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Abstract
Vertical federated learning (VFL) is a distributed
machine learning paradigm that collaboratively
trains models using passive parties with features
and an active party with additional labels. While
VFL offers privacy preservation through data local-
ization, the threat of label leakage remains a signif-
icant challenge. Label leakage occurs due to label
inference attacks, where passive parties attempt to
infer labels for their privacy and commercial value.
Extensive research has been conducted on this spe-
cific VFL attack, but a comprehensive summary is
still lacking. To bridge this gap, our paper aims to
survey the existing label inference attacks and de-
fenses. We propose two new taxonomies for both
label inference attacks and defenses, respectively.
Beyond summarizing the current state of research,
we highlight techniques that we believe hold poten-
tial and could significantly influence future stud-
ies. Moreover, experimental benchmark datasets
and evaluation metrics are summarized to provide
a guideline for subsequent work.

1 Introduction
Federated learning (FL) [McMahan et al., 2016] is a dis-
tributed machine learning paradigm that enables multiple par-
ticipants to train a model collaboratively. FL can be classified
into three different forms based on the different divisions of
data characteristics [Yang et al., 2019]: horizontal federated
learning (HFL), vertical federated learning (VFL), and fed-
erated transfer learning (FTL). In VFL, only one participant
(active party) owns sample labels (and may also own the fea-
tures simultaneously), while the other participants (passive
party) exclusively hold the sample features. The models be-
tween the passive and active parties are not accessible to each
other. While this setup provides some level of privacy preser-
vation, VFL still faces numerous threats, including recon-
struction attacks [Vepakomma et al., 2019; Sun et al., 2021],
feature inference attacks [Abuadbba et al., 2020; Pasquini et
al., 2021], and label inference attacks (LIA) [Fu et al., 2022a;
Liu and Lyu, 2022; Kariyappa and Qureshi, 2023]. Among
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these challenges, LIA is typically launched by the honest-
but-curious passive parties who act as attackers attempting to
infer labels owned by the active party from gradients or em-
beddings. LIA is a specific attack in VFL scenarios because
the sample features and labels are not simultaneously owned
by the participating parties. Therefore, studying LIA under
VFL presents an intriguing and interesting challenge.

In addition, extensive research has been conducted on FL,
leading to ample surveys covering various aspects such as
FL challenges and applications [Wen et al., 2023], commu-
nication and computation [Almanifi et al., 2023], security
and privacy threats [Rodrı́guez-Barroso et al., 2023], and oth-
ers [Kairouz et al., 2021; Soltani et al., 2023]. However, it is
important to note that most of these surveys provide an overall
perspective on FL but do not delve into VFL aspects. There-
fore, despite the widespread use of VFL in the real world,
there is a lack of surveys specifically focused on VFL. Liu et
al. [2024] provided an overall overview of VFL, but unfortu-
nately, the discussion of LIA was limited and several perti-
nent details were not included.

To fill the existing gap in the comprehensive summary of
the VFL-specific label leakage threat and promote further re-
search on VFL, we conduct this survey on label leakage in
VFL scenarios. We focus on two aspects: attack and defense,
and propose two new taxonomies for each of them. In ad-
dition to summarizing existing research, we highlight tech-
niques that we believe hold potential and could significantly
influence future studies. To facilitate a fair and effective eval-
uation of LIA research, we also compile a summary of exper-
imental benchmark datasets and evaluation metrics.

2 Vertical Federated Learning
VFL, a distributed collaborative machine learning paradigm
designed for distributed environments, is primarily derived
from FL. According to the classification of FL [Yang et al.,
2019], HFL participants share the same feature space but have
different samples [McMahan et al., 2016; Zeng et al., 2023;
Xue et al., 2024], and VFL participants share the same sam-
ple or user space but have different features [Gu et al., 2023;
Li et al., 2023; Wu et al., 2023b]. Therefore, the VFL ar-
chitecture typically consists of multiple passive parties with
different features and one active party with additional labels.
Due to the inaccessibility between VFL embedding models
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Figure 1: An illustration of VFL. Each participant trains a local
model and sends embedding vectors to the active party, which ag-
gregates these embedding vectors and combines them with labels
to train a prediction model (shown as solid arrows). The active
party then computes and backpropagates the gradients to each par-
ticipant (shown as dashed arrows) to update the model.

(bottom models) and the prediction model (top model), VFL
can offer stronger privacy preservation compared to HFL
models with shared parameters.

In addition, it is worth noting that the structure of the VFL
model also satisfies the split learning (SL) [Vepakomma et al.,
2018] concept. SL decomposes the machine learning model
into multiple parts and trains it by multiple participants col-
laboratively. The classical architectures of SL can be classi-
fied into three categories based on the form of data cuts: sim-
ple vanilla split learning, U-shaped split learning, and verti-
cal split learning (VSL). However, among these architectures,
simple vanilla split learning can be considered a two-party
VFL. VSL enables multiple participants with different data
partitions to collaboratively train the model, which can be re-
garded as a special and state-of-the-art VFL method [Bai et
al., 2023]. Therefore, in the paper, we will focus on label
inference attacks and defenses using the VFL concept.

As shown in Figure 1, VFL [Yang et al., 2019] collabo-
ratively trains a machine learning model with K participants
andN samples, including only one active party that owns the
data labels {yi}Ni=1, and multiple passive parties with non-
label data. Each passive party k owns the different feature
datasets {xki }Ni=1. Note that the active party can also have
the feature dataset. Without loss of generality, we assume
that all participants have a feature dataset and a local model
fk (·) parameterized by θk, while the active party has a pre-
diction model pred (·) parameterized by ϕ additionally. Then
the collaborative training task can be formulated as:

Forward Propagation. Each participant trains its local
model and sends corresponding embedding vectors embki =
fk
(
θk;x

k
i

)
to the active party. The active party aggregates

these embedding vectors into whole embedding embi =

agg
(
emb1i , . . . , embKi

)
by a certain aggregation function

and trains the prediction model through labels with the loss
function as follows:

L (θ, ϕ;x, y) = 1

N

N∑
i=1

` (pred (ϕ; embi) , yi) , (1)

where ` (·) denotes the sample loss such as cross-entropy loss
and mean squared error loss.

Backpropagation. The active party backpropagates the gra-
dient ∇embk

i
L = ∂L

∂embk
i

to each participant and gradient
∇ϕL to its own. With the chain rule, each participant com-
putes the gradient of the local model and both the local and
prediction models update the parameters as shown below:

∇θkL =
∂L

∂embki
· ∂embki
∂θk

= ∇embk
i
L · ∂embki

∂θk
, (2)

θt+1
k = θtk − η · ∇θkL, ϕt+1 = ϕt − η · ∇ϕL, (3)

where t denotes the iteration and η denotes the learning rate.

3 Label Inference Attacks
As a specific attack designed for VFL scenarios, LIA is typ-
ically initiated by the passive parties to infer the label for its
privacy or commercial value. The security assumptions of
LIA can be defined as follows.
Threat Model. In most cases, LIA assumes that all pas-
sive parties are honest-but-curious and do not collude with
each other, and they can not access the labels of the active
party. They possess different local datasets and correspond-
ing indexes, but they are unable to modify the orders. So
they need to follow the VFL protocol mentioned in Section
2 to collaboratively train the model. However, these passive
parties can also act as attackers and attempt to infer labels us-
ing the available information, such as embeddings, gradients,
and a limited amount of auxiliary data. In the worst case,
they can even use a malicious local optimizer to maximize
their attack performance [Fu et al., 2022a]. Different LIA ap-
proaches have different auxiliary data assumptions (e.g., la-
beled samples and label distribution) that will be introduced
later. Moreover, attacks can be launched at any epoch or iter-
ation of VFL, including the training and inference phases.

In this section, we propose a new taxonomy of LIA
and provide a comprehensive summary of existing LIA ap-
proaches. The taxonomy first separates LIA into two cate-
gories based on the VFL models, including the neural net-
works and other models (tree-based models and regression
models). Since most LIAs focus on neural networks, we
further classify LIA on neural networks into the attack ap-
proaches it uses. This taxonomy provides a clear overview
of the existing LIA research landscape. In addition, we ex-
plore the related techniques and works in this field and hope
to inspire future research on LIA.

3.1 Attacks on Neural Networks
Neural networks serve as the most commonly utilized model
in VFL, making them a prime target for LIA. It is worth men-
tioning that besides the classification presented below, these
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attacks can be further subdivided based on the type of neural
network employed, such as CNN [Kariyappa and Qureshi,
2023; Liu and Lyu, 2022] and GNN [Arazzi et al., 2023], as
well as the specific task they aim to exploit, including classi-
fication, recognition [Liu and Lyu, 2022; Zheng et al., 2022;
Kariyappa and Qureshi, 2023], and recommendation [Fu et
al., 2022a; Sun et al., 2022; Kariyappa and Qureshi, 2023].

LIA with Gradient Sign and Magnitude
During the training of VFL models, the most direct label-
related information attackers can obtain is the gradients back-
propagated by the active party. Therefore, an intuitive ap-
proach is to infer the label from them. Zhao et al. [2020]
were the first to discover and propose the following property
regarding the relationship between gradient signs and labels:

Property 1. In the classification task, when the last layer
of the neural network is predicted using the softmax function
and cross-entropy loss function with one-hot labels, only the
gradient corresponding to the ground-truth label in the last
layer has a negative sign, while the gradients for the other
labels are positive.

Based on the aforementioned findings, a series of stud-
ies [Liu et al., 2020; Wainakh et al., 2022; Wainakh et al.,
2021; Zhang et al., 2022; Fu et al., 2022a; Liu and Lyu, 2022;
Zou et al., 2022] have utilized Property 1 to implement LIA
in VFL scenario.

Notably, for VFL, the gradient of the active party back-
propagation can be written as:

∇embi
L =

∂L
∂zi
· ∂zi
∂embi

= gi ·
∂zi

∂embi
. (4)

To satisfy Equation (4), no network structure should be in-
cluded between embedding vectors embi and the logit zi.
Otherwise, ∂zi

∂embi
will contain parameters that are not acces-

sible to the passive party. An alternative approach is that the
attacker can directly access the gradients of the last layer, but
this is a strong assumption for LIA. Furthermore, it is worth
noting that this approach has another limitation: the attack
can only be performed during the training phase since there
are no gradients available in the inference phase.

In addition, Wainakh et al. [2021] found the relationship
between gradients and labels from the batch perspective:

Property 2. The gradient magnitude correlates with the
number of label occurrences in the batch of training data and
is independent of the label types.

For example, gi denotes the gradient corresponding to label
i. One occurrence of label i in the training batch results in a
gradient value gi−α, so two occurrences of label j result in a
gradient value gj−2α. Based on Properties 1 and 2, Wainakh
et al. [2021] proposed the LLG algorithm to implement the
LIA for batch training.

Except for gradient sign and gradient magnitude, Aggar-
wal et al. [2021] found that for any finite number of label
classes, the labels of a dataset can be accurately inferred from
the reported log-loss scores of a single carefully constructed
prediction vector if arbitrary precision arithmetic is allowed.
They also proposed some practical attack algorithms that can

infer labels without the need for model training. These algo-
rithms leverage concepts from number theory and combina-
torics, offering a novel approach to label inference.

LIA with Classification and Cluster

Considering that the gradient can reflect the label informa-
tion, attackers can utilize the backpropagated gradients to
train a gradient classifier. Meanwhile, by combining rele-
vant auxiliary data, they can infer the labels corresponding
to different gradients. Li et al. [2022] focused on LIA in the
two-party scenario. They observed that during training, the
model tends to be less confident about a positive example be-
ing positive than a negative example being negative. This
observation is reflected in the gradients, as the norm of the
gradient corresponding to the target label is typically larger
than that of the non-target label. Therefore, it is possible to
infer whether a gradient is derived from the target label by
training an adversarial gradient binary classifier.

Additionally, based on the relationship between the for-
warded embeddings and the gradients of the backpropaga-
tion, Bai et al. [2023] proposed an algorithm to infer whether
a sample belongs to the target label. They argued that for a
well-trained local embedding model, sending an unchanged
embedding will result in a smaller gradient, while a larger
gradient indicates that an embedding with a non-target label
was sent. Therefore, combined with a small amount of aux-
iliary data with known labels, the gradient classifier can be
obtained by replacing the embedding to infer label categories.

Furthermore, apart from gradients, labels can also be
leaked through forward-propagating embeddings, which was
first noticed by [Sun et al., 2022]. They employed the spec-
tral attack [Tran et al., 2018] (a singular value decomposition
based method) to differentiate the embedding distribution be-
tween target and non-target samples. By leveraging known
label distributions or data imbalances, they assigned labels
based on the differentiated embedding distribution.

Another similar approach considers the spatial distribution
characteristics of gradients and embeddings. It observes that
gradients with the same labels tend to be close to each other,
while gradients with different labels are far apart. This clus-
tering pattern also holds for embeddings of well-trained mod-
els, indicating that both gradients and embeddings exhibit
clustering characteristics. In the studies conducted by [Liu
and Lyu, 2022; Arazzi et al., 2023], different clustering algo-
rithms for LIA were employed to perform gradient or embed-
ding classification. Specifically, Liu and Lyu [2022] used the
K-means algorithm and proposed the cosine similarity metric
for gradients and Euclidean distance for embeddings. They
also demonstrated that these two metrics are interchangeable
under normalized data samples to develop a unified attack
for both gradients and embeddings to improve LIA efficiency.
On the other hand, Arazzi et al. [2023] first investigated LIA
in VFL scenarios using a zero-background knowledge strat-
egy with a particular focus on GNN structures. They lever-
aged an unsupervised learning algorithm to identify optimal
clusters for embeddings generated by the attacker-controlled
local model when the number of classes is unknown.
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LIA with Model Reconstruction
Model reconstruction, also known as gradient inversion, was
initially proposed in the HFL scenario for recovering the
raw training data, with DLG [Zhu et al., 2019] being the
most prominent method. This approach is also applicable in
VFL scenarios. For model reconstruction-based LIA, the at-
tacker simulates the active party’s prediction model M and
the ground-truth label y by constructing the surrogate model
M′ and surrogate label y′. The attacker then trains the sur-
rogate modelM′ to minimize the difference between its loss
gradient ∇embL′ and the real gradient ∇embL and updates
the surrogate label to achieve the inference.

In [Zhang et al., 2022; Erdoğan et al., 2022; Zou et al.,
2022; Arazzi et al., 2023; Kariyappa and Qureshi, 2023],
model reconstruction was employed to infer labels. In addi-
tion, Zhang et al. [2022] proposed to construct surrogate la-
bels with Label Smoothing instead of one-hot labels. It avoids
the model being overconfident in label predictions. For exam-
ple, when considering categories, planes are correlated with
birds but differ from tables. However, using one-hot labels
would treat planes as equally different from both birds and
tables, which does not accurately reflect the real distribution.

Furthermore, Arazzi et al. [2023] found a correspondence
between the peak in gradient magnitude and the significant
drop in attack accuracy. To address this, they proposed Early
Stopping Strategy to enhance the performance of the attack.
The strategy aims to identify the optimal point at which to
stop the attack process, improving the overall attack accuracy.

Moreover, Kariyappa and Qureshi [2023] introduced a
novel loss function called ExPloit Loss for model reconstruc-
tion. This loss function satisfies the following optimization
objectives when the real gradient and the ground-truth label
distribution are known: 1) ensuring that the gradient of the
surrogate model closely matches the real gradient; 2) aligning
the surrogate label distribution with the ground-truth distribu-
tion; 3) minimizing the entropy of surrogate labels to resem-
ble one-hot type ground-truth labels; and 4) achieving high
prediction accuracy for the surrogate model, where the pre-
dicted labels closely match the surrogate labels. Due to this
loss function, the attacker can infer the label by optimizing
the surrogate model and label.

LIA with Model Completion
Model completion is a fine-tuning approach used in VFL. At
the end of VFL training, passive parties are given a well-
trained local embedding model (bottom model). The em-
beddings generated by this model exhibit a strong correlation
with the labels. Leveraging this correlation, attackers can per-
form fine-tuning on the bottom model using a small amount
of auxiliary labeled data, which enables the model to predict
or infer labels more accurately.

According to [Fu et al., 2022a], the attacker can employ
a specially designed optimizer to train the local model. This
optimizer ensures that improved embeddings are sent to the
active party in each iteration, thereby increasing the depen-
dency of the prediction model (top model) on the bottom
model and enhancing the accuracy of the attack. Addition-
ally, the study found that by abusing the bottom model, the
attacker can even infer labels outside of the training dataset.

Furthermore, Zheng et al. [2022] explored defense methods
against such an attack approach, which will be discussed in
detail later.

3.2 Attacks on Other Models
Except for neural network models, LIA has also been studied
in regression models and tree-based models.

In the context of regression models, Tan et al. [2022] pro-
posed the attacker can utilize the residual variables to infer
labels in logistic regression models. Specifically, the residual
variable is calculated by solving a system of linear equations
constructed from the local dataset and the received decrypted
gradients. Xie et al. [2023] focused on LIA against continu-
ous labels instead of discrete types. In their study, the target
labels are scores rather than categories, and they employed
model reconstruction for label reconstruction and inference.

In the context of tree-based models, Takahashi et al. [2023]
conducted the attack by extracting graph structures from the
data records used to train the tree-based model. They then
applied community detection to cluster the learned graphs,
where clusters with the same labels imply the same labels.

3.3 Limitations and Future Directions
A successful LIA relies not only on the approaches mentioned
above but also on the utilization of important techniques.
Therefore, this section also presents some related works and
techniques in the field, which may inspire future directions.

Auxiliary Data. Almost all approaches use auxiliary data
when implementing LIA, whose types can be summarized as:

• Small amount of data with known labels (which can be
involved in training) [Wainakh et al., 2021; Liu and Lyu,
2022; Fu et al., 2022a; Xie et al., 2023].

• Prior distribution of labels [Sun et al., 2022; Kariyappa
and Qureshi, 2023].

• Number of label classes [Kariyappa and Qureshi, 2023].

• Imbalanced or biased labels (e.g., the percentage of peo-
ple with a certain disease in the natural population is
almost always much lower than 50%) [Li et al., 2022;
Sun et al., 2022].

Different quantities and qualities of auxiliary data typically
imply different levels of security assumptions for LIA, with
a lesser dependence on auxiliary data indicating more robust
LIA capabilities. We recommend that future research should
incorporate more realistic auxiliary data, and we also advo-
cate for considering this factor during comparisons.

LIA from Embeddings. The majority of current LIA ap-
proaches primarily rely on backpropagated gradients and of-
ten overlook the potential leakage of labels through embed-
dings generated by well-trained local models. However, in
the case of well-trained local models, embeddings sent by
passive parties can also reveal label information. For in-
stance, as mentioned earlier, Sun et al. [2022] employed the
spectral attack to classify embeddings to infer label cate-
gories. Additionally, Zheng et al. [2022] devised a specific
loss function for embeddings to prevent them from clustering
and inadvertently leaking labels.
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Figure 2: Taxonomy of label inference defenses.

Learning Rate Adjustment. In VFL scenarios, the at-
tacker is typically the party with less influence or control.
However, in specific LIA approaches (model completion [Fu
et al., 2022a] and embedding replacement [Bai et al., 2023]),
the attack accuracy can be effectively increased by using ma-
licious local optimizer adjusting the learning rate to make the
top prediction model more dependent on the attacker’s bot-
tom model. Therefore, when the attacker performs LIA using
the embeddings generated by the bottom model (e.g., cluster
and model completion), it will get better attack performance.

Backdoor Attacks. Backdoor attacks aim to train a model
with a hidden backdoor implant that behaves normally on
clean inputs and misclassifies inputs that contain triggers.
In certain backdoor attacks against VFL [Bai et al., 2023;
Naseri et al., 2023], attackers only want to add triggers to data
with the target label and not change other data. To achieve
this, they first need to infer the labels, which means that LIA
is sometimes employed as a part of backdoor attacks.

4 Defenses
There are various defenses to mitigate the label leakage
threat. In this section, we propose a new taxonomy of them. It
first categorizes these defenses into four main types: generic
defenses and specific defenses against gradients, embeddings,
and labels. Then we classify these defenses into particular
techniques as demonstrated in Figure 2. Specifically, generic
defenses are not only designed for LIA, but also can gener-
ally defend against other attacks in VFL scenarios, such as
feature inference attacks, reconstruction attacks, and sample
ID attacks. In contrast, specific defenses are tailored to ad-
dress different attack approaches used in LIA. These defense
strategies primarily focus on safeguarding components that
have the potential to leak labels, such as gradients, embed-
dings, and even labels per se.

4.1 Generic Defenses
Commonly used generic defenses are summarized and re-
called in this section.

Homomorphic Encryption. Different from conventional
encryption, homomorphic encryption (HE) is a special cryp-
tosystem that supports arithmetic operations on ciphertexts

and ensures that the ciphertext computation after decryp-
tion is the same as the plaintext computation. In VFL, HE
serves as a defense mechanism that prevents attackers from
exploiting information in gradients or embeddings [Mohas-
sel and Zhang, 2017; Fu et al., 2022b; Tan et al., 2022;
Zhou et al., 2022]. Cheng et al. [2021] focused on addressing
the privacy concerns associated with tree-based models and
proposed the SecureBoost algorithm to protect the privacy of
each participant.

Mutual Information. The essence of LIA is to exploit
the mutual information among labels, gradients, and embed-
dings. Therefore, an intuitive defense is to eliminate this mu-
tual information. Takahashi et al. [2023] proposed a defense
mechanism called ID-LMID to reduce the mutual information
between labels and instance spaces. In addition, some spe-
cific defenses against raw data and intermediate outputs [Zou
et al., 2023], gradients [Zou et al., 2022], embeddings [Sun
et al., 2022; Erdoğan et al., 2022], and labels [Zou et al.,
2022; Qiu et al., 2023] can also be considered as mutual
information-based methods.

Privacy-preserving Deep Learning. Privacy-preserving
deep learning (PPDL) [Shokri and Shmatikov, 2015] is a
comprehensive privacy-enhancing method that contains three
defense strategies: differential privacy, gradient compression,
and random selection. In [Fu et al., 2022a; Bai et al., 2023],
they utilized this method to defend against LIA. However, it
is important to note that while PPDL effectively protects pri-
vacy, it may also lead to a reduction in the model’s quality
due to the application of DP and gradient compression.

Secure Multi-party Computation. Secure multi-party
computation [Knott et al., 2021] leverages cryptographic
techniques to facilitate private computation of distributed data
held by multiple parties. These techniques involve cryp-
tographic primitives such as secret sharing [Mohassel and
Zhang, 2017; Zhou et al., 2022] and homomorphic encryp-
tion. Unfortunately, due to their substantial computation and
communication overheads, these methods are not commonly
employed in VFL scenarios.

Trusted Execution Environments. Trusted execution en-
vironments (TEE) [Mo et al., 2021] establish a secure region
in the central processor using a combination of hardware and
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software techniques. This ensures the protection of programs
and data loaded inside fulfill confidentiality and integrity.
However, TEE is primarily designed for CPU, which can re-
sult in underwhelming performance when it comes to VFL
computation on GPU. Additionally, the specialized hardware
required for TEE implementation can increase costs and po-
tentially limit the generalizability of the solution.

4.2 Specific Defenses against Gradients
Exploiting the properties of gradients (such as gradient sign
and magnitude) and the correlation between gradients and la-
bels is a widely used approach in LIA. As a result, numerous
defenses against gradients have been derived.
Gradient Compression and Sparsification. Gradient
compression is a defense strategy aimed at improving com-
munication efficiency and preserving privacy. One specific
technique within gradient compression is gradient sparsifica-
tion, which involves sharing only a subset of the most impor-
tant gradients, typically those with the largest absolute values.
In various studies [Wainakh et al., 2022; Zou et al., 2022;
Fu et al., 2022a; Liu and Lyu, 2022; Arazzi et al., 2023;
Bai et al., 2023], researchers have employed this strategy
and evaluated parameters like compression ratio and sparsi-
fication ratio. However, the experimental results indicate that
gradient compression and sparsification have a negative im-
pact on the model’s quality and are not particularly effective
in defending against LIA. This is because the compressed or
sparsified gradients still retain the most significant features,
which are often highly correlated with the labels.
Differential Privacy. Differential privacy (DP) [Dwork,
2006] is a widely used privacy-preserving technique that
limits the impact of individual data on the overall dataset
within a certain range, thereby mitigating the risk of dif-
ferential attacks. In the context of FL, the DP-SGD algo-
rithm [Abadi et al., 2016] is a famous approach. It involves
clipping the gradient and adding noise that satisfies DP dur-
ing model updating. Researchers in [Liu and Lyu, 2022;
Bai et al., 2023] have successfully applied this algorithm to
reduce the risk of privacy leakage from gradients. Addition-
ally, the shuffle method [Erlingsson et al., 2019; Cheu et al.,
2019] can be used to achieve privacy amplification for DP.
Noise Perturbation. Adding noise to the gradient [Li et
al., 2022; Wainakh et al., 2022; Zhang et al., 2022; Fu et
al., 2022a; Arazzi et al., 2023; Xie et al., 2023; Kariyappa
and Qureshi, 2023] is an intuitive way to perturb the gradient.
These noises can alter the distribution of the gradients and in
some cases, even change the gradient sign, directly impacting
LIA. Moreover, the addition of noise is often associated with
DP, with Gaussian and Laplace noise being commonly used.
Although these noises may reduce the accuracy of the model,
they serve as effective defenses against LIA.

4.3 Specific Defenses against Embeddings
For the well-trained models, since embeddings and labels
are highly correlated, an intuitive defense is to reduce this
correlation. Inspired by the electrostatic equilibrium and
Coulomb’s law, particularly the phenomenon of mutual repul-
sion between like charges (electric charges of the same sign),

Zheng et al. [2022] proposed a potential energy loss function.
This loss function makes it challenging for an attacker to fine-
tune the bottom model using a small number of samples to
infer labels. In addition, Sun et al. [2022] proposed an addi-
tional optimization objective dCor (f (X) , Y ) for the active
party, which aims to reduce the distance correlation between
the embedding and the label. To address the potential data
leakage through embeddings, Vepakomma et al. [2019] in-
troduced an additional loss function during training: the log-
arithm of the distance correlation (DCOR) [Székely et al.,
2007] between the input and the embedding, which was also
used in [Pasquini et al., 2021; Erdoğan et al., 2022].

4.4 Specific Defenses against Labels
The variability of the labels per se plays a crucial role in in-
formation leakage, which has prompted research efforts to de-
velop defenses specifically targeting labels.

Label Differential Privacy. Label DP is a relaxation of
DP in which only the privacy of the labels needs to be pro-
tected, while the features are public or non-sensitive. Ghazi
et al. [2021] used randomized responses to flip the labels and
used the generated noisy labels to calculate the loss for train-
ing. They demonstrated that their algorithm can achieve label
DP. In contrast, Wu et al. [2023a] investigated the connection
between the label DP and LIA. Their study showed that it is
not reasonable to equate label DP privacy with limiting the
accuracy of LIA. In other words, high privacy does not im-
ply the infeasibility of label inference. Similarly, the study
by [Busa-Fekete et al., 2021] suggests the idea that label DP
may be more vulnerable than initially thought.

Label Extension. Label extension [Qiu et al., 2023] is a
method used to obfuscate the label information contained in
the gradient by extending the labels. This prevents attack-
ers from using gradients to reconstruct the label inference
models. Qiu et al. [2023] proposed the random label exten-
sion (RLE) method, which simply extends the original labels
with random vectors. Additionally, they proposed a model-
based adaptive label extension (MLE) method. In MLE, the
dimension where locating the original label is designed to
dominate the training process, which aims to improve the per-
formance of the original task when applying the defense.

Label Disguise. Label disguise [Zou et al., 2022] is a
method that transforms original labels to soft fake labels on
the active party. It has an encoder-decoder structure that maps
the original labels into the fake label space via a confusional
autoencoder and recovers the labels from the fake labels via a
decoder. Zou et al. [2022] devised a specific loss function for
this structure, which incorporates the following objectives:
1) the fake labels should be less relevant to the original la-
bels; 2) the recovered labels should be close to the original
labels; and 3) the fake labels entropy should be large since
high entropy implies low confidence in the prediction.

5 Experimental Datasets and Metrics
To guide the evaluation of future LIA approaches, we pro-
vide a summary of the experimental benchmark datasets and
evaluation metrics in this section.
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Models Tasks Datasets Features
# Training
Samples

# Testing
Samples

Cited Literature

Neural
Network

Classification
&

Recognition

MNIST
[LeCun et al., 1998] 28× 28 60,000 10,000

[Wainakh et al., 2021], [Wainakh et al., 2022],
[Liu and Lyu, 2022], [Zhang et al., 2022], [Zou
et al., 2022], [Zheng et al., 2022], [Erdoğan et
al., 2022], [Bai et al., 2023]

Fashion-MNIST
[Xiao et al., 2017] 28× 28 60,000 10,000

[Liu and Lyu, 2022], [Zheng et al., 2022],
[Erdoğan et al., 2022], [Kariyappa and Qureshi,
2023]

CIFAR-10
[Krizhevsky, 2009] 32× 32× 3 50,000 10,000

[Liu and Lyu, 2022], [Zou et al., 2022], [Fu et
al., 2022a], [Zheng et al., 2022], [Erdoğan et
al., 2022], [Bai et al., 2023], [Kariyappa and
Qureshi, 2023]

CIFAR-100
[Krizhevsky, 2009] 32× 32× 3 50,000 10,000

[Wainakh et al., 2021], [Wainakh et al., 2022],
[Liu and Lyu, 2022], [Zhang et al., 2022], [Zou
et al., 2022], [Fu et al., 2022a], [Kariyappa and
Qureshi, 2023]

Recommendation Criteo1 13 + 26 4× 107 6× 106
[Li et al., 2022], [Fu et al., 2022a], [Sun et al.,
2022], [Kariyappa and Qureshi, 2023]

Regression Prediction
Boston Housing2 13 506 [Xie et al., 2023], [Qiu et al., 2023]

California Housing3 8 20,640 [Xie et al., 2023], [Qiu et al., 2023]
1 Criteo, Criteo dataset, https://labs.criteo.com/2014/02/download-kaggle-display-advertising-challenge-dataset
2 StatLib, Boston Housing dataset, http://lib.stat.cmu.edu/datasets/boston
3 StatLib, California Housing dataset, https://www.dcc.fc.up.pt/∼ltorgo/Regression/cal housing.html

Table 1: Summary of benchmark datasets used in LIA.

5.1 Benchmark Datasets
Similar to other attacks in the VFL scenario, LIA focuses on
various tasks across multiple models, with a particular em-
phasis on classification and recognition tasks. In this section,
we summarize the benchmark datasets commonly used for
different models and tasks in Table 1.

Specifically, these benchmark datasets are typically uti-
lized in the context of neural networks and regression models.
Under the neural networks, the benchmark datasets are fur-
ther categorized into two parts classification and recognition
and recommendation based on the tasks, while the main task
of the regression model is prediction.

We recommend that future LIA studies should be evaluated
on these benchmark datasets to ensure fairness and facilitate
meaningful comparisons.

5.2 Evaluation Metrics
To evaluate the performance of LIA, the majority of ap-
proaches [Wainakh et al., 2021; Wainakh et al., 2022;
Liu and Lyu, 2022; Fu et al., 2022a; Zheng et al., 2022;
Arazzi et al., 2023; Kariyappa and Qureshi, 2023] use a clas-
sical metric Attack Accuracy, which denotes the percentage
of all attack samples whose labels are inferred correctly. A
higher attack accuracy typically indicates a more successful
attack. Additionally, this metric often considers the accuracy
of the first k inferences like Top-1 and Top-5 accuracy.

As part of LIA, the quality and the quantity of auxil-
iary data have a direct impact on the success of the at-
tack [Wainakh et al., 2021; Fu et al., 2022a; Xie et al., 2023].
Even a small amount of auxiliary data can significantly en-
hance the attack accuracy [Fu et al., 2022a]. We recommend
that the impact of auxiliary data on attacks should be eval-
uated in all LIA approaches that utilize auxiliary data. Fur-
thermore, it is important to keep the auxiliary data consistent

when comparing the different LIA approaches.
In addition, some classification-based LIA approaches also

plot the receiver operating characteristic (ROC) curve and
calculate the area under the curve (AUC) to evaluate the ac-
curacy of the classifier [Li et al., 2022; Sun et al., 2022]. In
some cluster-based approaches, the performance of the clus-
ters formed by gradients or embeddings directly impacts the
effectiveness of the attack. To visually evaluate it, these ap-
proaches often plot the clusters using t-SNE [Fu et al., 2022a]
or principal component analysis (PCA) [Liu and Lyu, 2022].

In LIA based on model reconstruction, the accuracy of the
attack is often positively correlated with the accuracy of the
model. Therefore, the model accuracy is also considered an
important evaluation metric in such cases [Erdoğan et al.,
2022; Arazzi et al., 2023; Kariyappa and Qureshi, 2023].

6 Conclusion
Focusing on the VFL-specific label leakage threat, this sur-
vey aims to provide a comprehensive summary of existing re-
search from both attack and defense perspectives. It proposes
two new taxonomies to categorize these attack and defense
approaches, while also highlighting the importance of experi-
mental benchmark datasets and evaluation metrics. Although
many attack approaches have been proposed, there is a no-
table deficiency in studying the impact of auxiliary datasets
on LIA and detecting malicious local optimizers. It is recom-
mended that future research investigates these aspects to fur-
ther enhance the understanding of LIA. As a rapidly evolving
field, LIA holds great potential for future advancements. This
survey serves to consolidate existing knowledge and provide
a foundation for future work in this area. We hope that re-
searchers in VFL will recognize the threats posed by LIA and
take appropriate measures to mitigate them.
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