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Abstract
Transformer-based LLMs are becoming increas-
ingly important in various AI applications. However,
apart from the success of LLMs, the explosive de-
mand of long context handling capabilities is a key
and in-time problem for both academia and industry.
Due to the limitations from the quadratic complexity
of the attention mechanism, long context scenarios
require much more resources for LLM development
and deployment, bringing huge challenges to the un-
derlying AI infrastructure. Meanwhile, we observe
that there is a trend of reviving previous efficient
attention mechanisms to latest LLMs. However, it
still remains an open question about how to select
from these diverse approaches in practice. In this
paper, we answer this question from several aspects.
First, we revisit these latest long-context LLM in-
novations and discuss their relationship with prior
approaches with a novel and comprehensive tax-
onomy. Next, we conduct a thorough evaluation
over various types of workloads considering both
efficiency and effectiveness. Finally, we provide
an in-depth analysis, summarize our key findings,
and offer insightful suggestions on the trade-offs of
designing and deploying efficient attention mecha-
nisms for Transformer-based LLMs.

1 Introduction
Transformer-based large language models (LLMs) [Vaswani et
al., 2017] are becoming a key backbone of foundation models
in recent years, which has been applied to diverse areas [Shao
et al., 2024; Zhong et al., 2022; Li et al., 2023a], such as
natural language processing (NLP), computer vision (CV), and
multi-modal tasks. It has been observed that emerging LLMs
have achieved dramatic breakthroughs (e.g., ChatGPT, Bard),
constantly improving the state-of-the-art model performance
(e.g., generation quality). LLMs are leading this paradigm to
shift in deep learning (DL) and becoming the cornerstone of
AI development.

However, one of the main pitfalls of Transformer-based
LLMs is the quadratic complexity of the attention mechanism
(with respect to the sequence length). As shown in Figure 1a,
the attention mechanism requires to calculate the attention
score matrix A ∈ Rn×n from the dot product of row vectors
in Q and K, where Q,K,V ∈ Rn×d and n is the sequence
length. Specifically, each position (i, j) in A implies the
strength of the relationship between the i-th token and the
j-th token in the given sequence. Figure 1b illustrates the
per-sequence execution time and memory footprint of a sin-
gle Transformer module while increasing the sequence length
from 128 to 8192 on one NVIDIA Titan RTX 24GB GPU.
We can observe that multi-head self-attention (MSA) occu-
pies more than half of overheads when the input sequence
length grows to 512. Some latest LLM applications (e.g.,
long document handling, multi-round chatting) have claimed
to support longer sequences with thousands of tokens (e.g.,
GPT4-32K, Yarn-Mistral-7b-128k, and Baichuan2-192K) and
such requirements are still increasing. For these scenarios, the
default full attention calculation (i.e., query-key productions
between all pairs of tokens) dominates the entire LLM, re-
quiring a large amount of computation and memory resources.
Such limitations seriously affects the training and inference
efficiency of LLMs and potentially restricts their applicability
to more real-world scenarios.

We also notice that since the emergence of ChatGPT, dozens
of approaches targeting attention optimizations over existing
LLMs continuously appear during the past year. To make
LLMs efficiently support long contexts, the key idea behind
these explorations is seeking for alternative attention mecha-
nisms to alleviate the computational inefficiency and memory
pressure issues for LLM training and inference. However, they
simplify attention in significantly different methods (e.g., se-
lecting few important context tokens, reformulating non-linear
activation functions), leading to unequal time cost or memory
usage. Furthermore, there is no such thing as a free lunch
because these optimizations have side effects on the model
performance in varying degrees. Therefore, these efficient
long context LLM optimizations exhibit vast diversity and
pose tough choices for real LLM applications. Unfortunately,
as a timely research topic, there lacks a comprehensive survey
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(a) Illustration of Transformer module and Multi-Head Self-Attention (b) Time/memory costs

Figure 1: Fig. 1a: Transformer. Fig. 1b: The increasing time and memory costs when scaling a Transformer module to longer sequences

in this crowded field to provide constructive guidelines for
long context LLMs.
Survey Scope In fact, scaling LLMs to long context requires
innovations from various perspectives, such as designing con-
text compression methods [Mohtashami and Jaggi, 2023;
Jiang et al., 2023b; Zhang et al., 2023b], replacing Trans-
former architecture with attention-free solutions (e.g., recur-
rent units [Peng et al., 2023], state space models [Gu and Dao,
2023]), leveraging external knowledge during inference (e.g.,
retrieval-augmented generation [Xu et al., 2023]), and extrap-
olating the positional embedding for better contextual capabil-
ities (e.g., RoPE [Su et al., 2024]). Our survey mainly focuses
on the attention optimizations for efficient long context mod-
eling and aims to provide a comprehensive understanding on
the intuitions behind their design trade-offs. Surprisingly, we
notice that there is a trend of applying previous efficient atten-
tion mechanisms (before 2022) to recent LLMs (since 2023),
while minimizing the degradation of model performance. Al-
though some of them are designed for encoders, most of them
can easily adapt to the autoregressive decoding paradigm in
decoder-only LLMs through certain algorithm adjustments
(e.g., maintaining an upper triangular casual mask attention
matrix like Figure 3). To the best of our knowledge, we are
the first to reveal the development trajectory of these latest
long-context LLM advancements as well as their relationships
with previous work, making our survey fundamentally dif-
ferent from prior surveys on similar topics [Tay et al., 2020;
Miao et al., 2023b].

Specifically, we summarize our contributions as follows:

• We critically revisit latest long-context LLM optimiza-
tions, illustrates their technical origins, and provide a new
taxonomy to clarify the fundamental differences behind
their designs.

• We conduct over 20,000 GPU hours empirical studies
to compare the computational efficiency, memory usage,
and model performance under relatively fair conditions.

• We provide practical suggestions on algorithm selection
and system design for LLMs and offer valuable insights
on designing effective and efficient attention mechanisms
for long-context LLMs in the future.

2 Taxonomy of Efficient Attention for LLMs
In this survey, we revisit previous efficient attention mecha-
nisms and classify them into four categories. We then illustrate
the relationship between these prior work with the recent atten-
tion optimizations for long context LLMs. Figure 2 presents
our taxonomy of these approaches and the technological evo-
lution pathway behind recent long context LLM advances. In
the following, we will go through each category and provide
an in-depth analysis of them.

2.1 Positional Selection
The first notable line of work directly select few tokens in some
pre-defined positions to approximate the original attention re-
sults based on the full context. In this way, the query-key pairs
to be calculated locate at few specific positions in the attention
matrix suggested by algorithm experts. The design of these
selected positions are usually determined by some observa-
tions in real distribution of attention scores from empirical
studies or theoretical analysis. For example, Mistral-7B [Jiang
et al., 2023a] takes a sliding window attention mechanism
that only emphasizes the left neighboring tokens within the
rotating buffer. MASFormer [Zhang et al., 2023a] employs a
block sparse attention mechanism and only performs attention
calculation within blocks. LongNet [Ding et al., 2023] adapts
a dilated window approach to expand the attentive field and
capture both short-range and long-range token dependencies.
StreamingLLM [Xiao et al., 2024] maintains the sliding win-
dow and attention sinks by assuming the initial tokens have
strong attention scores even if they are not semantically impor-
tant. We found that the key ideas of these LLM optimizations
are mostly originated from the following approaches.

A1: Longformer. Longformer [Beltagy et al., 2020] de-
signs three types of sparse pattern, i.e. sliding window, dilated
sliding window and global, as shown in Figures 3a,3b, and 3c.
Since the local context in a sequence may have semantic asso-
ciations, the two window patterns force a token to aggregate
information from neighboring tokens (i.e., the diagonal area
in the attention matrix with the size of w). The dilated variant
allows a larger receptive field and can be used as an alternative
to the original sliding window pattern in some settings. The
global pattern introduces all-to-one connections (i.e., g non-
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Figure 2: Illustration of the relationship between previous efficient attention mechanisms and recent long context LLM optimizations.

zero columns in the attention matrix). It aims to emphasize
some special and important tokens, making them noticed by
all tokens. To better leverage different patterns, Longformer
integrates them together as a combined sparse pattern.

A2: BigBird. BigBird [Zaheer et al., 2020] employs win-
dow and global attentions as Longformer does. In addition,
BigBird proposes the random pattern, which allows a query
to attend to a fixed number (i.e., r) of random keys. From
a graph spectral theory perspective, these random edges be-
tween tokens benefit the information propagation between
arbitrary token pairs. However, the random pattern brings
inconvenience in an efficient implementation. To this end, in
the GPU kernel implementation of BigBrid, it proposes to
blockify the attention matrix and sparse patterns by defining
a b × b block as a basic computation unit. Computation on
the attention matrix is performed at the granularity of basic
blocks. Figure 3e illustrates BigBird sparse patterns which are
split into 2× 2 blocks.

A3: Sparse Transformer (SparseTrans). Sparse-
Trans [Child et al., 2019] is an early work directing only
at decoder-only Transformers on auto-regressive generation
workloads. SparseTrans defines a hybrid fixed-position at-
tention pattern that is suitable for general data without any
prior knowledge of the strided pattern. It integrates both block-
local and block-global patterns as shown in Figure 3g. In this
way, these global columns help to summarize previous tokens’
information and propagate to all future tokens.

2.2 Contextual Compression
Another line of work directly compresses the context into
fewer tokens to alleviate the computational and memory over-
heads. Therefore, it is necessary to find appropriate compres-
sion methods to keep important information in the attention

matrix. Some approaches adaptively determine which query-
key pairs to be calculated according to the context information
based on different token importance measurements [Mu et
al., 2023; Anagnostidis et al., 2023; Zhang et al., 2023b;
Jiang et al., 2023c]. For example, Scissorhands [Liu et al.,
2023b] drops the tokens whose corresponding attention scores
are lower than a budget and keeps the remaining tokens for
the following LLM decoding. H2O [Zhang et al., 2023b]
combines these tokens with high attention scores and the
sliding window approach for better performance. Selective
Context [Li et al., 2023b] evaluates the informativeness of
tokens with self-information and retain content with higher
self-information. LLMLingua [Jiang et al., 2023b] further
takes account into the conditional dependencies between to-
kens and proposes an iterative prompt compression method.
Some approaches inserts some summary [Chevalier et al.,
2023] or landmark [Mohtashami and Jaggi, 2023] tokens
into the context to replace the original tokens during atten-
tion calculation [Ge et al., 2023]. There are also some ap-
proaches partitioning context tokens with similar information
into small groups by hashing techniques [Han et al., 2023;
Pagliardini et al., 2023]. We found that some prior work also
optimize the attention calculation with similar design.

A4: Reformer. Reformer [Kitaev et al., 2019] proposes
the locality sensitive hashing (LSH) attention mechanism. It
gathers the nearest queries and keys into the same bucket
during the pre-processing phase. More specifically, it uses a
random-projection-based LSH function h(·) to map queries
(keys) into different buckets. Suppose the number of buck-
ets is s, given a random matrix R ∈ Rd×s/2, we have
h(x) = argmax([xR;−xR]). It assumes that similar queries
(keys) will fall into identical buckets with high probability
and then we can limit the attention calculation within the
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(a) Sliding window (b) Dilated sliding (c) Longformer (d) Random (e) BigBird (f) Block (g) SparseTrans

Figure 3: Positional attention patterns. Fig. 3c: Window + Global. Figure 3e: Random + Window + Global. Fig. 3g: Block + Global Column.

same bucket, rather than the whole sequence. It could be
further improved by applying multiple rounds (i.e., l) of hash-
ing. Besides, Reformer shares query and key weight matrices
(WQ,WK), which forces queries and keys to be identical.
However, uneven bucket splitting may increase the difficulties
of parallel computation in GPUs. Reformer proposes to re-
order queries (keys) according to cluster indices and split them
into small uniform chunks. It is also necessary to re-order the
output vectors back after the chunk-wise multiplication.

A5: Clustered Attention (ClusterAttn). ClusterAttn [Vyas
et al., 2020] uses centroids (representative queries) to provide
a fast approximation for the full attention calculation. During
pre-processing, a fast clustering (e.g., K-means with l itera-
tions, which is also used by Routing Transformer [Roy et al.,
2021]) step groups all queries into c non-overlapping clusters.
It assumes queries in the same cluster (which suggests close
in spatial) can be represented by the same one (i.e., cluster
centroid). These centroids are then multiplied with all keys,
and the resulting attention distribution will be broadcasted
to all queries in the same cluster. It is further improved by
using top-k keys for each cluster (i.e. the keys that get top-k
highest attention scores with each centroid) to re-calculate the
attention with clustered queries. It involves more computa-
tion overheads, but largely reduces the misusing risks (e.g., a
key with low attention for some queries mistakenly gets high
attention with the centroid).

Others. Some work adaptively select important tokens
to compress the context, such as adaptively sparse Trans-
former [Correia et al., 2019], Informer [Zhou et al., 2021], and
so on [Gupta et al., 2021]. However, considering the diversity
of input workloads, it’s still challenging for nowadays LLMs
to find appropriate compression methods and keep important
information in the attention matrix without prior knowledge.

2.3 Activation Kernelization

Another category of approaches is kernelization methods that
reorganize the original activation function softmax(QK⊤)
to a matrix multiplication after the kernel functions [Tsai et
al., 2019]. Specifically, it replaces exp(·) with S(·, ·), which
can be written as S(a, b) = ϕ(a)ϕ(b)⊤. Here S(·, ·) should
be non-negative and the feature map function ϕ(·) is required
to be non-negative and monotonically non-decreasing. As a
result, given a query qi, its original attention output yoriginal

i =
softmax(qiK⊤)V could be approximated as:

ykernel
i =

∑
j

exp(qik
⊤
j )∑

l exp(qik
⊤
l )

vj ≈
∑
j

S(qi, kj)∑
l S(qi, kl)

vj (1)

=

∑
j

(
ϕ(qi)ϕ(kj)

⊤) vj∑
l ϕ(qi)ϕ(kl)

⊤ =

[
ϕ(Q)

(
ϕ(K)⊤V

)]
i

[ϕ(Q)
∑

l ϕ(kl)
⊤]i

.

(2)
Through getting rid of softmax, kernelization methods

calculate ϕ(K)⊤V first and then multiply ϕ(Q) on the left.
Such a computation order avoids directly calculating QK⊤,
and reduces the time complexity from O(dn2) to O(d2n).

A6: Linear Attention (LinearAttn). Lin-
earAttn [Katharopoulos et al., 2020] is the first kernelization
attention method that switches the order from (QK⊤)V
to Q(K⊤V). It defines the feature map function as
ϕ(·) = elu(·) + 1. The advantage of the exponential linear
unit [Clevert et al., 2015] over the mediocre choice of ReLU(·)
is its non-zero gradients when x is negative.

A7: Cosformer. Cosformer [Zhen et al., 2022] uses the fea-
ture map function of ϕ(·) = ReLU(·) and employs a cos-based
re-weighting mechanism in the kernel function. Specifically,
it multiplies the attention score of each query-key pair with a
recency bias as following:

S′(qi, kj) = S(qi, kj) cos

(
i− j

n
· π
2

)
(3)

Such a re-weighting mechanism makes tokens in closer posi-
tions have a higher bias. E.q. (3) can be dissected in the kernel
form:

S(qi, kj) cosαi−j = ϕ(qi)ϕ(kj)
⊤ · (cosαi cosαj+

sinαi sinαj) = qcosi

(
kcosj

)⊤
+ qsini

(
ksinj

)⊤
, (4)

where αt = tπ
2n , q

cos
i = ϕ(qi) cosαi, qsini , kcosj , ksinj are de-

fined in similar way. In this way, we only need to calculate

Qcos
(
(Kcos)⊤V

)
,Qsin

(
(Ksin)⊤V

)
, (5)

satisfying the calculation scheme of kernelization methods.
A8: Performer. Performer [Choromanski et al., 2020]

defines the random feature map function as a series of carefully
designed functions:

ϕ(x) =
h(x)
√
p

(
f1(xΩ

⊤), . . . , fl(xΩ
⊤)
)

(6)

where Ω ∈ Rp×d is a random matrix composed of p i.i.d.
random vectors obeying some d-dim distribution D. By speci-
fying f, h,D as certain values, Performer gets a suitable ran-
dom feature map for softmax-kernel estimation. In this series
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of feature maps, the feature map configuration which sets
h = 1, f = ReLU,D = N (0, Id) has shown better perfor-
mance against the approximated softmax-kernel.

Some recent LLM optimizations are built on top of these
kernelization methods. For example, EVA [Zheng et al., 2023]
generalize the formulation of Performer and random-feature-
based attention [Peng et al., 2021] by control variates approx-
imation. Tranformer-VQ [Lingle, 2023] combines LSH and
kernelization techniques to reduce the attention complexity.

2.4 Low-Rank Factorization
Low-rank factorization methods go one step further beyond
contextual compression and discard the mindset of reducing
the number of dot-products of query-key pairs. This line of
work treats the attention matrix (or the one after softmax) as a
low-rank matrix and finds ways to decompose it into products
of low-dim matrices. These approaches reduce the time and
memory complexities by directly reducing the dimension sizes
of tensors. Although there is currently no long context LLM
based on such methods, it’s still worth discussing in our survey
as a representative approach.

A9: Linformer. Linformer [Wang et al., 2020] reduces
dimensions by linear projection on inputs. It projects key and
value matrices from Rn×d to Rp×d using low-dim projections
P1,P2 ∈ Rp×n, i.e.,

X = softmax

(
Q (P1K)

⊤
√
d

)
(P2V) . (7)

The projection on K results in a smaller attention matrix,
reducing the quadratic complexity ultimately. The reduction
on sequence length dimension means loss of a large portion of
information, especially when the input sequence is extremely
long. For better efficiency, Linformer can share projection
matrices across heads, key-value pairs or even layers.

A10: Nyströmformer. Nyströmformer [Xiong et al., 2021]
uses the Nyström method [Wang and Zhang, 2013] to approx-
imate the softmax attention. Though conventional Nyström
method needs to access full QK⊤ for approximation, Nys-
trömformer revises the approximation into the form:

X̃ = softmax

(
QK̃⊤
√
d

)(
softmax

(
Q̃K̃⊤
√
d

))+

softmax

(
Q̃K⊤
√
d

)
V

= AkA
+
qkAqV = (AkA

+
qk)(AqV) (8)

Here Q̃, K̃ ∈ Rp×d are sub-sampled from Q,K by segment-
means, which divides the original matrix into p segments of
equal length and uses the means of segments (also called
landmarks) to form the sub-sampling matrix. A+

qk denotes
the Moore-Penrose pseudoinverse of matrix Aqk, which is
also approximated using an iterative algorithm (l rounds). The
softmax attention is factorized into three low-dim multipliers,
Ak,A

+
qk,Aq. The order of matrix multiplication operations

is referred by parenthesis in E.q. (8). Nyströmformer applies
an additional skip connection of V using a 1-dim depth-wise
convolution for better model performance.

2.5 Other Approaches
A11: Synthesizer. Synthesizer [Tay et al., 2021a] is an attempt
to replace dot-product self-attention with (1) a learnable, ran-
domly initialized alignment matrix, and (2) the output of a
two-layered feed-forward network conditioning only on hid-
den vectors X. It further provides four synthetic attention
variants as alternatives. Factorized random synthetic attention
uses two learnable matrices R1,R2 ∈ Rn×p to generate a
random attention matrix:

X = softmax
(
R1R

⊤
2

)
V. (9)

The attention matrix is independent of input tokens. For p < d,
R1R

⊤
2 computes less than QK⊤.

A12: TransNormer. TransNormer [Qin et al., 2022] aims
to tackle two empirically found problems in conventional ker-
nelization methods: (1) unbounded gradients are observed due
to the normalization inherited from the softmax function (i.e.
the denominator in E.q. (2)), which leads to unstable conver-
gence in model training, and (2) attention probabilities are
diluted due to the non-existence of softmax function, which
is detrimental to Transformers in capturing strong neighbor-
ing dependencies between tokens. Therefore, TransNormer
divides the model into two parts. The early layers use block-
local pattern in softmax attention (called DiagAttention) to
facilitate the model’s learning process on local dependencies
of tokens, and the later layers use RMSNorm to replace the
denominator as normalization for ϕ(Q)

(
ϕ(K)⊤V

)
(called

NormAttention), aiming to stabilize the training gradients.
Both of them have linear complexity w.r.t. sequence length.

2.6 Summary
To reduce the attention complexity for long context LLMs,
there are many other attention simplification methods beyond
prior work, e.g., reducing the complexity from hidden di-
mension. For example, attention sharing approaches make
different attention heads share the same keys and values, such
as Multi-query attention (MQA) and Group-query attention
(GQA) [Ainslie et al., 2023]. Deja Vu [Liu et al., 2023c] cuts
off specific attention heads by the contextual sparsity hypothe-
sis. CacheGen [Liu et al., 2023a] takes a losslessly bitstream
compression method to reduce the size of context representa-
tion (i.e., KV-cache). We acknowledge that these explorations
can be beneficial to reduce the resource usage of attention cal-
culation. However, our survey mainly focuses on the attention
optimizations from the sequence length dimension, alleviating
the quadratic complexity problem for long contexts.

3 Empirical Study and Analysis
To provide a more comprehensive understanding of prior ef-
ficient attention mechanisms, we also provide an empirical
study and analysis to explore these reviving efficient attention
mechanisms. Considering the technical similarities between
prior work and recent LLM optimizations, we re-implement
twelve representative efficient attention mechanisms in Py-
Torch. The involved dense algebras are based on PyTorch’s
default MatMul operators and we also write an efficient block-
sparse GPU kernels to support sparse algebras [Miao et al.,
2023a]. And we evaluate them on three kinds of popular
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Figure 4: Performance (y−axis), speed (x−axis), and memory footprint (size of the circles) of different methods in different tasks

and diverse LLM workloads by training these Transformers
from scratch. The first is the long range arena (LRA) bench-
mark [Tay et al., 2021b], which is a systematic and unified
benchmark designed for efficient Transformers with long input
sequences. We then go beyond the LRA benchmark to both
the NLP task and the CV task with long sequences. To obtain
copious and unbiased conclusions, we also carefully design
the configurations of each individual efficient attention mech-
anism and guarantee making a fair comparison, limiting all
approaches within the same theoretical computational budget.
The entire evaluations take around 21,114 GPU hours in total
on a NVIDIA Titan RTX 24GB GPU cluster. The whole code
repository of our evaluations are open sourced to benefit the
follow-up studies. The code and more experiment details can
be found in our additional technical report [mya, 2023].

3.1 Performance Comparison
Figure 4 illustrates the overall performance comparison of
these methods and their trade-offs for each individual task.
In each subfigure, the y−axis represents the corresponding
task statistical efficiency (in different evaluation metrics) and
the x−axis shows the computation speed (i.e., the number
of processed sequences per second for training). All evalu-
ated approaches are expressed as circles with different colors
and each circle’s center coordinates refer to its corresponding
statistical and computational efficiencies. The size of these cir-
cles illustrates the memory efficiency (i.e., memory footprint)
of each approach.

We found that, in the LRA benchmark with long sequence,
full attention has unbearable time and memory overheads,
but achieves superior model performance. The kernelization
methods (e.g., Performer and Cosformer) get the best balance
between performance and speed with low memory usage. Po-
sitional selection methods (e.g., Longformer and BigBird) are
also good alternatives to full attention with at least 1.81×
speed up and 8.07× memory saving. But these methods are
slower than full attention in NLP tasks with a slightly shorter
sequence length of 512. Only SparseTrans surpasses full at-
tention in all efficiency metrics. Other positional selection
methods are slower, and the rest categories of methods have
obvious performance degradation. In CV tasks with much
shorter sequences, full attention itself is quite a good solution,
as most efficient attention mechanisms are either slower or

weaker. Due to the combination of positional selection and
activation kernelization, TransNormer could be an alternative
solution for less memory usage and faster speed with slight
performance loss.

3.2 Interpretability Study
To better understand the fundamental differences of these ef-
ficient attention approaches, we study their impacts on the
attention calculation results. We pick up one attention head of
the last layer for each well-trained model on the NLP task and
visualize their attention matrices in Figure 5. Illustrations for
more heads are in [mya, 2023]. As we can see, the attention
score of full attention has strong local biases. Many large atten-
tion scores appear even far away from the diagonal area, which
complements long-range dependencies to the diagonal local
attention. Positional selection methods apply sparse patterns
on attention matrices, and blank positions in the visualization
are not included in attention calculation. Their local sparse
patterns formulate a diagonal region in the figures. There are
also some dark rows and columns to learn the long-range de-
pendencies in these sparse attentions. Longformer only uses
sliding window attention and BigBird puts global blocks at the
edges of attention matrices, while SparseTrans has a global
column after each block. For contextual compression methods,
their illustrated local and long-range dependencies change
significantly. show the effectiveness of their hashing and/or
clustering estimation. Both Reformer and ClusterAttn learn
the dependencies in the low-dimensional space after hashing
and/or clustering, rather than the original space. That’s why
there are no significant dark diagonal blocks in the attention
matrices. Activation kernelization methods reorder the multi-
plication operators and do not have explicit attention anymore.
But we can still obtain the approximate full attention by re-
computing ϕ(Q)ϕ(K)⊤ first and divide it by the denominator
of E.q. (2). We also observe some local biases, especially for
Cosformer and Performer due to their additional optimizations
(e.g., re-weighting). For low-rank factorization methods, we
use the computation results before V in E.q. (7) and (8) as
their attention matrices. The results involve some negative
values due to P2 and A+

qk, which are represented as the blank
positions in Figures 5j and 5k. The random attention matrix
of Synthesizer, which is independent of inputs and thus iden-
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(a) Full (b) Longformer (c) BigBird (d) SparseTrans (e) Reformer (f) ClusterAttn (g) LinearAttn

(h) Cosformer (i) Performer (j) Linformer (k) Nyström (l) Synthesizer (m) DiagAttn (n) NormAttn

Figure 5: Visualization of attention matrices (after softmax) for all efficient attention mechanisms (in log-scale for better illustration).

tical for all data instances, has broader local regions for high
attention values. As a combination method, TransNormer uses
DiagAttention to model local dependencies, while its NormAt-
tention devotes to long-range dependencies and does not show
a strong local trend as other kernelization methods do.

4 Lessons Learned and Future Work
Section 2 and Section 3 provide a new taxonomy of existing
Transformer methods and show a comprehensive analysis of
their performance. In this section, we summarize the lessons
learned from these analysis in two aspects. From the algorithm
design perspective:

• Although positional selection methods are following sim-
ple and static token importance assumptions, they surpris-
ingly outperform the other emerging methods in preserv-
ing models’ performance (even better than full attention
in some cases).

• The contextual compression approach seems more rea-
sonable to preserve information but existing methods
cannot achieve consistent performance improvements on
different tasks.

• Kernelization methods show advantages on long se-
quence tasks, but meanwhile, they suffer from severe
performance degradation in short sequence tasks.

• Factorization may not be suitable for LLMs because of
the auto-regressive decoding algorithm. Existing LLMs
usually have a growing KV cache, making it difficult to
dynamically factorize these keys and queries.

• The combination of different methods is a promising av-
enue for future research as it leverages the advantages
from different sides. However, how to effectively com-
bine these methods remains an open research question.

From the system implementation perspective:
• Theoretical time complexity does not always match ex-

ecution performance on GPUs; this is because the im-
plementation of a GPU kernel can significantly affect
its runtime performance. Enabling efficient kernel-level
optimizations (e.g., block-sparse kernels [Gray et al.,
2017] and sparse tensor compilers [Ye et al., 2023]) is
becoming increasingly important for supporting efficient
Transformer computation.

• The memory consumption also depends highly on the
implementation. For resource-starved environments (e.g.,
consumer-level GPUs, mobile and edge devices), it is
necessary to re-consider the choice of efficient attention
mechanisms within the limited memory budget.

Besides, algorithm-hardware co-design is also becoming a
promising direction to improve the overall efficiency from
both sides. In summary, there is no one-size-fits-all solution of
efficient attention mechanisms for long context LLMs. Con-
sidering the unique task characteristics (e.g., sequence length,
token dependencies, attention score distribution) is essential
when designing new methods.

5 Conclusion
The long sequence modeling ability of LLMs is becoming
increasingly important in real-world AI applications from var-
ious fields. Emerging “X-former” approaches provide suf-
ficient efficiency improvement opportunities but also bring
unprecedented model selection challenges. We revisited the
recent advances of long-context LLMs and provided a new
taxonomy of these approaches and their origins. We selected
twelve representative efficient attention mechanisms and pro-
vided a comprehensive evaluation and in-depth analysis to
study their effectiveness and efficiencies. Based on these re-
sults, we summarized our findings and proposed several key
insights to promote the follow-up research for both data scien-
tists and system engineers aiming for developing LLMs.
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