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Abstract
In recent decades, the design of budget feasible
mechanisms for a wide range of procurement auc-
tion settings has received significant attention in
the Artificial Intelligence (AI) community. These
procurement auction settings have practical appli-
cations in various domains such as federated learn-
ing, crowdsensing, edge computing, and resource
allocation. In a basic procurement auction set-
ting of these domains, a buyer with a limited bud-
get is tasked with procuring items (e.g., goods or
services) from strategic sellers, who have private
information on the true costs of their items and
incentives to misrepresent their items’ true costs.
The primary goal of budget feasible mechanisms
is to elicit the true costs from sellers and determine
items to procure from sellers to maximize the buyer
valuation function for the items and ensure that the
total payment to the sellers is no more than the bud-
get. In this survey, we provide a comprehensive
overview of key procurement auction settings and
results of budget feasible mechanisms. We provide
several promising future research directions.

1 Introduction
Auction theory [Myerson, 1981; Klemperer, 1999], a branch
of economic theory that studies different types of auctions
and the behavior of auction participants, has guided the devel-
opment of auctions for buying, selling, and allocating items
(e.g., goods or services) in many real-world application do-
mains. These domains include grid computing, edge com-
puting, the World Wide Web, e-commerce, networking, and
social choice. Moreover, auctions of various types have re-
ceived significant attention in the Artificial Intelligence (AI)
community due to their inherent relevance and connections
to other areas in AI (e.g., autonomous agents [Wellman et al.,
2007]).

Generally, auctions can be categorized into two main types:
seller-centric auctions or buyer-centric procurement (or re-
verse) auctions. In a seller-centric auction, sellers design auc-
tion mechanisms to determine how to sell a set of items to
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the auction participants in order to optimize sellers’ objec-
tives (e.g., revenue or social welfare). The auction partici-
pants submit bids (or willingness to pay) for the items, and
the auction mechanisms determine the allocation of items to
participants and participants’ payments for buying the items.
For instance, the first-price auction, the second-price auction,
and the Vickrey-Clarke-Groves (VCG) auction mechanisms
[Vickrey, 1961; Clarke, 1971; Groves, 1973] are well-known
mechanisms for seller-centric auctions.

On the other hand, in a buyer-centric procurement (or re-
verse) auction, which is the focus of this survey, the buyers
design procurement auction mechanisms to determine how
to procure items from the participants (or sellers) in order to
optimize buyers’ utilities for obtaining the items. The partici-
pants (or sellers) submit costs for their items, and the procure-
ment auction mechanisms determine items to procure from
the participants (or sellers) and participants’ (or sellers’) pay-
ments for selling the items. For instance, in federated learn-
ing [Zhang et al., 2021], the training task owner (buyer) pro-
cures data services from workers (sellers) who submit costs
for training the global model. Additionally, in crowdsensing
[Zheng et al., 2020], the requester (buyer) typically aims to
engage users (sellers) in providing sensing data through pro-
curement auctions.

Because participants’ information (e.g., their values for the
items or their true costs of items) is private, a primary design
goal for auction or procurement auction mechanisms is to en-
sure that participants report information truthfully (i.e., report
values as bids or costs as prices). That is, the participants will
have no incentive to misreport information.

In addition to truthfulness, another crucial goal pertaining
to buyer-centric procurement (or reverse) auctions is to ensure
buyer budget feasibility in procurement auction settings that
are prevalent in many real-world domains. More specifically,
the buyers in these settings have budget constraints (e.g., pur-
chasing power). Therefore, procurement auction mechanisms
must also be budget feasible, ensuring that the total payment
to the sellers is no more than the buyer’s budget.

Motivated by several applications in real-world domains,
[Singer, 2010; Singer, 2014] initiated the study of budget fea-
sible mechanisms for procurement auction settings when the
buyer has the limited budget. The key challenge of designing
budget feasible mechanisms is that the budgets limit the to-
tal payment to sellers, which depend on sellers’ private costs
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of the items. Thus, designing good budget feasible mecha-
nisms is particularly difficult and different from other auction
settings (see, e.g., [Aggarwal and Hartline, 2006]). Since the
introduction of budget feasible mechanisms for procurement
auction settings with budgeted (or budget constrained) buyers
[Singer, 2010], research in this area has experienced signifi-
cant growth. Moreover, research results have been published
in prominent venues such as those in AI and economics.

Furthermore, numerous works have explored various set-
tings and generalizations of the classical setting of [Singer,
2010], with a focus on designing theoretically provable good
(approximately optimal) budget feasible mechanisms for in-
creasingly complex buyers’ utility or valuation functions for
the items satisfying desirable properties (e.g., truthfulness).
Apart from the theoretical interests, research efforts have also
considered designing budget feasible mechanisms for settings
that have real-world applications in domains such as crowd-
sourcing [Singla and Krause, 2013], crowdsensing [Zheng
et al., 2020], participatory sensing [Restuccia et al., 2016],
bike sharing [Angelopoulos et al., 2018], recommender sys-
tem [Dandekar et al., 2014], and federated learning [Zhang et
al., 2021].

In this survey, we provide a comprehensive overview of
key procurement auction settings and mechanism design re-
sults of budget feasible mechanisms from existing literature.
We also provide several promising directions for future re-
search. To the best of our knowledge, this is the first survey
summarizing the significant contributions of existing litera-
ture on budget feasible mechanisms.
Roadmap. In Section 2, we present the classical procure-
ment auction settings with budgeted buyers and the corre-
sponding mechanisms for different buyer valuation functions.
In Section 3, we proceed to discuss recent settings and ap-
plication domains beyond the classical settings. In Section
4, we introduce promising future directions when designing
budget feasible mechanisms for general procurement auction
settings. Finally, we conclude this survey in Section 5.

2 The Classical Procurement Auction Settings
with Budgeted Buyers

In this section, we first present the classical procurement auc-
tion settings with budgeted buyers and then review the corre-
sponding existing key mechanisms for different buyer valua-
tion functions.

2.1 The Classical Settings
In the classical procurement auction setting [Singer, 2010],
there is a single buyer and n sellers, denoted by A =
{1, 2, ..., n}. Each seller has an item for sale. Seller i ∈ [n]
has a privately known cost ci ≥ 0, and denote by c = (ci)

n
i=1

the cost vector of sellers. The buyer wants to procure sellers’
items with a budget B. In addition, the buyer has a publicly
known valuation function V (S) which evaluates the value of
the buyer for the given subset S ⊆ A of items. Due to the rev-
elation principle [Epstein and Peters, 1999], we only consider
direct-revelation mechanisms. We use bi to denote the bid (or
reported cost) of seller i. Upon receiving bids b = (bi)

n
i=1 of

the reported costs from sellers, a mechanismM determines

an allocation W ⊆ A as winning sellers (whose items will be
purchased) and the payments p = (pi)

n
i=1 to the sellers.

More specifically, a deterministic mechanismM = (x,p)
determines an allocation function x(b) : Rn

+ → {0, 1}n and
a payment function p(b) : Rn

+ → Rn
+. Let xi(b) and pi(b)

be the allocation and payment of seller i, respectively. Specif-
ically, if xi(b) = 0, then pi(b) = 0. We use b−i to denote
the bid vector of other bids without seller i. Sellers can bid
strategically on their costs and would like to maximize their
utilities. The utility of seller i is the difference between the
obtained payment and the cost, i.e.,

ui(b) = pi(b)− cixi(b). (1)

In addition, the proposed budget feasible mechanismM =
(x,p) should satisfy the following desired economic proper-
ties:

• Individual Rationality: Every seller i ∈ A receives
non-negative utility, i.e., ui(ci,b−i) ≥ 0.

• Incentive Compatibility or Truthfulness: Every seller
i ∈ A obtains the maximum utility when she bids the
true cost ci, i.e., ui(ci,b−i) ≥ ui(bi,b−i) for any ci
and b = (bi,b−i).

• Computational Efficiency: The functions x and p can
be computed in polynomial time.

• Budget Feasibility: The total payment of the buyer does
not exceed the given budget B, i.e.,

∑
i∈W pi(b) ≤ B.

[Myerson, 1981] provided a characterization of the mech-
anisms that are truthful in the single parameter domains.
Such characterization, shown below, is applicable to design-
ing budget feasible mechanisms.

Theorem 1. In a single parameter domain, a mechanism
M = (x,p) guarantees sellers’ truthfulness if and only if:

(1) xi(bi, c−i) is monotone: ∀i ∈ W , if bi ≤ ci, then
xi(ci, c−i) = 1 implies xi(bi, c−i) = 1 for every c−i;

(2) winners are paid threshold payments: the pay-
ment to each winning bidder is the critical value inf{ci :
xi(ci, c−i) = 0}.

We denote by ALG(V,b, B) the value V (W ) derived from
a deterministic mechanism. If the buyer knows the true pri-
vate costs c, we can directly choose the subset of items with
the maximum value of the buyer under the budget constraint
and pay each selected seller their true cost. Let OPT(V, c, B)
denote the optimal value to this problem, i.e.,

OPT(V, c, B)=max
S⊆A

V (S), subject to
∑
i∈S

ci ≤ B. (2)

A mechanism achieves an α-approximation against
the benchmark OPT(V, c, B), if for any input instance,
ALG(V,b, B) is at least a 1

α -fraction of the optimal value
OPT(V, c, B) where α ≥ 1, i.e.,

OPT(V, c, B)

ALG(V,b, B)
≤ α. (3)

We sometimes refer α as the approximation ratio.
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In the existing literature, some works designed random-
ized mechanisms to improve the performance of determin-
istic mechanisms. Roughly speaking, a randomized mech-
anism can often be represented as a probability distribution
over truthful deterministic mechanisms. As a result, random-
ized mechanisms will have randomized allocation functions
and payment rules. The approximation ratio of a randomized
mechanism is defined as the ratio between the optimal value
and the expected value obtained from the randomized mech-
anism.

2.2 The Classical Results
For the classical procurement auction setting with a single
budget constrained buyer, existing studies have focused on
designing efficient budget feasible mechanisms for different
buyer valuation functions. We review these existing budget
feasible mechanisms and their theoretical performances (i.e.,
approximation ratios) in this classical setting.

There are four main valuation functions (i.e., additive, sub-
modular, XOS, and subadditive) that have been investigated
previously. We first provide their definitions formally below.
For additive valuation functions, we use v = (vi)

n
i=1 to de-

note the values of sellers and vi is the value for seller si.

Definition 1 (Additive). A valuation function V : 2n → R+

is additive if V (S) =
∑

i∈S vi, ∀S ⊆ A.

Definition 2 (Submodular). A valuation function V : 2n →
R+ is submodular if

V (S∪{i})−V (S) ≥ V (T∪{i})−V (T ), ∀S ⊆ T ⊆ A. (4)

Specifically, the valuation function V (·) is monotone if
V (S) ≤ V (T ), ∀S ⊆ T ⊆ A, while it is symmetric if
V (S) = V (A \ S) for any S ⊆ A.

Definition 3 (XOS, a.k.a., fractionally subadditive). A valu-
ation function V : 2n → R+ is XOS if there is a set of linear
functions f1, . . . , fm such that

V (S) = max {f1(S), f2(S), . . . , fm(S)}

for any S ⊆ A. Note that the number of functions m can be
exponential in n = |A|.
Definition 4 (Subadditive, a.k.a., complement free). A valua-
tion function V : 2n → R+ is subadditive if V (S)+V (T ) ≥
V (S ∪ T ) for any S, T ⊆ A.

It is not hard to see that the valuation function V (·) adheres
to the following hierarchical structure,

additive ⊂ submodular ⊂ XOS ⊂ subadditive.

Therefore, a mechanism for a valuation function in a higher
hierarchical structure can be applied to those that are lower.
Next, we provide existing mechanisms and their approxima-
tion ratios for the above-mentioned valuation functions.

If not specifically highlighted, all presented mechanisms
in this section satisfies the required properties, i.e., individual
rationality, truthfulness, computational efficiency, and budget
feasibility.

2.3 Additive Valuation Functions
The classical results for additive valuation functions are sum-
marized in Table 1. For additive valuation functions, re-
call that vi is the value for seller si. Given the input of
the mechanisms, [Singer, 2010] first introduced a mecha-
nism with a 5-approximation by using a greedy strategy to
select items/sellers. Such a greedy strategy has been for-
mally proven to be monotonic and is illustrated in GREEDY-
ADDITIVE. Initially, the strategy involves sorting all sellers
based on their ascending order of costs relative to values and
then identifying the maximum number of winners to be se-
lected sequentially under this order. If there are a total of k
chosen sellers in set W , then the threshold payment for unit
value of seller i is determined by the minimum value between
ck+1

vk+1
, which represents the cost relative to the value of the

(k+1)-th seller, and B∑
i∈W vi

, which is the average payment

for the selected sellers, i.e., pi = vi min{ ck+1

vk+1
, B∑

i∈W vi
}.

GREEDY-ADDITIVE

1. Order all items of sellers in A, i.e., c1
v1
≤ c2

v2
≤

· · · ≤ cn
vn

2. Let k = 1 and W = ∅
3. While k ≤ n and ck/vk ≤ B∑

i∈W∪{k} vi

• W ←W ∪ {k}, k ← k + 1

4. Return winning set W

Subsequently, to improve the approximation ratio, [Chen et
al., 2011] introduced a deterministic mechanism that achieves
a (2+

√
2)-approximation. This mechanism leverages the op-

timal value of the fractional knapsack problem, which is the
relaxed version of the optimal problem in (2) and can be com-
puted in polynomial time. Moreover, they proposed a mecha-
nism that randomly combines a deterministic mechanism and
the mechanism directly outputting the seller with the highest
value within the budget. They proved that this randomized
mechanism achieves a 3-approximation. They also provided
lower bounds of 1 +

√
2 and 2 for deterministic and random-

ized mechanisms, respectively. Later, [Gravin et al., 2020]
presented an improved randomized mechanism with an ap-
proximation ratio of 2, perfectly matching the lower bound.
They also introduced a deterministic mechanism with a 3-
approximation, improving the previously known the best re-
sult of 2 +

√
2.

Building on the aforementioned theoretical findings, some
studies have sought to improve mechanism performance by
considering divisible items and the large market assumption.
[Anari et al., 2014] proposed an optimal deterministic mech-
anism with an approximation ratio of e

e−1 for divisible items,
incorporating the large market assumption that each seller’s
cost is significantly smaller compared to the buyer’s budget.
Moreover, under the same large market assumption, [Anari
et al., 2014] demonstrated a randomized mechanism with a
e

e−1 -approximation when dealing with indivisible items.
[Klumper and Schäfer, 2022] took a step further by elim-
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Literature Deterministic Randomized Assumptions
Lower Bound Upper Bound Lower Bound Upper Bound

[Singer, 2010] 2 5 - - -

[Chen et al., 2011] 1+
√
2 2+

√
2 2 3 -

[Gravin et al., 2020] - 3 - 2 -

[Klumper and Schäfer, 2022] 1.25 2.62 - - Bounded cost
1.18 2 - - Bounded cost efficiency

[Anari et al., 2014] - e
e−1

e
e−1 - Large markets &

Divisible items

- - e
e−1

e
e−1

Large markets &
Indivisible items

Table 1: Classical results for additive valuation functions.

inating the large market assumption and assuming that sell-
ers’ costs are bounded by the buyer’s budget. They designed
a deterministic mechanism for divisible items that has a 2.62-
approximation and provided a lower bound of 1.25. Addition-
ally, by applying the bounded cost efficiency criterion, i.e.,
ci
vi
≤ θ where θ ≤ 2, they introduced a deterministic mecha-

nism with an approximation ratio of 2 and a lower bound of
1.18.

2.4 Submodular Valuation Functions
Due to its practicality, submodular valuation functions have
been extensively studied theoretically and practically in many
domains. In this subsection, our main focus is to review rel-
evant theoretical results (i.e., approximation ratios) when the
buyer valuation function is submodular. The classical results
for submodular valuation functions are summarized in Table
2.

For any given submodular valuation function, we denote
the marginal contribution of item i with respect to set S as
Vi|S = V (S ∪ {i})− V (S). We can sort sellers according to
their non-decreasing costs relative to their marginal contribu-
tions, i.e.,

i ∈ arg max
j∈A\Sj−1

cj
Vj|Si−1

(5)

where Si−1 = {1, 2, · · · , i − 1} and S0 = ∅. Because the
function is submodular, we have

c1
V1|S0

≤ c2
V2|S1

≤ · · · ≤ cn
Vn|Sn−1

. (6)

Next, we present the proportional share allocation rule
which has been extensively applied in designing budget fea-
sible mechanisms for submodular valuation functions1.
Definition 5 (Proportional Share Allocation Rule, [Singer,
2010]). For a budget B and set of sellers A with cost vector c,
the generalized proportional share allocation rule sorts sell-
ers according to Eq. (6) and allocates to sellers 1, ..., k that
respect ci ≤ B · Vi|Si−1

/V (Si). Observe that this condition
is met for every 1, · · · , i when i ≤ k.

1We note that the mechanism design idea for additive valuation
functions is an instance of the proportional share allocation rule.

Monotone Submodular Valuation Functions. Given the
above proportional share allocation rule, [Singer, 2010]
first introduced a randomized mechanism with an 233.83-
approximation for monotone submodular valuation func-
tions. Soon after, [Chen et al., 2011] proposed a greedy
based strategy (see GREEDY-SUBMODULAR) to choose win-
ners. Specially, this strategy only uses half of the budget
to compute the average payment for selected values, i.e.,

B/2
V (Sk−1∪{k}) . Based on the GREEDY-SUBMODULAR strat-
egy, they designed a deterministic mechanism with 8.34-
approximation and a randomized mechanism with 7.91-
approximation. They also proved that the lower bounds of
the deterministic and randomized mechanism are 1+

√
2 and

2, respectively.

GREEDY-SUBMODULAR

1. Let k = 1 and W = ∅
2. While k ≤ n and ck/Vi|Sk−1

≤ B/2
V (Sk−1∪{k})

• W ←W ∪ {k}, k ← k + 1

3. Return winning set S

The winner selection process here bears similarity to that
in additive functions. However, the threshold payment for
each winner is rather different due to the distinctive property
of the submodular valuation function. That is, the marginal
value of the selected seller will vary depending on the round
chosen. The rationale behind the payment characterization
for the submodular valuation function can be described as
follows. Consider running the proportional share mechanism
without seller i. For the first j sellers in the marginal con-
tribution sorting, by using the marginal contribution of i at
point j, we can find the maximum cost that seller i can de-
clare to replace the seller in the j-th place in the sorting. Tak-
ing the maximum of these costs for all possible point j guar-
antees payments that ensure truthfulness. Specifically, let k′
denote the index of the last seller j ∈ A\{i} that respects
cj ≤ Vj|Sj−1

· B2 /V (Sj). For brevity, we will write
ci(j) := Vi|Sj−1

· cj/Vj|Sj−1
(7)
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Literature Deterministic Randomized

Lower Bound Upper Bound Lower Bound Upper Bound

Monotone
Submodular

[Singer, 2010] 2 - - 233.83

[Chen et al., 2011] 1+
√
2 8.34 2 7.91

[Jalaly and Tardos, 2021] - 2.58†, 4.56∗ - 5, 4∗

[Anari et al., 2014] - 2∗,† - 3†

[Balkanski et al., 2022] - 4.75 - -
[Han et al., 2023] - 4.45 - 4.3

Non-monotone
Submodular

[Amanatidis et al., 2019] - - - 505
[Balkanski et al., 2022] - 64 - -

[Huang et al., 2023] - - - 27.4
[Han et al., 2023] - - - 12

Symmetric
Submodular

[Amanatidis et al., 2017] - 10.9∗ - 10∗

Table 2: Classical results for submodular valuation functions, where † means that the mechanism is designed for large markets and ∗ indicates
that the mechanism has exponential or super-polynomial running time.

and

ρi(j) := Vi|Sj−1
· B
2
/V (Sj−1 ∪ {i}) . (8)

Definition 6 (Payment Characterization [Singer, 2010]). The
threshold payment for each winner i ∈W is

max
j∈[k′+1]

{
min

{
ci(j), ρi(j)

}}
. (9)

Subsequently, [Jalaly and Tardos, 2021] introduced a ran-
domized mechanism achieving 5-approximation, which im-
proved the bound of 7.91 in [Chen et al., 2011]. Additionally,
when mechanisms have access to an oracle that computes the
true optimal value, [Jalaly and Tardos, 2021] presented deter-
ministic and randomized mechanisms with exponential time
complexities that achieve approximation ratios of 4.56 and 4,
respectively.

For large markets where the value of each agent is small
compared to the optimal value, [Jalaly and Tardos, 2021]
gave a deterministic mechanism ensuring a 1 + e ≈ 2.58-
approximation. Differently, [Anari et al., 2014] used a cost
version for defining the largeness of the market (i.e., each
seller’s cost is significantly smaller compared to the buyer’s
budget) and proposed deterministic mechanisms with a 2-
approximation and a 3-approximation, with exponential and
polynomial running time, respectively.

As the class of deferred-acceptance (clock) auctions has
been proven to be strategy-proof for auction settings, [Balka-
nski et al., 2022] investigated the design of clock auction
mechanisms for procurement auction settings with budgeted
buyers. They proposed a deterministic mechanism with a bet-
ter approximation ratio of 4.75. Considering the idea of clock
auctions, [Han et al., 2023] improved the approximation ra-
tios by proposing deterministic and randomized mechanisms
with approximation ratios of 4.45 and 4.3, respectively.

Non-monotone and Symmetric Submodular Valuation
Functions. For non-monotone submodular valuation func-
tions, [Amanatidis et al., 2019] proposed the first randomized
mechanism with an approximation ratio of 505. [Balkanski et
al., 2022] provided a clock-auction based deterministic mech-
anism with an approximation ratio of 64, improving the best
known randomized approximation of 505. Based on this re-
sult, [Huang et al., 2023] improved the approximation ratio to
27.4. [Han et al., 2023] further proposed a randomized mech-
anism with a better approximation ratio of 12. For symmetric
submodular valuation functions, a prominent class of non-
monotone submodular functions, [Amanatidis et al., 2017]
introduced both deterministic and randomized mechanisms
that achieve approximation ratios of 10.9 and 10 respectively,
with super-polynomial running time (i.e., any running time
faster than polynomial time).

2.5 XOS and Subadditive Valuation Functions
For XOS valuation functions, under the demand oracle model
(i.e., for any given price vector p1, ..., pn, it returns a subset
T ∈ argmaxS⊆A V (S) −

∑
i∈S pi), [Bei et al., 2012] pro-

posed a randomized mechanism with an approximation ra-
tio of 768 by using linear programming that describes some
fractional covers of the valuation functions. Building upon
this, [Amanatidis et al., 2017] improved the approximation
ratio to 244 with super-polynomial running time. They also
demonstrated that, for any fixed ϵ > 0, any (randomized)
n1−ϵ-approximation mechanism for XOS valuation functions
requires exponentially many value queries (i.e., value oracle
receives a subset S and returns V (S)) in expectation.

Regarding subadditive functions in the demand oracle
model, [Dobzinski et al., 2011] presented a randomized
mechanism that achieves an O(log2 n)-approximation and a
deterministic mechanism with an O(log3 n)-approximation.
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Subsequently, [Bei et al., 2012] improved the approximation
ratio to O( logn

log log n ). Later, [Balkanski et al., 2022] provided
a clock-auction based deterministic mechanism with an ap-
proximation ratio of O(log(n)/ log log(n)) that matches the
best known randomized mechanisms by [Bei et al., 2012]
and improved the best known deterministic mechanism with
an approximation ratio of O(log3(n)) by [Dobzinski et al.,
2011].

2.6 Specific Valuation Functions
In addition to the previously discussed standard valuation
functions, the related procurement auction literature has ex-
plored specific subclasses of classical valuation functions
(e.g., additive and submodular valuation functions). For
these subclasses of valuation functions, several studies pro-
posed mechanisms that achieve improved approximation ra-
tios. These subclasses of valuation functions include un-
weighted/weighted cut valuation functions [Dobzinski et al.,
2011; Amanatidis et al., 2017], weighted coverage valua-
tion functions [Amanatidis et al., 2016], budgeted matching
valuation functions [Amanatidis et al., 2016], concave addi-
tive valuation functions [Amanatidis et al., 2023], and linear
capped valuation functions [Klumper and Schäfer, 2022].

3 Beyond the Classical Settings
In addition to the aforementioned mechanism design results
for different buyer valuation functions, extensive research has
explored other procurement auction settings of budget fea-
sible mechanisms. These important settings include online,
Bayesian, multi-unit, and two-sided auction extensions of the
classical settings. Other studies have also examined other
practical settings that draw inspiration from real-world ap-
plication domains such as crowdsourcing and crowdsensing.
In this section, our main focus is to review these settings that
go beyond the classical settings primarily in game theory or
AI communities.

3.1 Online Settings
Different from the classical works that consider offline set-
tings, there exists literature focusing on online settings where
sellers may arrive over time2. [Singer and Mittal, 2011]
first investigated an online procurement auction setting with
a single budgeted buyer where sellers arrive in a random or-
der over time and designed mechanisms for additive valu-
ation functions with constant competitive ratios. [Badani-
diyuru et al., 2012] presented a posted price mechanism with
a constant competitive ratio when the buyer has a symmet-
ric submodular valuation function and sellers arrive in a ran-
dom order over time. For non-symmetric submodular valua-
tion functions, they provided a posted price mechanism that
is O(log n)-competitive. For the non-monotone submodu-
lar valuation functions, [Amanatidis et al., 2019] proposed
the first O(1)-approximation mechanism (the ratio is 1710).

2In online settings, it is common to use the concept of compet-
itive ratio [Willey and Rao, 1980] (i.e., the ratio between the per-
formance of the proposed mechanism and that of the optimal offline
value) to evaluate the performance of the proposed mechanisms.

Moreover, they provided O(p)-approximation mechanisms
for both monotone and non-monotone submodular valuation
functions in independence systems with rank quotient at most
p.

Apart from the above settings, other studies considered
other online procurement auction settings inspired by real-
world characteristics and domains, especially in crowdsourc-
ing and crowdsensing. We provide an outline of these studies
below by focusing on describing these settings.

Multiple Private Parameter Settings. [Zhao et al., 2014]
considered an online procurement auction setting with a bud-
geted buyer where each arriving seller holds multiple pieces
of private information, including arrival time, departure time,
and cost. In their setting, the sellers have the ability to mis-
represent their multiple private parameters to maximize their
utility, which is more challenging than a single private param-
eter setting. Therefore, Myerson’s characterization of single-
parameter domains does not apply directly. However, they in-
troduced online mechanisms that can ensure truthfulness on
these private parameters.

Heterogeneous Task Assignment Settings. [Zhang et al.,
2016] considered online heterogeneous task assignment
within crowdsourcing markets, where a budget constrained
requester (i.e., the buyer) has a collection of tasks and the
workers (sellers) arrive sequentially over time. In their set-
ting, the workers (sellers) declare the sets of tasks they can
handle along with their desired payment for each task. The
requester faces online decisions in assigning tasks to workers
while ensuring budget feasibility.

Time-Discounting Value Settings. In some online crowd-
sourcing domains, the buyer’s values for items may decrease
over time (e.g., the value of gathered sensing data might de-
crease due to its time-sensitivity). [Zheng et al., 2020] de-
signed a mechanism involving the selection of users through
a time-dependent threshold for their values, when simultane-
ously achieving truthfulness and budget feasibility.

Bi-Objective Optimization Settings. Existing studies
mostly focus on optimizing one buyer valuation function for
the values of selecting workers. However, some works con-
sidered optimizing multiple objectives at the same time. For
instance, [Zhang et al., 2020] proposed mechanisms that can
effectively optimize the buyer valuation function and the di-
versity of chosen sellers simultaneously.

Unreliable Seller Settings. As sellers can be unreliable
when providing services in crowdsourcing (e.g., unable to
complete the assigned tasks within the allocated time), [Chan-
dra et al., 2015] presented mechanisms ensuring that the tasks
can be reallocated to other sellers to guarantee timely comple-
tion of the set of tasks by the deadline.

Settings of Incremental Arrival of Budget. Another sce-
nario that is taken into consideration in terms of budget by
[Mukhopadhyay et al., 2022] is that the buyer does not have
an entire budget available a priori, but the overall budget
comes incrementally in multiple phases. They proposed a
mechanism that can guarantee ensure the budget constraint at
every phase.
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3.2 Bayesian Procurement Auction Settings
Compared with previous works that have no prior knowledge
of sellers’ private information, some literature considered the
Bayesian procurement auction setting with a single budgeted
buyer where sellers’ costs are drawn from some known distri-
bution. In this setting, [Bei et al., 2012] provided a random-
ized 512

α approximation (α is a positive constant) mechanism
for subadditive valuation functions satisfying the ex-post bud-
get constraint, i.e., the payments to the agents never exceed
the budget for any realization of sellers’ costs. [Ensthaler
and Giebe, 2014] further analyzed the characterization of the
optimal mechanism for additive valuation functions that sat-
isfies the ex-ante budget constraint, i.e., in expectation over
realizations of sellers’ costs and random choices of the mech-
anism. Subsequently, [Balkanski and Hartline, 2016] con-
sidered both ex-ante and ex-post budget constraints and pro-
posed mechanisms for these two constraints with approxima-
tion ratios depending on the market size3.

The above-mentioned works assume that the distribution of
sellers’ costs is known. However, in various real-world appli-
cation domains, the distribution of sellers’ costs often remains
unknown, posing a challenge for mechanism design. To ad-
dress this, [Singla and Krause, 2013] focused on a stochas-
tic setting where sellers’ costs obey an unknown distribution.
They designed an upper confidence bound-based multi-armed
bandit mechanism achieving the optimal regret bounds (i.e.,
the difference from the optimal value with prior information
of sellers’ costs). In contrast, [Biswas et al., 2015] considered
a setting where sellers’ values are drawn from an unknown
distribution. They proposed a learning-based mechanism that
can estimate sellers’ values when ensuring truthfulness and
obtain a logarithm regret bound with respect to the buyer’s
budget.

3.3 Multi-unit Settings
While most studies focus on settings where each seller of-
fers only a single unit of an item, other studies have exam-
ined the settings where a seller has multiple units of an item
and may benefit from selling any number of them. [Chan
and Chen, 2014] is the first to study such settings and de-
sign mechanisms for such settings. They demonstrated that
achieving a mechanism that approximates the buyer’s opti-
mal value within lnn for additive valuation functions, where
n is the total number of available units, is unattainable. Con-
sequently, they introduced a randomized mechanism achiev-
ing a 4(1 + lnn)-approximation for concave additive valu-
ation functions, i.e., the margins for the same item are non-
increasing, including bounded knapsack problems as a spe-
cial case. Additionally, for subadditive valuation functions,
they develop a randomized mechanism capable of providing
an O(log2 n/ log log n)-approximation using a demand ora-
cle. [Wu et al., 2019] extended the settings to consider lo-
cal diminishing return (LDR) valuation functions, which are
a class of functions located between concave additivity and
submodularity. They introduced both deterministic and ran-
domized mechanisms with approximation ratios of O(lnn),

3More detailed approximation results for different valuation
functions can be referred to in Fig. 1 [Balkanski and Hartline, 2016].

respectively.

3.4 Two-sided Auction Settings
In the classical procurement auction settings, there is only a
single buyer. Such settings might not be realistic in applica-
tion domains such as two-sided markets where there are mul-
tiple buyers. [Chan and Chen, 2016] considered the problem
of designing mechanisms for a dealer, who aims to maximize
revenue by buying items from a seller market and selling them
to a buyer market. For such settings for subadditive valuation
functions, they proposed a randomized O((log2 n)(log2 m))-
approximation mechanism for the dealer, where n and m are
the number of buyers and sellers, respectively. In another
direction, [Liu et al., 2022] considered two-sided markets
where multiple buyers want to procure items from sellers.
Additionally, the buyers are strategic about their private in-
formation on the budgets. For such a setting, they proposed
mechanisms that ensure truthfulness on both sellers’ and buy-
ers’ sides and achieve constant approximations.

3.5 Other Settings
We now highlight additional settings that have been consid-
ered in recent years.

Diffusion Settings. Many works in auctions assume that
sellers are reachable to the buyer and voluntarily participate in
the auctions. However, in many real-world situations, many
potential sellers may be unaware of the auctions (e.g., due
to the lack of knowledge). Some works make efforts to de-
sign diffusion mechanisms to incentivize participants to invite
other potential agents to participate in the auctions [Li et al.,
2017]. [Liu et al., 2021b] first studied the procurement auc-
tion settings with a budgeted buyer and designed diffusion
mechanisms based on the seller network. The proposed ran-
domized mechanism has a logarithmic approximation ratio
with respect to the network size.

Sybil-proof Settings. In the auction literature, studies have
examined false-name manipulation (also known as sybil-
proofness), where a seller can report more than once by cre-
ating and using fake identifiers. [Liu et al., 2023] showed that
the sellers can easily obtain higher utility by performing false-
name manipulation in existing mechanisms and proposed a
sybil-proof mechanism that can deter the false-name attack
and ensure truthfulness simultaneously.

Fairness Settings. Fairness has also been considered in
procurement auction settings with budgeted buyers. [Liu
et al., 2021a] considered the settings that sellers belong to
different groups and the buyer wants to select sellers from
different groups proportionally. For this setting, they pro-
posed proportion-representative mechanisms with approxi-
mation ratios with respect to the group size.

Matroid Settings. [Leonardi et al., 2017] considered the
settings that the buyer has additive valuation functions and
wants to procure items from sellers that form an indepen-
dent set in a given matroid structure. They proposed a deter-
ministic mechanism with an approximation ratio of 4. They
also demonstrated that, given a polynomial time deterministic
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blackbox that returns α-approximation solutions to the ma-
troid intersection problem, there exists a deterministic mech-
anism with (3α+ 1)-approximation.

Apart from the above settings, we note that there are some
other settings that consider guaranteeing additional proper-
ties (e.g., privacy), optimizing different objectives rather than
buyer valuation functions (e.g., age of information and cost-
benefit trade-off objective), investigating mechanisms that
perform favorably on realistic instances.

4 Future Research Directions
In previous sections, we provide an overview of key procure-
ment auction settings and existing mechanism design results
of budget feasible mechanisms. In this section, we conclude
this survey by highlighting several important future research
directions for designing budget feasible mechanisms for a
wide range of procurement auction settings with budgeted
buyers.

Approximate Economic Properties. When designing bud-
get feasible mechanisms, it is often desirable for the mecha-
nisms to satisfy several properties (e.g., truthfulness and indi-
vidual rationality) as discussed earlier. However, in certain
application domains (e.g., crowdsourcing [Hu and Zhang,
2019] and spectrum auction [Zhu and Shin, 2015]), it could
be suitable to consider relaxed versions of these properties
in order to obtain mechanisms that are more efficient (e.g.,
obtaining better approximation ratios). For instance, in the
settings with XOS and subadditive valuation functions, the
best known mechanisms are limited to achieving large ap-
proximation ratios. Therefore, a natural direction would be to
consider suitable relaxations of various properties and design
mechanisms satisfying the relaxed properties. As an exam-
ple, one can incorporate some notion of ϵ-approximate truth-
fulness or ϵ-individual rationality that permits slight devia-
tions from these constraints and design mechanisms with bet-
ter approximation ratios. Furthermore, one can also consider
the concept of resource augmentation, which permits the use
of additional resources [Phillips et al., 1997], to explore the
trade-off between the relaxation of budget constraints and the
mechanism’s performance. That is, by increasing the bud-
get by a small amount, one can possibly design mechanisms
that can lead to a noticeable improvement in the mechanism’s
efficiency (e.g., approximation ratios).

Non-linear Utility Function. Most of the studies in the
budget feasible mechanism design literature assume that the
sellers’ utilities are quasilinear as in Eq. (1). However, in
more general settings, sellers could have non-linear utility
functions [Feng et al., 2023], such as the budgeted utility,
the risk-averse utility, and the endogenous valuation utility,
depending on the sellers’ behavior and environments in var-
ious economic contexts. For instance, in the case of risk-
averse utility, where the utility function ui for seller i is a
concave function mapping from the wealth pi(b) − cixi(b)
of the seller to their utility. By considering non-linear utility
functions in procurement auction settings with budgeted buy-
ers, we can capture other real-world application domains and
facilitate decision-making.

Automated Mechanism Design. The standard approach
for designing mechanisms is to leverage domain expertise to
manually construct mechanisms for specific settings. Dif-
ferently, [Conitzer and Sandholm, 2002] introduced the au-
tomated mechanism design approach to design mechanisms
computationally (e.g., using integer or linear programming)
for specific settings. In a recent study [Dütting et al., 2023],
machine learning and deep learning techniques were em-
ployed to design automated auction mechanisms. These re-
cent directions open the doors to the possibility of designing
budget feasible mechanisms through the lens of automated
mechanism design. This promising direction could poten-
tially lead to the discovery of better budget feasible mecha-
nisms for specific procurement auction settings with budgeted
buyers.

5 Conclusion
In this survey, we present an overview of various procurement
auction settings with budgeted buyers and key mechanism de-
sign results of budget feasible mechanisms. We provide an
in-depth review of the classical procurement settings and their
mechanism results. We also provide a review of other settings
extending the classical settings and modeling real-world ap-
plication domains (e.g., in artificial intelligence and machine
learning). Finally, we present several promising and exciting
future directions for designing budget feasible mechanisms
in general settings. This survey aims to serve as a valuable
point of reference for researchers, offering insights into exist-
ing settings/results and inspiring further explorations on de-
signing budget feasible mechanisms for general procurement
settings.
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