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Abstract
Graph plays a significant role in representing and
analyzing complex relationships in real-world appli-
cations such as citation networks, social networks,
and biological data. Recently, Large Language Mod-
els (LLMs), which have achieved tremendous suc-
cess in various domains, have also been leveraged
in graph-related tasks to surpass traditional Graph
Neural Networks (GNNs) based methods and yield
state-of-the-art performance. In this survey, we first
present a comprehensive review and analysis of ex-
isting methods that integrate LLMs with graphs.
First of all, we propose a new taxonomy, which or-
ganizes existing methods into three categories based
on the role (i.e., enhancer, predictor, and alignment
component) played by LLMs in graph-related tasks.
Then we systematically survey the representative
methods along the three categories of the taxonomy.
Finally, we discuss the remaining limitations of ex-
isting studies and highlight promising avenues for
future research. The relevant papers are summarized
and will be consistently updated at: https://github.
com/yhLeeee/Awesome-LLMs-in-Graph-tasks.

1 Introduction
Graph, or graph theory, serves as a fundamental part of nu-
merous areas in the modern world, particularly in technology,
science, and logistics [Ji et al., 2021]. Graph data represents
the structural characteristics between nodes, thus illuminating
relationships within the graph’s components. Many real-world
datasets, such as citation networks [Sen et al., 2008], social net-
works [Hamilton et al., 2017], and molecular [Wu et al., 2018],
are intrinsically represented as graphs. To tackle graph-related
tasks, Graph Neural Networks (GNNs) [Kipf and Welling,
2016; Velickovic et al., 2018] have emerged as one of the
most popular choices for processing and analyzing graph data.
The main objective of GNNs is to acquire expressive repre-
sentations at the node, edge, or graph level for different kinds
of downstream tasks through recursive message passing and
aggregation mechanisms among nodes.

In recent years, significant advancements have been made in
Large Language Models (LLMs) like Transformers [Vaswani
et al., 2017], BERT [Kenton and others, 2019], GPT [Brown
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Figure 1: Across a myriad of graph domains, the integration of graphs
and LLMs demonstrates success in various downstream tasks.

et al., 2020], and their variants. These LLMs can be easily
applied to various downstream tasks with little adaptation,
demonstrating remarkable performance across various natural
language processing tasks, such as sentiment analysis, ma-
chine translation, and text classification [Zhao et al., 2023c].
While their primary focus has been on text sequences, there is
a growing interest in enhancing the multi-modal capabilities of
LLMs to enable them to handle diverse data types, including
graphs, images, and videos.

LLMs help graph-related tasks. With the help of LLMs,
there has been a notable shift in the way we interact with
graphs, particularly those containing nodes associated with
text attributes. As shown in Figure 1, the integration of graphs
and LLMs demonstrates success in various downstream tasks
across a myriad of graph domains. Integrating LLMs with tra-
ditional GNNs can be mutually beneficial and enhance graph
learning. While GNNs are proficient at capturing structural
information, they primarily rely on semantically constrained
embeddings as node features, limiting their ability to express
the full complexities of the nodes. Incorporating LLMs, GNNs
can be enhanced with stronger node features that effectively
capture both structural and contextual aspects. On the other
hand, LLMs excel at encoding text but often struggle to capture
structural information present in graph data. Combining GNNs
with LLMs can leverage the robust textual understanding of
LLMs while harnessing GNNs’ ability to capture structural
relationships, leading to more powerful graph learning. To
achieve a better systematic overview, as shown in Figure 2, we
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LLM as Enhancer

Explanation-based TAPE [He et al., 2024], KEA [Chen et al., 2023], LLM4Mol [Qian et al., 2023],
LLMRec [Wei et al., 2023]

Embedding-based
GIANT [Chien et al., 2021], SimTeG [Duan et al., 2023], TouchUp-G [Zhu et al., 2023],
WalkLM [Tan et al., 2023], OFA [Liu et al., 2024], GALM [Xie et al., 2023],
G-Prompt [Huang et al., 2023b], LEADING [Xue et al., 2023], METERN [Jin et al., 2023a]

LLM as Predictor

Flatten-based

Frozen
NLGraph [Wang et al., 2023b], GraphText [Zhao et al., 2023b], GPT4Graph [Guo et al., 2023],
[Hu et al., 2023], ReLM [Shi et al., 2023], [Chen et al., 2023], GraphTMI [Das et al., 2023],
[Liu and Wu, 2023], [Zhang et al., 2023a], [Huang et al., 2023a], [Fatemi et al., 2023]

Tuning GIMLET [Zhao et al., 2023a], InstructGLM [Ye et al., 2023]

GNN-based GIT-Mol [Liu et al., 2023b], GraphLLM [Chai et al., 2023], MolCA [Liu et al., 2023c],
GraphGPT [Tang et al., 2023], DGTL [Qin et al., 2023], InstructMol [Cao et al., 2023]

GNN-LLM Alignment

Symmetrical
SAFER [Chandra et al., 2020], Text2Mol [Edwards et al., 2021], MoMu [Su et al., 2022],
MoleculeSTM [Liu et al., 2022], GLEM [Zhao et al., 2022], G2P2 [Wen and Fang, 2023],
ConGraT [Brannon et al., 2023], GRENADE [Li et al., 2023b], RLMRec [Ren et al., 2023]

Asymmetrical GraphFormers [Yang et al., 2021], GRAD [Mavromatis et al., 2023], Patton [Jin et al., 2023b],
THLM [Zou et al., 2023]

Figure 2: A taxonomy of models for solving graph tasks with the help of large language models (LLMs) with representative examples.

follow [Chen et al., 2023] to organize our first-level taxonomy,
categorizing based on the role (i.e., enhancer, predictor, and
alignment component) played by LLMs throughout the entire
model pipeline. We further refine our taxonomy and introduce
more granularity to the initial categories.
Motivations. Although LLMs have been increasingly ap-
plied in graph-related tasks, this rapidly expanding field still
lacks a systematic review. [Zhang et al., 2023b] conducts a
forward-looking survey, presenting a perspective paper that
discusses the challenges and opportunities associated with
the integration of graphs and LLMs. [Liu et al., 2023a] pro-
vide another related survey that summarizes existing graph
foundation models and offers an overview of pre-training and
adaptation strategies. However, both of them have limitations
in terms of comprehensive coverage and the absence of a tax-
onomy specifically focused on how LLMs enhance graphs.
In contrast, we concentrate on scenarios where both graph
and text modalities coexist and propose a more fine-grained
taxonomy to systematically review and summarize the current
status of LLMs techniques for graph-related tasks.
Contributions. The contributions of this work can be sum-
marized from the following three aspects. (1) A structured
taxonomy. A broad overview of the field is presented with a
structured taxonomy that categorizes existing works into four
categories (Figure 2). (2) A comprehensive review. Based
on the proposed taxonomy, the current research progress of
LLMs for graph-related tasks is systematically delineated. (3)
Some future directions. We discuss the remaining limitations
of existing works and point out possible future directions.

2 Preliminary
2.1 Graph Neural Networks
Definitions. Most existing GNNs follow the message-passing
paradigm which contains message aggregation and feature
update, such as GCN [Kipf and Welling, 2016] and GAT
[Velickovic et al., 2018]. They generate node representations
by iteratively aggregating information of neighbors and updat-
ing them with non-linear functions. The forward process can

be defined as:

h
(l)
i = U

(
h
(l−1)
i ,M({h(l−1)

i , h
(l−1)
j |vj ∈ Ni})

)
where h

(l)
i is the feature vector of node i in the l-th layer,

and Ni is a set of neighbor nodes of node i. M denotes the
message passing function of aggregating neighbor information,
U denotes the update function with central node feature and
neighbor node features as input. By stacking multiple layers,
GNNs can aggregate messages from higher-order neighbors.

2.2 Large Language Models
Definitions. While there is currently no clear definition for
LLMs [Shayegani et al., 2023], here we provide a specific
definition for LLMs mentioned in this survey. Two influen-
tial surveys on LLMs [Zhao et al., 2023c; Yang et al., 2023]
distinguish between LLMs and pre-trained language models
(PLMs) from the perspectives of model size and training ap-
proach. To be specific, LLMs are those huge language models
(i.e., billion-level) that undergo pre-training on a significant
amount of data, whereas PLMs refer to those early pre-trained
models with moderate parameter sizes (i.e., million-level),
which can be easily further fine-tuned on task-specific data to
achieve better results to downstream tasks. Due to the rela-
tively smaller parameter size of GNNs, incorporating GNNs
and LLMs often does not require LLMs with large parameters.
Hence, we follow [Liu et al., 2023a] to extend the definition
of LLMs in this survey to encompass both LLMs and PLMs
as defined in previous surveys.
Evolution. LLMs can be divided into two categories based
on non-autoregressive and autoregressive language modeling.
Non-autoregressive LLMs typically concentrate on natural
language understanding and employ a “masked language mod-
eling” pre-training task, while autoregressive LLMs focus
more on natural language generation, frequently leveraging
the “next token prediction” objective as their foundational task.
Classic encoder-only models such as BERT and RoBERTa fall
under the category of non-autoregressive LLMs. Recently,
autoregressive LLMs have witnessed continuous development.
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Figure 3: The illustration of LLM-as-enhancer approaches.

Examples include Flan-T5 and ChatGLM, which are built
upon the encoder-decoder structure, as well as GPT-3 and
LLaMA, which are based on decoder-only architectures. Sig-
nificantly, advancements in architectures and training method-
ologies of LLMs have given rise to emergent capabilities [Wei
et al., 2022a], which is the ability to handle complex tasks in
few-shot or zero-shot scenarios via some techniques such as
in-context learning [Radford et al., 2021] and chain-of-thought
[Wei et al., 2022b].

2.3 Proposed Taxonomy
We propose a taxonomy (as illustrated in Figure 2) that or-
ganizes representative techniques involving both graph and
text modalities into three main categories: (1) LLM as En-
hancer, where LLMs are used to enhance the classification
performance of GNNs. (2) LLM as Predictor, where LLMs
utilize the input graph structure information to make predic-
tions. (3) GNN-LLM Alignment, where LLMs semantically
enhance GNNs through alignment techniques. We note that
in some models, due to the rarity of LLMs’ involvement, it
becomes difficult to categorize them into these three main
classes. Therefore, we separately organize them into the “Oth-
ers” category with specific roles. For example, LLM-GNN
[Chen et al., 2024] actively selects nodes for ChatGPT to
annotate, thereby augmenting the GNN training by utilizing
the LLM as an annotator. GPT4GNAS [Wang et al., 2023a]
considers the LLM as an experienced controller in the task of
graph neural architecture search. and utilizes GPT-4 [OpenAI,
2023] to explore the search space. Furthermore, ENG [Yu
et al., 2023] empowers the LLM as a sample generator to
generate additional training samples with labels to provide
sufficient supervision signals for GNNs.

In the following sections, we present a comprehensive sur-
vey along the three main categories of our taxonomy for incor-
porating LLMs into graph-related tasks, respectively.

3 LLM as Enhancer
GNNs have become powerful tools to analyze graph-structure
data. However, the most mainstream benchmark datasets (e.g.,
Cora and Ogbn-Arxiv) adopt naive methods to encode text
information in text-attributed graphs (TAGs) using shallow
embeddings, such as bag-of-words, skip-gram [Mikolov et

al., 2013], or TF-IDF [Salton and Buckley, 1988]. This in-
evitably constrains the performance of GNNs on TAGs. LLM-
as-enhancer approaches correspond to enhancing the qual-
ity of node embeddings with the help of powerful LLMs.
The derived embeddings are attached to the graph structure
to be utilized by any GNNs or directly inputted into down-
stream classifiers for various tasks. We naturally categorize
these approaches into two branches: explanation-based and
embedding-based, depending on whether they use LLMs to
produce additional textual information.

3.1 Explanation-based Enhancement
To enrich the textual attributes, explanation-based enhance-
ment approaches focus on utilizing the strong zero-shot capa-
bility of LLMs to capture higher-level information. As shown
in Figure 3(a), generally they prompt LLMs to generate seman-
tically enriched additional information, such as explanations,
knowledge entities, and pseudo labels.

For instance, TAPE [He et al., 2024] is a pioneer work
of explanation-based enhancement, which prompts LLMs to
generate explanations and pseudo labels to augment textual
attributes. After that, relatively small language models are fine-
tuned on both original text data and explanations to encode
text semantic information as initial node embeddings. [Chen
et al., 2023] explore the potential competence of LLMs in
graph learning. They first compare embedding-visible LLMs
with shallow embedding methods and then propose KEA to
enrich the text attributes. KEA prompts LLMs to generate a
list of knowledge entities along with text descriptions and en-
codes them by fine-tuned PLMs and deep sentence embedding
models. LLM4Mol [Qian et al., 2023] attempts to employ
LLMs to assist in molecular property prediction. Specifically,
it uses LLMs to generate semantically enriched explanations
for the original SMILES and then fine-tunes a small-scale lan-
guage model to conduct downstream tasks. LLMRec [Wei et
al., 2023] aims to utilize LLMs to figure out data sparsity and
data quality issues in the graph recommendation system. It
reinforces user-item interaction edges and generates user/item
side information by LLMs. Lastly, it employs a lightweight
GNN to encode the augmented recommendation network.

3.2 Embedding-based Enhancement
Refer to Figure 3(b), embedding-based enhancement ap-
proaches directly utilize LLMs to output text embeddings
as initial node embeddings for GNN training. This kind of ap-
proach requires the use of embedding-visible or open-source
LLMs because it needs to access text embeddings straight-
away or fine-tune LLMs with structural information. Many
of the current advanced LLMs (e.g., GPT4 [OpenAI, 2023]
and PaLM [Chowdhery et al., 2022]) are closed-source and
only provide online services. Strict restrictions prevent re-
searchers from accessing their parameters and output embed-
dings. Embedding-based approaches mostly adopt a cascading
form and utilizes structure information to assist the language
model in pre-training or fine-tuning.

Typically, GALM [Xie et al., 2023] pre-trains PLMs and
GNN aggregator on a given large graph corpus to capture
the information that can maximize utility towards massive
applications and then fine-tunes the framework on a specific
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downstream application to further improve the performance.
Several works also aim to generate node embeddings by in-
corporating structural information into the fine-tuning phase
of LLMs. GIANT [Chien et al., 2021], SimTeG [Duan et
al., 2023] and TouchUp-G [Zhu et al., 2023] follow a similar
way, they both fine-tune PLMs through link-prediction-like
methods to help them perceive structural information. The
subtle difference between them is that GIANT employs XR-
Transformer to solve extreme multi-label classification over
link prediction, TouchUp-G uses negative sampling during
link prediction, while SimTeG employs parameter-efficient
fine-tuning to accelerate the fine-tuning process. G-Prompt
[Huang et al., 2023b] introduces a graph adapter at the end
of PLMs to help extract graph-aware node features. Once
trained, task-specific prompts are incorporated to produce in-
terpretable node representations for various downstream tasks.
WalkLM [Tan et al., 2023] is an unsupervised generic graph
representation learning method. The first step of it is to gener-
ate attributed random walks on the graph and compose roughly
meaningful textual sequences by automated textualization pro-
gram. The second step is to fine-tune an LLM using textual
sequences and extract representations from LLM. METERN
[Jin et al., 2023a] introduces relation prior tokens to capture
the relation-specific signals and uses one language encoder
to model the shared knowledge across relations. LEADING
[Xue et al., 2023] effectively finetunes LLMs and transfers
risk knowledge in LLM to downstream GNN model with less
computation cost and memory overhead.

A recent work, OFA [Liu et al., 2024], attempts to pro-
pose a general graph learning framework, which can utilize a
single graph model to conduct adaptive downstream predic-
tion. It describes all nodes and edges using human-readable
texts and encodes them from different domains into the same
space by LLMs. Subsequently, the framework is adaptive to
perform different tasks by inserting task-specific prompting
substructures into the input graph.

3.3 Discussions
LLM-as-enhancer approaches have demonstrated superior per-
formance on TAG, being able to effectively capture both tex-
tual and structural information. Moreover, they also exhibit
strong flexibility, as GNNs and LLMs are plug-and-play, al-
lowing them to leverage the latest techniques to address the
encountered issues. However, despite some papers claiming
strong scalability, in fact, LLM-as-enhancer approaches entail
significant overhead when dealing with large-scale datasets.
Taking explanation-based approaches as an example, they need
to query LLMs’ APIs for N times for a graph with N nodes,
which is indeed a substantial cost.

4 LLM as Predictor
The core idea behind this category is to utilize LLMs to make
predictions for a wide range of graph-related tasks, such as
classifications and reasonings, within a unified generative
paradigm. However, applying LLMs to graph modalities
presents unique challenges, primarily because graph data of-
ten lacks straightforward transformation into sequential text,
as different graphs define structures and features in different
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Figure 4: The illustration of LLM-as-predictor approaches.

ways. We classify the models broadly into flatten-based and
GNN-based predictions, depending on whether they employ
GNNs to extract structural features for LLMs.

4.1 Flatten-based Prediction
The majority of the existing attempts that utilize LLMs as pre-
dictors employ the strategy of flattening the graph into textual
descriptions, which facilitates direct processing of graph data
by LLMs through text sequences. As shown in Figure 4(a),
flatten-based prediction typically involves two steps: (1) uti-
lizing a flatten function to transform a graph structure into
a sequence of nodes or tokens, and (2) a parsing function is
then applied to retrieve the predicted label from the output
generated by LLMs. As the core of flatten-based prediction, a
variety of flatten functions has been leveraged.

GPT4Graph [Guo et al., 2023] utilizes graph description
languages such as GML and GraphML to represent graphs.
These languages provide standardized syntax and semantics
for representing the nodes and edges within a graph. Inspired
by linguistic syntax trees, GraphText [Zhao et al., 2023b]
leverages graph-syntax trees to convert a graph structure to a
sequence of nodes, which is then fed to LLMs for training-free
graph reasoning. Furthermore, ReLM [Shi et al., 2023] uses
SMILES strings to provide one-dimensional linearizations of
molecular graph structures. GIMLET [Zhao et al., 2023a]
adopts distance-based position embedding to extend the capa-
bility of LLMs to perceive graph structures. Graph data can
be also represented through methods like adjacency matrices
and adjacency lists. Several methods [Wang et al., 2023b;
Fatemi et al., 2023; Liu and Wu, 2023; Zhang et al., 2023a]
directly employ numerically organized node and edge lists
to depict the graph data in plain text. GraphTMI [Das et al.,
2023] further explores different modalities such as motif and
image to integrate graph data with LLMs.

The use of natural narration to express graph structures is
also making steady progress. [Chen et al., 2023] and [Hu et
al., 2023] both integrate the structural information of citation
networks into the prompts, which is achieved by explicitly
representing the edge relationship through the word “cite” and
representing the nodes using paper indexes or titles. [Huang
et al., 2023a], on the other hand, does not use the word “cite”
to represent edges but instead describes the relationships via
enumerating randomly selected k-hop neighbors of the current
node. Similarly, InstructGLM [Ye et al., 2023] designs a series
of scalable prompts based on the maximum hop level. These
prompts allow a central paper node to establish direct associa-
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tions with its neighbors up to any desired hop level by utilizing
the described connectivity relationships expressed in natural
language. In addition, GPT4Graph [Guo et al., 2023] and
[Chen et al., 2023] imitate the aggregation behavior of GNNs
and summarize the current neighbor’s attributes as additional
inputs, aiming to provide more structural information.

4.2 GNN-based Prediction
GNNs have demonstrated impressive capabilities in under-
standing graph structures through recursive information ex-
change and aggregation among nodes. As illustrated in Fig-
ure 4(b), in contrast to flatten-based prediction, which con-
verts graph data into textual descriptions as inputs to LLMs,
GNN-based prediction leverages the advantages of GNNs to
incorporate inherent structural characteristics and dependen-
cies present in graph data with LLMs, allowing LLMs to be
structure-aware. GNN-based prediction also relies on a parser
to extract the output from LLMs. Integrating GNN repre-
sentations into LLMs often requires tuning, making it easier
to standardize the prediction format of LLMs by providing
desirable outputs during training.

Various strategies have been proposed to fuse the structural
patterns learned by GNNs and the contextual information cap-
tured by LLMs. For instance, GIT-Mol [Liu et al., 2023b]
and MolCA [Liu et al., 2023c] both implement BLIP-2’s Q-
Former [Li et al., 2023a] as the cross-modal projector to map
the graph encoder’s output to the LLM’s input text space. Mul-
tiple objectives with different attention masking strategies are
employed for effective graph-text interactions. GraphLLM
[Chai et al., 2023] derives the graph-enhanced prefix by ap-
plying a linear projection to the graph representation during
prefix tuning, allowing the LLM to synergize with the graph
transformer to incorporate structural information crucial to
graph reasoning. Additionally, both GraphGPT [Tang et al.,
2023] and InstructMol [Cao et al., 2023] employ a simple
linear layer as the lightweight alignment projector to map the
encoded graph representation to some graph tokens, while the
LLM excels at aligning these tokens with diverse text informa-
tion. DGTL [Qin et al., 2023] injects the disentangled graph
embeddings directly into each layer of the LLM, highlighting
different aspects of the graph’s topology and semantics.

4.3 Discussions
Utilizing LLMs directly as predictors shows superiority in
processing textual attributes of graphs, especially achieving
remarkable zero-shot performance compared with traditional

GNNs. The ultimate goal is to develop and refine methods
for encoding graph-structured information into a format that
LLMs can comprehend and manipulate effectively and effi-
ciently. Flatten-based prediction may have an advantage in
terms of effectiveness, while GNN-based prediction tends to
be more efficient. In flatten-based prediction, the input length
limitation of LLMs restricts each node’s access to only its
neighbors within a few hops, making it challenging to capture
long-range dependencies. Additionally, without the involve-
ment of GNNs, inherent issues of GNNs such as heterophily
cannot be addressed. On the other hand, for GNN-based pre-
diction, training an additional GNN module and inserting it
into LLMs for joint training is challenging due to the problem
of vanishing gradients in the early layers of deep transformers.

5 GNN-LLM Alignment
The alignment of GNNs and LLMs offers an efficient method
for integrating graph and text data. This alignment retains the
distinct capabilities of each encoder by synchronizing their
embedding spaces at a certain point. We categorize alignment
techniques into symmetric and asymmetric: symmetric align-
ment treats GNNs and LLMs equally, whereas asymmetric
alignment prioritizes one over the other.

5.1 Symmetric
Symmetric alignment refers to the equal treatment of the graph
and text modalities during alignments. These approaches en-
sure that the encoders of both modalities achieve comparable
performance in their respective applications.

A typical symmetric alignment architecture shown in Fig-
ure 5(a) adopts a two-tower style, employing separate en-
coders to individually encode the graph and text. Interaction
between these modalities occurs only once during alignment.
Approaches like SAFER [Chandra et al., 2020] typically use
basic concatenation for combining these embeddings.

Recent developments in two-tower models increasingly
leverage contrastive learning, similar to the CLIP [Radford et
al., 2021], for more effective alignment of different modalities.
The methods generally involve a two-step process: initially ex-
tracting graph and text representations, followed by applying
contrastive learning with a modified InfoNCE loss [Oord et
al., 2018]. Text2Mol [Edwards et al., 2021] introduces a cross-
modal attention mechanism for early fusion of graph and text
embeddings. It employs a transformer decoder, using LLM
output as the source sequence and GNN output as the target
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GIANT [Chien et al., 2021] SAGE, RevGAT, etc. BERT GNN ✗ ✗ Citation, Co-purchase Node Link
GALM [Xie et al., 2023] RGCN, RGAT BERT GNN ✓ ✗ E-Commerce, Recommendation Node, Link -
TAPE [He et al., 2024] RevGAT ChatGPT GNN ✗ ✓ Citation Node Link
Chen et al. [Chen et al., 2023] GCN, GAT ChatGPT GNN ✗ ✓ Citation, Co-purchase Node -
LLM4Mol [Qian et al., 2023] - ChatGPT LM ✗ ✗ Molecular Graph Link
SimTeG [Duan et al., 2023] SAGE, RevGAT, SEAL allMiniLM-L6-v2, etc. GNN ✓♡ ✗ Citation, Co-purchase Node, Link Link
G-Prompt [Huang et al., 2023b] SAGE, RevGAT RoBERTa-Large GNN ✓ ✓ Citation, Social Node -
TouchUp-G [Zhu et al., 2023] SAGE, MB-GCN, etc. BERT GNN ✓ ✗ Citation, Co-purchase, Recommendation Node, Link -
OFA [Liu et al., 2024] R-GCN Sentence-BERT GNN ✗ ✓ Citation, Web link, Knowledge, Molecular Node, Link, Graph Link
LLMRec [Wei et al., 2023] LightGCN ChatGPT GNN ✗ ✓ Recommendation Recommendation Link
WalkLM [Tan et al., 2023] - DistilRoBERTa MLP ✓ ✗ Knowledge Node, Link Link
METERN [Jin et al., 2023a] - BERT LM ✓ ✗ Citation, E-Commerce Node -
LEADING [Xue et al., 2023] GCN, GAT BERT GNN ✓ ✗ Citation Node -

L
L

M
as

Pr
ed

ic
to

r

NLGraph [Wang et al., 2023b] - Text-davinci-003 LLM ✗ ✓ - Reasoning Link
GPT4Graph [Guo et al., 2023] - Text-davinci-003 LLM ✗ ✓ - Reasoning, Node, Graph Link
GIMLET [Zhao et al., 2023a] - T5 LLM ✓/✗ ✓ Molecular Graph Link
Chen et al. [Chen et al., 2023] - ChatGPT LLM ✗ ✓ Citation Node Link
GIT-Mol [Liu et al., 2023b] GIN MolT5 LLM ✓♡ ✓ Molecular Graph, Captioning -
InstructGLM [Ye et al., 2023] - FLAN-T5/LLaMA-v1 LLM ✓♡ ✓ Citation Node Link
Liu et al. [Liu and Wu, 2023] - GPT-4, etc. LLM ✗ ✓ - Reasoning Link
Huang et al. [Huang et al., 2023a] - ChatGPT LLM ✗ ✓ Citation, Co-purchase Node Link
GraphText [Zhao et al., 2023b] - ChatGPT/GPT-4 LLM ✗ ✓ Citation, Web link Node -
Fatemi et al. [Fatemi et al., 2023] - PaLM/PaLM 2 LLM ✗ ✓ - Reasoning -
GraphLLM [Chai et al., 2023] Graph Transformer LLaMA-v2 LLM ✓♡ ✓ - Reasoning Link
Hu et al. [Hu et al., 2023] - ChatGPT/GPT-4 LLM ✗ ✓ Citation, Knowledge, Social Node, Link, Graph -
MolCA [Liu et al., 2023c] GINE Galactica/MolT5 LLM ✓♡ ✓ Molecular Graph, Retrieval, Captioning Link
GraphGPT [Tang et al., 2023] Graph Transformer Vicuna LLM ✓♡ ✓ Citation Node Link
ReLM [Shi et al., 2023] TAG, GCN Vicuna/ChatGPT LLM ✗ ✓ Molecular Reaction Prediction Link
LLM4DyG [Zhang et al., 2023a] - Vicuna/LLaMA-v2/ChatGPT LLM ✗ ✓ - Reasoning -
DGTL [Qin et al., 2023] Disentangled GNN LLaMA-v2 LLM ✓ ✓ Citation, E-Commerce Node -
GraphTMI [Das et al., 2023] - GPT-4/GPT-4V LLM ✗ ✓ Citation Node -
InstructMol [Cao et al., 2023] GIN Vicuna LLM ✓♡ ✓ Molecular Graph, Captioning Link

G
N

N
-L

L
M

A
lig

nm
en

t

SAFER[Chandra et al., 2020] GCN, GAT, etc. RoBERTa Linear ✓ ✗ News Node Link
GraphFormers [Yang et al., 2021] Graph Transformer UniLM LLM ✓ ✗ Citation, E-Commerce, Knowledge Link Link
Text2Mol[Edwards et al., 2021] GCN SciBERT GNN/LLM ✓ ✗ Molecular Retrieval Link
MoMu [Su et al., 2022] GIN BERT GNN/LLM ✓ ✗ Molecular Graph, Retrieval Link
MoleculeSTM [Liu et al., 2022] GIN BERT GNN/LLM ✓ ✗ Molecular Graph, Retrieval Link
GLEM [Zhao et al., 2022] SAGE, RevGAT, etc. DeBERTa GNN/LLM ✓ ✗ Citation, Co-purchase Node Link
GRAD [Mavromatis et al., 2023] SAGE SciBERT/DistilBERT LLM ✓ ✗ Citation, Co-purchase Node Link
G2P2 [Wen and Fang, 2023] GCN Transformer GNN/LLM ✓ ✓ Citation, Recommendation Node Link
Patton [Jin et al., 2023b] Graph Transformer BERT/SciBERT Linear/LLM ✓ ✗ Citation, E-Commerce Node, Link, Retrieval, Reranking Link
ConGraT [Brannon et al., 2023] GAT all-mpnet-base-v2/DistilGPT2 GNN/LLM ✓ ✗ Citation, Knowledge, Social Node, Link Link
THLM [Zou et al., 2023] R-HGNN BERT LLM ✓ ✗ Academic, Recommendation, Patent Node, Link Link
GRENADE [Li et al., 2023b] SAGE, RevGAT-KD, etc. BERT GNN/MLP ✓ ✗ Citation, Co-purchase Node, Link Link
RLMRec [Ren et al., 2023] GCCF, LightGCN, etc. ChatGPT, text-embedding-ada-002 GNN/LLM ✓ ✗ Recommendation Node Link

O
th

er
s LLM-GNN [Chen et al., 2024] GCN, SAGE ChatGPT GNN ✗ ✓ Citation, Co-purchase Node Link

GPT4GNAS [Wang et al., 2023a] GCN, GIN, etc. GPT-4 GNN ✗ ✓ Citation Node -
ENG [Yu et al., 2023] GCN, GAT ChatGPT GNN ✗ ✓ Citation Node -

Table 1: A summary of models that leverage LLMs to assist graph-related tasks in literature, ordered by their release time. Fine-tuning denotes
whether it is necessary to fine-tune the parameters of LLMs, and ♡ indicates that models employ parameter-efficient fine-tuning (PEFT)
strategies, such as LoRA and prefix tuning. Prompting indicates the use of text-formatted prompts in LLMs, done manually or automatically.
Acronyms in Task: Node refers to node-level tasks; Link refers to link-level tasks; Graph refers to graph-level tasks; Reasoning refers to Graph
Reasoning; Retrieval refers to Graph-Text Retrieval; Captioning refers to Graph Captioning.

sequence. The decoder’s output is used for contrastive learn-
ing, paired with GNN-processed outputs. MoMu [Su et al.,
2022], MoleculeSTM [Liu et al., 2022], ConGraT [Brannon
et al., 2023], and RLMRec [Ren et al., 2023] share a simi-
lar framework, which adopts paired graph embeddings and
text embeddings to implement contrastive learning. MoMu
and MoleculeSTM both source molecules from PubChem.
MoMu pairs these with texts from scientific papers, whereas
MoleculeSTM uses molecules’ descriptions. ConGraT ex-
tends this graph-text pairing approach to social, knowledge,
and citation networks. RLMRec aligns LLMs’ semantic space
with user-item interaction signals in recommendation systems.
G2P2 [Wen and Fang, 2023] and GRENADE [Li et al., 2023b]
have further advanced the use of contrastive learning. G2P2
enhances the granularity by employing contrastive learning at
three levels during the pre-training stage: node-text, text-text
summary, and node-node summary. GRENADE is optimized
by integrating graph-centric contrastive learning with dual-
level graph-centric knowledge alignment, which includes both
node-level and neighborhood-level alignment.

The iterative alignment, depicted in Figure 5(b), distin-
guishes itself by allowing iterative interaction between the
modalities. For example, GLEM [Zhao et al., 2022] employs
the Expectation-Maximization (EM) framework, where one
encoder iteratively generates pseudo-labels for the other, al-

lowing the alignment between two representation spaces.

5.2 Asymmetric
Symmetric alignment balances both modalities equally,
whereas asymmetric alignment prioritizes one, often using
GNNs’ structural processing to bolster LLMs. Current ap-
proaches mainly include graph-nested transformers and graph-
aware distillation.

The graph-nested transformer, as exemplified by Graph-
former [Yang et al., 2021] in Figure 5(c), demonstrates asym-
metric alignment through the integration of GNNs into each
transformer layer. Within each layer of the LLM, the node
embedding is obtained from the first token-level embedding,
which corresponds to the [CLS] token. The process involves
gathering embeddings from all relevant nodes and applying
them to a graph transformer. The output is then concatenated
with the input embeddings and passed on to the next layer of
the LLM. Patton [Jin et al., 2023b] extends GraphFormer by
proposing network-contextualized masked language modeling
and masked node prediction and shows strong performance in
various downstream tasks, including classification, retrieval,
reranking, and link prediction.

GRAD [Mavromatis et al., 2023] employs graph-aware dis-
tillation for aligning two modalities, depicted in Figure 5(d).
It utilizes a GNN as a teacher model to generate soft labels
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for an LLM. Since the LLMs share parameters, the GNN can
also benefit from improved textual encodings after the updates
to the LLMs’ parameters. Through iterative updates, a graph-
aware LLM is developed, resulting in enhanced scalability in
inference due to the absence of the GNN. Similar to GRAD,
THLM [Zou et al., 2023] employs a heterogeneous GNN to
enhance LLMs with multi-order topology learning capabilities.
It involves pretraining a LLM alongside an auxiliary GNN
through Context Graph Prediction and Masked Language Mod-
eling tasks. After the pretraining process, the auxiliary GNN
is discarded and the LLM is fine-tuned for downstream tasks.

5.3 Discussions
To align GNNs and LLMs, symmetric alignments treat each
modality equally to both enhance GNNs and LLMs. This en-
ables encoders to efficiently manage multimodal tasks, utiliz-
ing their unique strengths to enhance modality-specific repre-
sentations. Asymmetric methods enhance LLMs by inserting
graph encoders into transformers or using GNNs as teach-
ers. However, alignment techniques face severe data scarcity,
since only a few graph datasets contain native graph-text pairs,
limiting the applicability of these methods.

6 Future Directions
Table 1 summarizes the models that leverage LLMs to as-
sist graph-related tasks according to the proposed taxonomy.
Based on the above review and analysis, we believe that there
is still much space for further enhancement in this field.
Dealing with non-TAG. Text-attributed graphs (TAGs) have
shown improved learning with LLM assistance, yet many real-
world graphs lack textual information. For instance, traffic
networks (e.g., PeMS03 [Song et al., 2020]) use nodes for
sensors, and superpixel graphs (e.g., PascalVOC-SP [Dwivedi
et al., 2022]) for superpixels, without text attributes for nodes,
making semantic descriptions challenging. While OFA [Liu
et al., 2024] proposes using texts to describe nodes and edges,
embedding them with LLMs isn’t always effective across all
domains. Research into utilizing LLMs for graph foundation
models without rich text data remains promising.
Dealing with data leakage. Data leakage in LLMs has be-
come a focal point of discussion. Given that LLMs undergo
pre-training on extensive text corpora, it’s likely that LLMs
may have seen and memorized at least part of the test data
of the common benchmark datasets, especially for citation
networks. [Chen et al., 2023] proves that specific prompts
could potentially enhance the “activation” of LLMs’ corre-
sponding memory, thereby influencing the evaluation. Hence,
it’s crucial to reconsider the methods employed to accurately
evaluate the performance of LLMs on graph-related tasks. A
fair, systematic, and comprehensive benchmark is also needed.
Improving transferability. Transferability in graphs is tough
because each graph has its unique features and structure. Dif-
ferences in size, nodes, edges, and topology make it hard
to apply what’s learned from one graph to another. While
LLMs have demonstrated promising zero/few-shot abilities
in language tasks due to their extensive pre-training on vast
amounts of corpora, using their knowledge for graph tasks

isn’t well-explored. OFA [Liu et al., 2024] tries to make this
easier by describing graphs in a unified way for better cross-
domain transferability. However, improving the transferability
in graphs is still an open area for more research.
Improving explainability. Explainability, also known as in-
terpretability, denotes the ability to explain or present the
behavior of models in human-understandable terms. LLMs
exhibit improved explainability compared to GNNs when han-
dling graph-related tasks, primarily due to the reasoning and
explaining ability of LLMs to produce user-friendly expla-
nations for graph reasoning. Several studies have examined
explaining techniques within the prompting paradigm, such as
in-context learning [Radford et al., 2021] and chain-of-thought
[Wei et al., 2022b]. Further explorations should be conducted
to enhance explainability.
Improving efficiency. While LLMs have demonstrated their
effectiveness in learning on graphs, they may face inefficien-
cies in terms of time and space, particularly compared to
dedicated graph learning models such as GNNs that inherently
process graph structures. This is especially obvious when
LLMs rely on sequential graph descriptions for predictions
discussed in Section 4. Existing studies have tried to enable
LLMs’ efficient adaption via adopting parameter-efficient fine-
tuning strategies, such as LoRA [Hu et al., 2021] and prefix
tuning [Li and Liang, 2021]. We believe that more efficient
methods may unlock more power of applying LLMs on graph-
related tasks with limited computational resources.
Analysis and improvement of expressive ability. Despite
the recent achievements of LLMs in graph-related tasks, their
theoretical expressive power remains largely unexplored. It
is widely acknowledged that standard message-passing neu-
ral networks are as expressive as the 1-Weisfeiler-Lehman
(WL) test, meaning that they fail to distinguish non-isomorphic
graphs under 1-hop aggregation [Xu et al., 2018]. Therefore,
two fundamental questions arise: How effectively do LLMs
understand graph structures? Can their expressive ability sur-
pass those of GNNs or the WL-test?

7 Conclusion
The application of LLMs to graph-related tasks has emerged
as a prominent area of research in recent years. In this survey,
we aim to provide an in-depth overview of existing strate-
gies for adapting LLMs to graphs. Firstly, we introduce a
novel taxonomy that categorizes techniques involving both
graph and text modalities into three categories based on the
different roles played by LLMs, i.e., enhancer, predictor, and
alignment component. Secondly, we systematically review the
representative studies according to the taxonomy. Finally, we
discuss some limitations and highlight several future research
directions. Through this comprehensive review, we aspire to
shed light on the advancements and challenges in the field
of graph learning with LLMs, thereby encouraging further
enhancements in this domain.
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