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Abstract
Federated Learning (FL) enables the training of
Deep Learning models without centrally collect-
ing possibly sensitive raw data. The most used
algorithms for FL are parameter-averaging based
schemes (e.g., Federated Averaging) that, however,
have well known limits, i.e., model homogene-
ity, high communication cost, poor performance in
presence of heterogeneous data distributions. Fed-
erated adaptations of regular Knowledge Distilla-
tion (KD) can solve or mitigate the weaknesses
of parameter-averaging FL algorithms while possi-
bly introducing other trade-offs. In this article, we
originally present a focused review of the state-of-
the-art KD-based algorithms specifically tailored
for FL, by providing both a novel classification of
the existing approaches and a detailed technical de-
scription of their pros, cons, and tradeoffs.

1 Introduction
Federated Learning (FL) has been proposed as an alternative
to cloud-based Deep Learning (DL). This paradigm decou-
ples the ability to train DL models from the need of har-
vesting raw data, alternating on-device computation and pe-
riodic communication [McMahan et al., 2016; Bellavista et
al., 2021]. During the learning process, only ephemeral and
locally processed payloads need to be disclosed by the par-
ticipants in the federation, making it harder to infer private
information about the individuals.

Federated Averaging (FedAvg) represents the baseline al-
gorithm for Federated Learning (FL) [McMahan et al., 2016].
In FedAvg, collaborative learning proceeds in synchronous
rounds by leveraging a client-server paradigm. Participants
(i.e., clients) iteratively exchange model updates and model
weights with a central aggregator (i.e., the server) to collabo-
ratively build a global model. Round by round, the server ag-
gregates model updates by weighted average and distributes
the new version of the global model.

However, parameter-averaging aggregation schemes, such
as FedAvg, have well-known limits. Firstly, this class of al-
gorithms implies model homogeneity among the federation,
i.e., each client is constrained to use the same neural archi-
tecture since the server directly merges clients’ updates (e.g.,

by weighted average). This may be an issue when the feder-
ation of learners consists of clients with heterogeneous hard-
ware capabilities. Furthermore, exchanging model parame-
ters and model updates have high communication cost, which
scales with the number of model parameters – even though a
plethora of strategies (e.g., [Sattler et al., 2019]) have been
proposed to improve the communication efficiency at the
cost of global model performance. In addition, exchanging
model parameters/updates exposes client to information leak-
age, and the server must know the architecture and structure
of clients’ model to broadcast the global parameters, possi-
bly incurring in intellectual property issues (i.e., clients in the
federation are unwilling to share the architecture they are us-
ing). Lastly, but not less important, when clients hold hetero-
geneous data, local models tend to diverge from each other
during training and fine tune on private examples (i.e., client
drift). As a consequence, directly aggregating model parame-
ters/updates degrades the global model performance [Karim-
ireddy et al., 2020].

This article focuses on specifically reviewing the FL-
oriented adaptations of regular Knowledge Distillation (KD)
techniques that have been employed to alleviate the above
mentioned weaknesses of FL parameter-averaging aggrega-
tion schemes. Initially, KD-based strategies, also motivated
by encouraging privacy properties [Papernot et al., 2016],
have been introduced to enable model heterogeneity and to
reduce communication costs by exchanging model outputs
and/or model-agnostic intermediate representations instead of
directly transferring model parameters/updates. Then, a set
of strategies have been proposed to enhance the aggregation
step of FedAvg with a server-side ensemble distillation phase
to enable model heterogeneity and/or improve model fusion
in presence of heterogeneous data. Recently, two KD-based
lines of work have focused on mitigating the phenomenon of
client model drift – which makes averaging-based aggrega-
tions inefficient – either using regularization terms in clients’
objective functions or leveraging globally learned data-free
generator.

To our knowledge, this is the first paper that provides a
systematic categorization of KD-based methods tailored to
address specific FL issues. The paper mainly makes the fol-
lowing contributions:

• We propose a novel taxonomy of KD-based methods for
FL, which can help researchers to better understand the
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potential and possible further applications of distillation-
inspired methods.

• We present a detailed technical overview of the existing
KD-based methods, of their primary scope, and of the
rationale behind their design/implementation choices. In
addition, we discuss their strengths and possible draw-
backs.

• We outline the emerging use of KD in this domain, by
highlighting promising directions for future research.

The paper is organized as follows. Section 2 introduces the
fundamental of KD. Section 3 presents FL algorithms that
use KD to enable model heterogeneity. Section 4 describes
FL algorithms that use KD to mitigate the impact of data het-
erogeneity on global model performance. Finally, in Section
5, we concisely highlight the emerging use of KD for other
relevant FL issues.

2 Background
2.1 Knowledge Distillation
Knowledge Distillation (KD) methods have been designed to
transfer knowledge from a larger deep neural network, the
teacher, to a lightweight network, the student [Hinton et al.,
2015]. In the simplest form of KD, the student model learns
by mimicking the (pre-trained) teacher model’s outputs on a
proxy dataset, also called transfer set. If the transfer set is
labeled, the student can be trained using a linear combination
of two loss functions,

L = (1− λ)LCE(ỹ
S , y) + λτ2LKD(ỹSτ , ỹ

T
τ ) (1)

LCE is the usual cross-entropy loss between the true label y
(e.g., hot encoded) and the class probabilities ỹS (i.e., soft
targets) predicted by the student neural network. Soft targets
ỹτ are typically produced by applying a softmax layer to the
logits zi so that ỹ(i) = exp(zi/τ)∑

j exp(zj/τ)
, where zi is the i-th value

of logits vector z. The temperature τ controls the softness of
the probability distribution. ỹS is computed with τ set to 1.
λ weights the impact of the two loss terms. LKD is a general
distillation loss that measures the distance between the distri-
bution of student’s soft targets (ỹS) and the the distribution
of teacher’s soft targets (ỹT ), e.g. via Kullback-Leibler (KL)
divergence. Alternatively, LKD could directly measure the
error between student and teacher logits (e.g., mean squared
error). We refer to [Gou et al., 2021] for taxonomy and recent
progress in the KD area.

2.2 Codistillation
Codistillation (CD) refers to an online version of distillation,
which obviates the need of a pre-trained teacher in regular
KD [Anil et al., 2018; Gou et al., 2021]. In fact, CD simul-
taneously trains T copies of a model by adding a distillation
term to the regular loss function of the jth model to mimic the
average prediction of the other T − 1 models. In this way,
each worker network sees the ensemble of the other models
as a virtual teacher. For CD, the pre-trained teacher’s soft
targets in Eq. 1 is replaced with the ensemble soft targets of
T − 1 workers.
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Figure 1: Taxonomy of KD-based solutions for FL issues.

In the original formulation of CD [Anil et al., 2018], (1)
all the workers implement the same neural architecture, (2)
all the workers use the same dataset for training and, most
notably, (3) the distillation loss is employed during training
before any model has fully converged.

2.3 Proposed Taxonomy and Classification
Figure 1 illustrates our taxonomy of the possible KD-based
mechanisms designed to enable model heterogeneity or to
combat the effects of data heterogeneity. Table 1 lists the
most relevant related work in the literature and surveyed
in this paper, by classifying the proposed solutions accord-
ing to their primary aim. For each solution, we detail the
kind of per-round exchanged information, the need of aux-
iliary data, and the type of KD involved. For the latter, a
regularizer-based approach uses KD to regularize local train-
ing. Generator-based mechanism leverages a generator model
to assemble synthetic data and transfer knowledge as induc-
tive biases. Digestion means that knowledge is absorbed by
imitating teacher outputs on the same proxy data.

3 Enabling FL Model Heterogeneity via KD
KD has been initially designed to transfer knowledge among
neural networks with different structure and depth. In this
Subsection, we review strategies that adopt KD to enable
model agnosticism in FL, i.e., transfer knowledge among
clients with heterogeneous model architectures.

3.1 Enhancing FedAvg Aggregation
FedAvg’s protocol can be enhanced to enable model hetero-
geneity by leveraging server-side ensemble distillation on top
of the aggregation step [Lin et al., 2020; Sattler et al., 2021a],
through which knowledge is transferred among clients with
different model architecture. To this end, the server can main-
tain a set of prototypical models, with each prototype rep-
resenting all learners with same architecture. After collect-
ing updates from clients, the server firstly performs a per-
prototype model aggregation and then produces soft targets
for each received client model either leveraging unlabeled
data or synthetically generated examples. Next, such soft tar-
gets are averaged and used to fine tune each aggregated model
prototype. Alternative possible solutions to enable model het-
erogeneity consist in exploiting distributed adaptations of CD
instead of parameter-averaging algorithms such as FedAvg,
as presented in the following.
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Purpose Exchanged information Auxiliary data KD approach

Upload Download Client-side Server-side

FedDistill [Jeong et al., 2018] MH, CE z z data-free regularizer -
FedMD [Li and Wang, 2019] MH, CE ỹp ỹp labeled digestion -
Cronus [Chang et al., 2019] MH, CE ỹp ỹp unlabeled digestion -
DS-FL[Itahara et al., 2021] MH, CE ỹp ỹp unlabeled digestion -

MATH [Hu et al., 2021] MH, CE ỹp ỹp labeled digestion digestion
CFD [Sattler et al., 2021b] MH, CE ỹp ỹp unlabeled digestion digestion

FedGEMS [Cheng et al., 2021] MH, CE ỹp ỹp labeled digestion digestion
FedAD [Gong et al., 2021] MH, CE zp, Ap - unlabeled - digestion
FedGKT [He et al., 2020] MH, CE z,H, y z data-free regularizer regularizer

FedDKC [Wu et al., 2022b] MH, CE z,H, y z data-free regularizer regularizer
FedDF [Lin et al., 2020] MH, NIID w w unlabeled - digestion

FedAUX [Sattler et al., 2021a] MH, NIID w w unlabeled - digestion
FedBE [Chen and Chao, 2020] NIID w w unlabeled - digestion
FedFTG [Zhang et al., 2022b] NIID w, c w data-free - generator + digestion
FedZKT [Zhang et al., 2022a] NIID w w data-free - generator + digestion
DaFKD [Wang et al., 2023] NIID w, θd, θg w, θg data-free generator generator + digestion
FedGKD [Yao et al., 2023] NIID w w,wh data-free regularizer -
FedNTD [Lee et al., 2022] NIID w w data-free regularizer -
FedLMD [Lu et al., 2023] NIID w w data-free regularizer -
FedED [Guo et al., 2024] NIID w w data-free regularizer -

FedCAD [He et al., 2022b] NIID w w,αy labeled regularizer -
FedSSD [He et al., 2022a] NIID w w,C labeled regularizer -

FedMLB [Kim et al., 2022] NIID w w data-free regularizer -
FedBR[Liu et al., 2023b] NIID, CE w w data-free regularizer -

FedAlign [Mendieta et al., 2022] NIID w w data-free regularizer -
FedDistill+ [Yao et al., 2023] NIID w, z w, z data-free regularizer -

FedGen [Zhu et al., 2021] NIID w, c w data-free generator -
pFedSD [Jin et al., 2022] P w w data-free regularizer -

Chen et al. [Chen et al., 2023] P w w data-free regularizer -
Wu et al. [Wu et al., 2022a] FU w w unlabeled - digestion
FedET [Liu et al., 2023a] CI, NIID w, c w data-free generator generator + digestion

FedNASD [Wu et al., 2024] CI, NIID w w data-free regularizer -

Table 1: Synoptic overview of the surveyed solutions. We have identified 6 possible categories for primary purpose: model heterogeneity
(MH), non-iidness (NIID), communication efficiency (CE), unlearning (FU), personalization (P), class-incremental learning (CI). Upload
refers to the client-to-server link. Symbols: w model parameters, z logit vectors (model output before softmax), ỹp soft targets (model output
after softmax) on public data, wh historical model parameters, z per-label average logit vectors, y labels of local data, H intermediate feature
maps, A attention maps, αy per-class adaptive weights, C credibility matrix, c local label count, θg generator model weights, θd discriminator
model weights. We do not differentiate among model weights and model updates.

3.2 Federated Adaptations of Codistillation
In a general federated adaptation of CD [Anil et al., 2018],
each client at round t acts as student and sees the ensem-
ble of clients knowledge at round t − 1 as a virtual teacher
knowledge. As highlighted in Section 2.2, traditional CD
postulates that the worker networks have access to the same
training dataset to form an ensemble of model responses on
common samples. Such a requirement is not acceptable in the
FL context, where collaborative training is performed without
disclosing the private raw data of clients. Therefore, consider-
ing a classification task, federated adaptations of CD avoids
the aforementioned problem of collecting model responses
on common training data examples by exchanging a different
kind of knowledge. Among the solutions in the literature, we
identify three types of knowledge to enable federated versions
of CD, and they are:

1. ensemble of aggregated statistics of model responses on

local data (e.g. per-label mean model responses),
2. ensemble of local model responses computed on a pub-

licly available dataset and not on local data,
3. or ensemble of both model responses and model-

agnostic intermediate features.
It is worth noting that the clients and the server exchange
this kind of information instead of model parameters. Fur-
thermore, FL adaptations of CD relax the constraint of im-
plementing the same model architecture, which was needed
in regular CD for datacenter-oriented distributed training. In
fact, exchanging knowledge based on model responses (or on
model-agnostic intermediate features) enables heterogeneous
models among workers, i.e., FL clients, as long as they have
the same output shape. Fig. 2 illustrates FL adaptations of
CD with respect to FedAvg baseline. Table 2 sums up the
comparison among FL adaptations of CD treated in the fol-
lowing subsections.
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Knowledge Transfer Set Server Model Notes
FedDistill [Jeong et al., 2018] statistics data-free no KD-based regularizer
FedMD [Li and Wang, 2019] response labeled no Pre-training on Dp

Cronus [Chang et al., 2019] response unlabeled no Local training on (Xp, Ỹp) ∪Dk

DS-FL[Itahara et al., 2021] response unlabeled no Entropy Reduction Aggregation
MATH [Hu et al., 2021] response labeled yes Server training on (Xp, Ỹp) ∪Dp

CFD [Sattler et al., 2021b] response unlabeled yes Compressed soft targets
FedGEMS [Cheng et al., 2021] response labeled yes Server-side kowledge refinement

FedAD [Gong et al., 2021] feature unlabeled yes One-shot algorithm
FedGKT [He et al., 2020] feature data-free yes FL + Split learning paradigm

FedDKC [Wu et al., 2022b] feature data-free yes Knowledge refinement

Table 2: Comparison among strategies to enable model heterogeneity via FL adaptations of CD. Dk represents the local private dataset of a
generic client. Dp represents a public transfer set. (Xp, Ỹp) is the public transfer dataset labeled with soft targets Ỹp. Knowledge column is
inspired by the classification in [Gou et al., 2021]; statistics-based disclose aggregated statistics (e.g., per-label mean logit vector) of client
model responses on local data, response-based methods communicate model outputs, feature-based also share intermediate representations.

Disclosing Aggregated Statistics of Model Responses on
Local Data. In [Jeong et al., 2018], Jeong et al. presented a
pioneering distillation-based baseline for FL, FedDistill, de-
picted in Fig. 2b. Participants periodically transmit only per-
label mean soft targets computed on their private dataset. The
server, in turn, averages such tensors and produces per-label
global soft targets to be broadcast the next round. When lo-
cally training, clients regularize their local loss with a per-
label distillation term which uses the received global soft tar-
gets as the teacher’s output. A similar strategy is later pre-
sented in [Seo et al., 2020]. It is worth noting that Fed-
Distill is extremely communication efficient with respect to
parameter-based schemes when considering DL models for
classification task, since the communication payload size de-
pends on the model response size and not on model size.

Exchanging Model Responses on Publicly Available Data.
Federated CD can be enabled by using knowledge formed by
an ensemble of model responses computed on a proxy trans-
fer set (publicly available, both clients and server can retrieve
it). In this way, clients train on their private data, and share
knowledge via their model response on the transfer set. Here,
the approaches in literature are more variegated, but a general
skeleton of algorithmic steps can be the following (illustrated
in Fig. 2c):

1. broadcast: clients receive the current global logits/soft
targets;

2. local digest: clients distill their local model by mim-
icking the received global logits/soft-labels on a sub-
set of the transfer dataset. Here, the parallel with tra-
ditional CD: each client sees the averaged predictions
of the other clients at the previous round as a virtual
teacher. This step can be also seen as a way to retrieve
the global model parameters instead of directly receiv-
ing them from the server as in parameter-based schemes
(e.g., FedAvg);

3. revisit (local train): clients fine-tune the distilled model
on local data;

4. local predict: clients compute their local logits/soft tar-
gets on a subset of the transfer dataset;

5. upload: clients sends back the computed logits/soft tar-
gets;

6. aggregate: the server aggregates the client predictions to
produce the updated global logits/soft targets.

7. (optional) global digest: the server distills a model from
the aggregated soft targets on the respective subset of
the transfer dataset, and uses it again to generate the
global logits/soft targets to broadcast. Learning a server-
side model, that is refined round by round, can improve
the training process when there is partial participation of
clients. Next, a new round begins.

Table 2 summarizes the deviation of the surveyed works from
the above general algorithmic steps. In particular, consider-
ing either a labeled or unlabeled proxy dataset influences the
design of algorithms. FedMD [Li and Wang, 2019] uses a
proxy labeled dataset to perform an initial pretraining phase
on clients, before the protocol starts. Itahara et al. modify
the aggregation step proposing an Entropy Reduction Aggre-
gation (ERA), demonstrating that using a temperature lower
than 1 when applying softmax to the aggregated logits re-
duces the entropy of global soft targets, and can help the
training process, especially in non-IID settings [Itahara et al.,
2021]. Compressed Federated Distillation (CFD) [Sattler et
al., 2021b] implements an extreme and effective compression
technique for soft targets based on quantization and delta cod-
ing, which is applied both by clients and server before com-
municating. Cronus [Chang et al., 2019] merges the local
digest and revisit step by directly training on the union (i.e.,
concatenation) of the private dataset and the soft-labeled pub-
lic one. In addition, Cronus aggregates soft targets following
the approach in [Diakonikolas et al., 2017] for enhanced ro-
bustness. Similarly to Cronus, in MATH [Hu et al., 2021]
clients jointly train on private dataset, public dataset, and pub-
lic dataset tagged with global soft targets. MATH [Hu et al.,
2021] considers a labeled proxy dataset, and distills its server
model by training it on the union of such a public dataset with
the soft-labeled version of it. FedGEM [Cheng et al., 2021]
proposes to employ a powerful model server, and its variation
FedGEMS exploits the labels in the public transfer set to en-
force a selection and weighting strategy which can improve
the server-side digestion [Cheng et al., 2021].
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Figure 2: KD-based solutions for FL issues. (a) FedAvg, (b)
statistic-based federated CD, (c) response-based federated CD.

Leveraging Intermediate Features. FedAD [Gong et al.,
2021] also uses intermediate features besides model output to
extend response-based knowledge distillation. The interme-
diate features are model-agnostic attention maps [Selvaraju et
al., 2017], which still enable model heterogeneity as long as
there is consensus on attention map shape. FedAD is a one-
shot federated learning framework, which means that clients
do not have to distill their local model at the beginning of
each round, and can participate asynchronously. FedGKT
[He et al., 2020] uses intermediate features tacking advan-
tage of both asynchronous split learning paradigm [Poirot et
al., 2019] and regular FL. Edge devices train small networks
composed of a feature extractor, which produces intermedi-
ate feature maps, and a classifier, which produces soft tar-
gets. Similarly, the server leverages a deeper network and a
classifier. After local training, for each local samples, clients
communicate their computed intermediate features, the pre-
dicted soft targets and the related ground truth labels. The
server takes locally computed extracted features as input for
its deeper network and produces global soft targets. Both
clients and server use a linear combination of regular cross-
entropy loss and KD-based loss as objective function. The
first considers soft targets and ground truth labels, the latter
measures the discrepancy among local and global logits. A
similar framework is implemented and extended in FedDKC
[Wu et al., 2022b], where Wu et al. also develop server-side
knowledge refinement strategies.

3.3 Comparison and Adoption Guidelines
Federated adaptations of CD can enable model heterogene-
ity, and can reduce the communication requirements at the
cost of computation overhead with respect to parameter-based
schemes. Hence, despite being extremely communication
efficient, it may be not always possible to deploy such al-
gorithms on resource-constrained devices due to the over-
head of client-side distillation (in Table 1, solutions which
use digestion at client side), while being a suitable model-

agnostic alternative for cross-silo settings.1 Furthermore, this
class of solutions usually performs worse than FedAvg-based
baselines (in terms of global model accuracy) [Sattler et al.,
2021a] – even though they typically improve the performance
of non-collaborative training [Itahara et al., 2021]. More-
over, most works in this category suppose the existence of
a semantically-similar proxy dataset (in some cases even la-
beled), which may be an unrealistic assumption in some de-
ployment scenarios and use cases (e.g., for specific medi-
cal applications). The pioneering communication-efficient
data-free strategy in [Jeong et al., 2018] does not incur in
local computation overhead, but it is far from achieving
global model test accuracy comparable to FedAvg, as demon-
strated in [Zhu et al., 2021], also disclosing possible privacy-
sensitive information about private data (i.e., per-label model
outputs). Solutions as [He et al., 2020; Wu et al., 2022b] en-
able model heterogeneity, are usually more communication
efficient than FedAvg, and include resource-constrained de-
vices in the federation, by adopting a split-learning paradigm
and by taking advantage of KD-based regularization. How-
ever, as shown in Table 1, due to their split-learning ap-
proach, these solutions disclose local ground-truth labels,
which again may incur in privacy violation.

4 Tackling FL Data Heterogeneity via KD
KD-based solutions can be used to improve the generaliza-
tion performance of the global model in presence of data het-
erogeneity. Server-side approaches rectify FedAvg’s global
model either via ensemble distillation on a proxy dataset or
using a data-free generator. Orthogonally. client-side mech-
anisms limit local overfitting or directly control the phe-
nomenon of client drift by distilling global knowledge via
on-device regularizers or synthetically-generated data.

4.1 Server-side Refinement of Global Model
Refinement on Pubicly Available Data. In [Lin et al.,
2020], the authors propose FedDF, a server-side ensemble
distillation approach to both enable model heterogeneity and
enhance FedAvg’s aggregation. In FedDF, the global model
is fine tuned imitating the ensemble (e.g., weighted average)
of clients’ model output on a proxy dataset. FedAUX [Sattler
et al., 2021a] boosts the performances of FedDF [Lin et al.,
2020] leveraging unsupervised pre-training on auxiliary data
to find a suitable model initialization for client-side feature
extractor. In addition, FedAUX weights the ensemble predic-
tions on the proxy data according to (ϵ, δ)-differentially pri-
vate [Dwork et al., 2014] certainty score of each participant
model. FedBE [Chen and Chao, 2020] proposes to combine
client predictions by means of a Bayesian model ensemble to
further improve robustness of the aggregation.
Data-free Generator. While server-side ensemble distilla-
tion approaches suppose the existence of a proxy dataset,
FedFTG [Zhang et al., 2022b] performs a server-side re-
finement of the global model via data-free knowledge dis-
tillation where the server adversarially trains both a gener-
ator model and the global model, and fine-tunes the latter

1For example, Sattler et al. use 80000 data points from a public
dataset to distill on-device model before local training.
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with synthetic data. A data-free generator-based refinement
of global model is also proposed in [Zhang et al., 2022a].
The recently proposed DaFKD [Wang et al., 2023] leverages
both a server-side and a client-side generator. At each FL
round, the server refines the FedAvg-aggregated global model
using an importance-weighted ensemble of client models as
teacher. The refined global model is distilled with a loss of
the form:

L = KL(
K∑
k

αk · ŷw
k

, ŷw), (2)

with the activated K clients indexed by k, and ŷw
k

and ŷw

being, respectively, the prediction of client k’s model and of
the global model on synthetically generated data. αk weights
per-sample importance of client models’ predictions accord-
ing to a discriminator model, which is adversarially trained by
each client to distinguish whether the synthetic data is sam-
pled from the distribution of its local data.

4.2 Client-side regularization
Local Regularization to Reduce Overfitting. In [Mendi-
eta et al., 2022], Mendieta et al. show that GradAug [Yang
et al., 2020], a distillation-based structural regularization not
specifically designed for FL settings, effectively mitigates
client drift issues though substantially introducing computa-
tion overhead. Hence, Mendieta et al. design a novel method,
FedAlign [Mendieta et al., 2022], which has similar effect
and performances but with a sustainable computation over-
head. In particular, FedAlign targets the deeper layers of a
neural network, most prone to overfit client distribution [Luo
et al., 2021], imposing a distillation-based term in the lo-
cal objective function. Such term minimizes the discrepancy
among the intermediate features produced in output by the
final block of the full network and the features produced by
the same block but at reduced width (via temporary uniform
pruning). Employing a slimmed sub-block permits to intro-
duce a limited computation overhead.
Local-Global Distillation via Regularization Term. Re-
spectively inspired by fine-tuning optimization ideas and con-
tinual learning research, the recent works in [Yao et al., 2023;
Ni et al., 2022] and [Lee et al., 2022] find that local KD-based
regularization is an effective way of reducing the influence of
non-IID data in FL settings. In local-global distillation, the
local objective function of clients becomes a linear combina-
tion between the cross-entropy loss and a KD-based loss,

L = (1− λ)LCE(ỹ
wk

t+1 , y) + λτ2LKD(ỹw
k
t+1 , ỹwt) (3)

where ỹw
k
t+1 and ỹwt are the soft targets produced on lo-

cal data respectively by the local model of client k and by
the received global model. The KD-based loss measures
the discrepancy among the global model’s output (i.e., the
teacher model’s output) and the local model’s output (i.e.,
the student model output) on private data, e.g. via KL di-
vergence, and works as a regularization term. In this way,
the global model works as an anchor for local training, lim-
iting client drift. Local-global distillation can be seen as a
self-distillation mechanism, since the local and global model
coincide at the beginning of local training. Fig. 3 depicts the
basic framework for this kind of local-global distillation.

wk
t+1

softmax

CE loss

KD loss

local 
loss

wt

yi

xi

softmax

Dk

Figure 3: Local-global distillation using a regularization term. wt

represents the global model at round t. wk
t+1 is the local model.

Local-Global Distillation via Regularization Term: Fur-
ther Improvements. FedGKD [Yao et al., 2023] uses an
ensemble of M historical global models as teacher, computed
as the average of M past global models. Yao et al. also pro-
pose FedGKD-VOTE as a variation that considers the aver-
aged discrepancy of all the M historical models’ outputs as
the regularization term. With M = 1, the communication
cost is the same of FedAvg, while for M > 1 the server-
client communication cost is doubled, and for FedGKD-
VOTE it scales with M . To reduce forgetting among sub-
sequent rounds of learning, FedNTD [Lee et al., 2022] ig-
nores the logits produced by the true classes when computing
the softmax score later fed to the KD-based loss. FedLMD
[Lu et al., 2023] extends FedNTD by masking out the locally
most represented classes in the teacher’s logits. Lu et al. also
proposes a teacher-free version, uniformly distributing the
teacher’s output probability on minority classes. Similarly,
Guo et al. design FedED that preserves the global knowledge
on not locally represented classes (classes for which a client
does not hold samples) [Guo et al., 2024]. He et al. fur-
ther observe that, in the framework of Fig. 3, leveraging an
inaccurate global model (i.e., inaccurate teacher) on specific
classification classes might mislead local training [He et al.,
2022b]. To alleviate such phenomenon, a class-wise adaptive
weight is proposed in FedCAD [He et al., 2022b] to control
the impact of distillation: when the global model is accurate
on a certain class, local models learn more from the distilled
knowledge. FedCAD determines the class-wise adaptive
weight based on the performances of the global model on an
auxiliary dataset, and the server broadcasts such information
along with model parameters round by round. FedSSD [He
et al., 2022a] extends FedCAD by also considering the cred-
ibility of global model at the instance level when computing
the distillation term in local training. FedMLB [Kim et al.,
2022] enhances the local-global distillation also using inter-
mediate representations, preventing them from deviating too
significantly during local fine tuning. To this end, FedMLB
crafts hybrid pathways composed of local and global subnet-
works, i.e., of local network blocks followed by non-trainable
global blocks. Besides regular cross-entropy, local learning
also considers the average cross-entropy from hybrid paths
and the average KL divergence between the outputs produced
by the hybrid paths and the main path as regularization term.
FedBR, proposed in [Liu et al., 2023b], extends FedMLB by
adaptively distributing only a fraction of the global model’s
blocks according to the estimated level of data heterogeneity
and on the client’s computation/communication constraints.
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FedDistill+, used as alternative baseline in [Yao et al., 2023;
Zhu et al., 2021], extends the work of [Jeong et al., 2018;
Seo et al., 2020] by exchanging per-label local logits on train-
ing dataset in addition to model parameters. With respect
to the framework in Fig. 3, FedDistill+ uses the received
per-label globally averaged logits instead of the output of the
global model on private data to calculate the KD loss.

Local-global Distillation via Data-Free Generator Mod-
els. Differently from the other work in this subsection, Fed-
Gen [Zhu et al., 2021] learns a lightweight server-side gener-
ator which is distributed, round by round, to clients that sam-
ple it to obtain augmented training examples, using global
knowledge as inductive biases in local learning.

4.3 Comparison and Adoption Guidelines
KD-based server-side refinement strategies such as [Lin et
al., 2020; Sattler et al., 2021a; Chen and Chao, 2020] can
improve FedAvg global model performance in presence of
highly heterogeneous data when semantically-similar unla-
beled proxy data are available. It is worth noting that this
class of algorithms exhibits most improvements when several
local epochs are performed between communication rounds
and client models tend to drift apart. Also, such algorithms
do not introduce computation or communication overhead on
clients. Data-free generator models can also be used to per-
form server-side global model corrections as in [Zhang et al.,
2022b] or to limit client drift directly at the participating de-
vices as in [Zhu et al., 2021], in both cases at the cost of
disclosing local label count. Similarly, DaFKD [Wang et al.,
2023] enables data-free refinement of global model via gener-
ators, but introducing computation and communication over-
heads on clients – although limited thanks to partial parameter
sharing.

No additional information has to be disclosed from clients
and not even proxy data are needed in solutions that regu-
larize local training by employing global model output on
local data, as in FedGKD [Yao et al., 2023], FedNTD [Lee
et al., 2022], FedLMD [Lu et al., 2023], FedED [Guo et
al., 2024]. In addition, this set of strategies do not intro-
duce significant on-device computation overhead and has the
same communication requirements as FedAvg. However,
they would require to store two full-size models in memory
(the local model as usual and the global model as reference),
such limitation can, in practice, be avoided by firstly comput-
ing the predictions of the received global model on local data,
and then proceeding with local training by overwriting it. If
limited labeled proxy data are available, local-global knowl-
edge distillation can be improved as in [He et al., 2022b;
He et al., 2022a]. When moderate or even significant comput-
ing overhead is sustainable, local global distillation can be en-
hanced by using intermediate features and hybrid pathways as
in FedMLB [Kim et al., 2022] and FedBR [Liu et al., 2023b],
thus significantly improving the effectiveness of local-global
distillation. It is worth noting that in FedMLB and FedBR
the selected blocks of the global model must be stored lo-
cally during training, and this cannot be avoided as for regu-
larization based on model responses. As highlighted in [Kim
et al., 2022], client-side regularization can be coupled with

standard server-side strategies to boost performances (e.g.,
FedOpt [Reddi et al., 2020]).

5 Emerging Use of KD in FL
Here we outline the recently emerging use of KD tailored to
address other FL issues, i.e., personalized FL, federated un-
learning, and class-incremental federated learning.
KD for FL Personalization. The primary scope of per-
sonalized FL is to build a global model prone to quickly
adapt to local data distributions. While KD-based solutions
are commonly used to enhance the generalization ability of
the global model (see Section 4), lately, distillation-inspired
mechanisms have been employed in personalized FL algo-
rithms. Jin et al. propose pFedSD where clients store their
last trained personalized model and use it as teacher for the
next rounds [Jin et al., 2022]. In a nutshell, pFedSD uses the
distillation framework depicted in Fig. 3, with the teacher
being a past local model instead of the global model. In ad-
dition, Chen et al. recently introduced a spectral distillation
used to regularize local training via a term that minimizes the
KL divergence between the Fourier spectra of global and per-
sonalized models [Chen et al., 2023].
KD for Federated Unlearning. An FL client should have
the right to request the removal of its contribution from the
global model, and mechanisms to enable selective forgetting
of clients are emerging. The solution in [Wu et al., 2022a]
firstly removes the unlearning client’s historical model up-
dates from the global model. Then, the server leverages
KD to quickly recover the global model performance with
the sanitized global model mimicking the outputs of the last
global model on proxy unlabeled data.
KD for Federated Class-Incremental Learning. The
methods surveyed up to here assume that the classification
classes of a task are fixed over the entire FL process. In con-
trast, works to address class-incremental learning in federated
settings are emerging. In Liu et al., [Liu et al., 2023a] pro-
pose FedET, which leverages an enhancer distillation method
to modify the imbalance between old and new knowledge. In
[Wu et al., 2024], Wu et al. design FedNASD, a method that
uses the class probabilities from the current models to approx-
imate the historical models’ output on new classes – historical
models may encompass fewer classes – so that local-global
distillation (see Fig. 3) can be applied even when classes are
changing over time.

6 Conclusive Remarks
KD has been recently embedded in FL algorithms to tackle
FL-specific issues. In this survey, we present the various pos-
sible distillation-based mechanisms primarily proposed to en-
able model heterogeneity and to tackle the effects of data het-
erogeneity in FL, and, in some cases, to reduce the associated
communication costs. We originally classify and compare the
recent proposals in this field, by highlighting their possible
weaknesses and their trade-offs. Then, we outline the emerg-
ing use of KD to improve other aspects of FL.
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