by abstracting task information from state space to
ease the burden of downstream policy transfer, [Franzmeyer
et al., 2022] proposes a mutual information criterion to re-
duce target state space with mapping f ′ : Stgt → Z to a
task-relevant domain-invariant embedding Z , and then jointly
learning source mapping g′ : Ssrc → Z and an adversar-
ial imitation policy that generates state transitions closely re-
sembling the expert target state transitions. From a more
robotic perspective, skill acquisition is an explicit procedure
for grounding task-specific domain-agnostic features for easy
transfer. With paired data from both domains, agents learn
multiple skills and transfer knowledge by training in invari-
ant feature spaces, upon which target domain agents can ac-

quire new skills mastered by source domain agents [Gupta et
al., 2017]. In a hierarchical scheme, STAR [Pertsch et al.,
2022] pre-trains a low-level policy to decode actions from
learned high-level semantic skill policies that select a trans-
ferable skill in target task learning. With unpaired and un-
aligned cross-embodiment videos, XSkill [Xu et al., 2023b]
pre-trains skill discovery models for further skill identifica-
tion. In XSkill, a skill alignment transformer is introduced to
detect, align, and compose the learned skills to complete new
tasks, and then pass the inferred skills to a skill-conditioned
diffusion policy to output the robot’s actions.

Additionally, contrastive learning also offers a general and
natural solution for aligning domain representation with pos-
itive and negative samples, from large amounts of in-the-
wild cross-embodiment unpaired data. Polybot [Yang et al.,
2023] aligns observation and action spaces using an engineer-
ing approach and then aligns policy’s internal representations
through contrastive learning to combat other domain dis-
crepancies. Based on prompt-based learning, CONPE [Choi
et al., 2023] develops a novel contrastive prompt ensemble
framework that uses the CLIP vision-language model [Rad-
ford et al., 2021] as the visual encoder and facilitates dynamic
adjustments of visual representations against domain changes
through an ensemble of contrastively learned visual prompts.
VIP [Ma et al., 2022] contrastively pre-trains an (implicit)
visual goal-conditioned value function that aims to capture
task-agnostic goal-oriented representations, which can gen-
eralize to unseen domains and tasks. As a multi-modal ex-
tension of VIP, LIV [Ma et al., 2023] learns vision-language
representations from language-annotated videos. In a sim-
ilar setting, DecisionNCE [Li et al., 2024] learns universal
embodied multimodal representations through an infoNCE-
style learning objective, derived based on reward reparam-
eterization under the preference-based learning framework.
RT-X [Open X-Embodiment and others, 2023] harnesses
domain alignment and scene understanding ability of large
vision-language models, unifying domain representations
with domain-invariant task-relevant language instructions.

4 Discussions on Methodologies
4.1 Source Domain Manipulation
Modifying the source domain modeling is undoubtedly the
most straightforward solution to close the domain gaps when
source domains (e.g., simulators) are manipulable. Such
modifications often include: randomizing partially known or
modifiable modeling configurations for better generalization
in target domains [Tobin et al., 2017; Rajeswaran et al., 2017;
Peng et al., 2018; Lee et al., 2022; Mehta et al., 2020;
Andrychowicz et al., 2020], model calibration to match
better with the target domains [Kolev and Todorov, 2015;
Tan et al., 2016; Yu et al., 2017; Hanna and Stone, 2017;
Ramos et al., 2019; Muratore et al., 2021; Du et al., 2021],
and adapt morphological design configurations from libraries
of candidates [Hejna et al., 2020a; Gupta et al., 2021b;
Gupta et al., 2021a; Yu et al., 2023]. Large-scale source-
domain randomization has been widely applied to visual
properties (i.e., color, texture, lighting condition, shapes and
types of interactive objects, camera position, orientation, and
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field of view) [Tobin et al., 2017], dynamics parameters (i.e.,
mass, damping, friction, and control timestep) [Peng et al.,
2018], or oftentimes both [Lee et al., 2022]. With principled
morphology representation, we could effectively manipulate
action space, sensory inputs, module shape, and size so that
agents can generalize in the vast modular morphology design
space. This promotes domain generalization ability maxi-
mally with large-scale parallel computing resources to sup-
port high-dimensional parameter randomization in simula-
tion, which is highly recommended in industrial practice [Lee
et al., 2022].

In cases when access to target domain data is allowed
but suffers costly and laborious collection, source-domain
calibration turns out to be fundamental, direct, and effec-
tive for simple and well-modeled environments [Yu et al.,
2017]. However, target domain environments can be quite
complex in practice, even strong calibration approaches are
likely to under-model intricate target domain physical prop-
erties and procedures, such as non-rigidity, gear dead zone,
wear-and-tear, and rolling friction. Such properties are hard
to capture in current simulation modeling technologies. To
summarize, source domain manipulation is highly dependent
on manipulable source domains, nuanced and comprehensive
knowledge of environment modeling, and rich computation
resources, as preferred by the industry field.

4.2 Learn Domain Correspondences / Corrections
Learning mapping functions (correspondences) or correction
terms is another class of commonly used techniques to handle
domain gaps. Image-to-image translation [Zhu et al., 2017;
Pan et al., 2017; Zhang et al., 2019; Rao et al., 2020] build
mappings between visual representations across domains.
The viewpoint context translation model [Liu et al., 2018]
converts data from the source context to ones from the tar-
get viewpoint. Unlike previous works, learning state and ac-
tion correspondences for domain alignment [Kim et al., 2020;
Zhang et al., 2020] allows for direct leverage of unpaired
data. Additional designs can also be added in this gen-
eral framework to reduce the need for expert action collec-
tion [Raychaudhuri et al., 2021], which fits well with the
common setting of learning from action-free video demon-
strations. To address the accuracy issue of correspondence
learning under stricter conditions, WeaSCL [Wang et al.,
2022b] finds a trade-off between strong supervision of strictly
paired data and regularization over unpaired data. In addition
to learning correspondences, learning reward correction for
domain gap compensation [Eysenbach et al., 2020; Liu et al.,
2022; Xue et al., 2023] and dynamics ratio for reweighting
learning signals on source domain samples [Niu et al., 2022;
Niu et al., 2023] have also become viable practices in cross-
domain RL.

4.3 Identify Domain-Invariant Distributions
Identifying domain-invariant distributions from accessible
and organized data offers a seemingly simpler solution
for cross-domain policy transfer without extracting detailed
domain-dependent correspondences. For example, state reg-
ularization in IL [Christiano et al., 2016; Liu et al., 2020;
Gangwani and Peng, 2020; Jiang et al., 2020; Radosavovic et

al., 2021] and RL [Xue et al., 2023] develop upon the in-
sight that optimal policies across different domains induce
similar state visitation distribution. Cold diffusion is used in
diffusion-based planning to constrain the generated states in-
side the state distribution of the target replay buffer [Wang et
al., 2023]. In some cases, partial state distribution matching
(e.g., position-based matching) is adopted since not all di-
mensions of the state space are semantically identical across
domains [Salhotra et al., 2023]. However, this avenue of
work typically only addresses dynamics and morphology
gaps without discrepancies in visual representation; oth-
erwise, extra cross-domain correspondences/representations
are required to align the state space before performing state-
based matching. Additionally, extra efforts are needed to
apply these works to long-horizon compositional tasks since
state distribution matching lacks task-progress awareness.

4.4 Learn Domain-Invariant Features
Learning task-relevant domain-invariant representations is
also a principled and popular direction to bridge domain
gaps [Stadie et al., 2016; Sermanet et al., 2018; Mueller
et al., 2018; Bewley et al., 2019; Zakka et al., 2021;
Franzmeyer et al., 2022; Wang et al., 2022a], which some-
times also appear in the form of skills [Gupta et al., 2017;
Pertsch et al., 2022; Xu et al., 2023b] and sub-goals [Sharma
et al., 2019]. As canonical representation across domains
can be reused in multiple and even new target contexts, of-
fering great flexibility and data efficiency, however, these
approaches could also suffer some barriers as compared to
learning correspondences. The domain-invariant representa-
tions, for instance, could require additional efforts for tack-
ling issues like uninformative degenerated mapping [Gupta
et al., 2017]. Furthermore, this line of works often solely
focuses on learning invariant features in observations, unlike
learning state and action correspondences that could seam-
lessly align different MDPs temporally, which brings bet-
ter task progress awareness for planning tasks. This high-
lights the extra need to borrow off-the-shelf temporal vision
alignment techniques for pairing demonstrations, e.g. tem-
poral contrastive network [Sermanet et al., 2018] and tempo-
ral cycle consistency [Dwibedi et al., 2019]. However, with
self-supervision on comprehensive long-horizon multi-skill
demonstrations, the learned representations sometimes could
also be progression/distance-aware, holding advantages of
yielding goal-directed visual reward [Sermanet et al., 2018;
Zakka et al., 2021; Ma et al., 2022; Li et al., 2024] and
guiding the downstream policy optimization process. It also
provides possibilities for incorporating language instructions
into unified vision-language cross-embodiment representa-
tions [Ma et al., 2023; Li et al., 2024].

4.5 Build Hierarchical Control Paradigms
The essence of hierarchical frameworks in cross-domain set-
tings is to decouple the action output procedure into domain-
independent high-level policy learning (e.g., skill aquisi-
tion [Gupta et al., 2017; Pertsch et al., 2022; Xu et al., 2023b]
and sub-goal generation [Hejna et al., 2020b; Sharma et al.,
2019]) and domain-specific low-level policy learning. Such
a treatment greatly reduces the difficulties in domain gap
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modeling and has proven to excel in solving many complex
tasks. In a similar philosophy, some meta-learning meth-
ods [Finn et al., 2017; Yu et al., 2018; Nagabandi et al., 2018;
Zintgraf et al., 2019; Rakelly et al., 2019] train context-based
hidden embeddings for fast adaptation, with which the meta-
learned policy can adapt to target environments by fine-tuning
on a small amount of target domain data.

5 Open Challenges and Future Trends
5.1 Different Sensor and Actuator Modalities
The transferable knowledge from source domain embodi-
ments can be quite limited when dealing with significantly
different state and action modalities [Wang et al., 2022b;
Salhotra et al., 2023]. Recently, large and expressive founda-
tion models, combined with large-scale data collected from
diverse robotic tasks, have emerged as a promising direction
for cross-embodiment policy transfer [Open X-Embodiment
and others, 2023]. Octo [Octo Model Team et al., 2023], a
transformer-based diffusion policy model, serves as a versa-
tile policy initialization that can be effectively fine-tuned to
adapt to new observation and action spaces. Its block-wise
attention structure allows for adding or removing new inputs
and outputs with various modalities as needed. However, it
remains unclear what and how an agent can learn from data
from significantly different embodiments of the same task.

Most studies in cross-modality settings heavily rely on ex-
pert demonstrations, which are costly to collect and limited in
size, causing the issue that expert policies are hard to learn or
transfer across modalities. Future work could focus on learn-
ing effective and transferable information from non-optimal,
in-the-wild demonstrations to address these limitations.

5.2 Multi-Source Data Sharing
Current research on learning correspondences between do-
mains typically focuses on narrow settings, where data are
assumed to originate from only two domains [Stadie et al.,
2016; Bewley et al., 2019; Niu et al., 2022]. However, in
practice, it is crucial to handle multiple source domains to
overcome the data scarcity issue [Xue et al., 2023]. Modern
cross-domain methods need more flexible interfaces to incor-
porate multi-source data with domain gaps of varying scales.

A versatile and expressive feature space could also be de-
veloped to unify the representation of data across different
domains. In addition to focusing on representation learning,
another potential direction is to directly filter or edit source
data according to learned criteria in the target domain. This
perspective emphasizes manipulating data as a means to ad-
dress the challenges of multi-source data sharing.

5.3 Continual Target Fine-Tuning
Current cross-domain policy transfer approaches often lack
flexible designs to accommodate various forms of source-
domain information, such as data and pre-trained policy.
Sometimes, we might desire to fine-tune the source-domain
policy using target data, as target data might not be read-
ily available at the beginning of training and only obtainable
sporadically, encompassing different coverages and skillsets.

This necessitates a policy model that is compatible with con-
tinual learning. Essentially, it could also help relax the long-
standing assumption that the target domain remains time-
invariant, while real-world systems often deviate from this
due to factors such as wear and tear.

A potential approach to leverage multi-stage target data
is the adoption of continual fine-tuning [Li et al., 2023;
Smith et al., 2023]. These techniques enable the continu-
ous integration of target data for fine-tuning, thereby facilitat-
ing continual skill acquisition and policy adaptation in time-
varying target domains. As a result, the development of a
generalist, multi-skill, multi-domain policy after fine-tuning
becomes more achievable, paving the way for more robust
and versatile cross-domain solutions in future research.

5.4 Generalization and Adaptation Trade-Off

Current cross-domain transferable policies tend to be either
highly adaptive to a single accessible target domain or mod-
erately generalizable to various random domains. Striking
a balance between generalization and adaptation, akin to
the trade-off between generalists and specialists in a cross-
domain setting, appears to be a challenging task. To find the
nuanced equilibrium, employing powerful foundation mod-
els and extensive cross-domain data could serve as a practical
solution to such demanding requirements [Reed et al., 2022].

Recently, we have witnessed the burgeoning emergence
of large (vision-)language models, which can naturally serve
as powerful domain aligners since language is fundamen-
tal, easily attainable, information-abstract, and domain-
transferable [Open X-Embodiment and others, 2023; Ma et
al., 2023; Li et al., 2024]. Moreover, language models have
the potential to serve as domain generalizers due to their
strong common sense reasoning abilities across a wide range
of everyday scenarios. However, vision-language representa-
tion alignment remains a longstanding challenge, as we can-
not expect language models to either generalize to or adapt
to desired target domains without resolving the alignment of
representations with diverse input modalities.

5.5 Off-Domain Policy Evaluation

Evaluating policies in target domains can sometimes be pro-
hibitively expensive and even hazardous, while continuous
access to source domains allows for faster and more con-
trolled policy evaluation, albeit with reduced reliability due
to domain gaps. However, there is a scarcity of theoretical or
principled criteria to determine whether a policy model evalu-
ated in source domains can be successfully transferred to tar-
get domains [Katdare et al., 2023]. Therefore, future research
should develop reliable off-domain policy evaluation meth-
ods (an extension of off-policy evaluation under domain gaps)
together with standardized real-world benchmarks [Walke et
al., 2023; Open X-Embodiment and others, 2023]. These ef-
forts are expected to offer a principled procedure and rigorous
criteria for evaluating the transferability of policies using ac-
cessible source domains and limited pre-collected target data,
which are the common settings in real-world scenarios.
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6 Conclusion
In this survey, we provide the first comprehensive review of
the rapidly evolving field of cross-domain policy transfer for
embodied agents. We have unified the notations and defini-
tions in cross-domain settings, distinguishing various types of
domain gaps and clarifying their connections and differences.
By categorizing the highly fragmented approaches in the lit-
erature, we shed light on the methods used to address appear-
ance, viewpoint, dynamics, and morphology gaps. Moreover,
we provide overarching insights shared among these method-
ological approaches and discuss open challenges as well as
promising future trends. As the field of embodied AI con-
tinues to evolve, addressing these challenges and embracing
emerging trends will be crucial for developing more robust
and versatile solutions for real-world deployment. We hope
our survey can serve as a useful tool for future research, offer-
ing a clear understanding of the current state of cross-domain
policy transfer and providing a roadmap for tackling the re-
maining challenges in this exciting and rapidly growing field.
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