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Abstract
Recently, remarkable progress has been made
over large language models (LLMs), demonstrat-
ing their unprecedented capability in varieties of
natural language tasks. However, completely train-
ing a large general-purpose model from the scratch
is challenging for time series analysis, due to the
large volumes and varieties of time series data, as
well as the non-stationarity that leads to concept
drift impeding continuous model adaptation and re-
training. Recent advances have shown that pre-
trained LLMs can be exploited to capture complex
dependencies in time series data and facilitate var-
ious applications. In this survey, we provide a sys-
tematic overview of existing methods that leverage
LLMs for time series analysis. Specifically, we
first state the challenges and motivations of apply-
ing language models in the context of time series as
well as brief preliminaries of LLMs. Next, we sum-
marize the general pipeline for LLM-based time
series analysis, categorize existing methods into
different groups (i.e., direct query, tokenization,
prompt design, fine-tune, and model integration),
and highlight the key ideas within each group. We
also discuss the applications of LLMs for both gen-
eral and spatial-temporal time series data, tailored
to specific domains. Finally, we thoroughly discuss
future research opportunities to empower time se-
ries analysis with LLMs.

1 Introduction
In the past few years, significant advances have been made in
large language models (LLMs), taking artificial intelligence
and natural language processing a giant leap forward. LLMs,
e.g., OpenAI’s GPT-3 and Meta’s Llama 2 [Touvron et al.,
2023b], have not only exhibited an unparalleled ability to
create narratives that are both coherent and contextually rel-
evant but also demonstrated their remarkable accuracy and
proficiency in complex and nuanced tasks such as responding
to queries, translating sentences between multiple languages,
code generation, and so on.

Inspired by the success of LLMs, a great deal of effort has

Figure 1: The framework of our survey

been made to train general-purpose time series analysis mod-
els [Wu et al., 2022; Garza and Mergenthaler-Canseco, 2023]
to facilitate various underlying tasks, such as classification,
forecasting, and anomaly detection. These efforts, however,
are hindered by two key challenges. First, time series data
may come in various forms - univariate or multivariate, for
example - in large volumes, and from a variety of domains:
healthcare, finance, traffic, environmental sciences, etc. This
increases the complexity of model training and makes it dif-
ficult to handle different scenarios. Second, real-world time
series data often exhibit non-stationary properties when they
are continuously accumulated/collected, meaning that the sta-
tistical characteristics of time series data, such as mean, vari-
ance, and auto-correlation, will change over time. This phe-
nomenon is common in applications such as financial mar-
kets, climate data, and user behavior analytics where patterns
and trajectories evolve and do not remain constant. It can
lead to the concept drift problem, as the statistical properties
of the target variables may also change over time, making it
difficult for the large models to be continuously adapted and
re-trained [Kim et al., 2021].

More recently, instead of training a general-purpose time
series analysis model from the scratch, there is an increasing
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trend in exploiting existing LLMs in various time series ap-
plications. Consequently, different methodologies have been
developed based on application types. In this survey, we
provide a comprehensive and systematic overview of exist-
ing methods that leverage LLMs for time series analysis. As
shown in Figure 1, we will first discuss the challenges, mo-
tivations, and preliminaries of LLMs. Next, we will summa-
rize the general pipeline for LLM-based time series analysis
and introduce five different types of techniques for applying
LLMs: direct query, tokenization, prompt design, fine-tuning,
and model integration. We will also discuss application of
LLMs to specific domains. For better comparison, we provide
a comprehensive table that summarizes representative meth-
ods, their modeling strategies, associated tasks and domains
(as shown in Table 1). Finally, we highlight potential future
research opportunities to further advance time series analysis
with LLMs. We also provide the up-to-date resources in the
GitHub repository1. In summary, the main contributions of
this survey include:

• We catalog papers on LLM-based time series analysis
that cover representative approaches since 2022.

• We systematically survey existing methods that leverage
LLMs for time series analysis, uniquely categorize them
into five groups based on the methodology, and discuss
their application tasks and domains.

• We discuss and highlight future directions that ad-
vance time series analysis with LLMs and encourage re-
searchers and practitioner to further investigate this field.

2 Background
2.1 General Large Language Models
Early advancements in natural language processing involve
neural language models (NLMs) [Arisoy et al., 2012] and
pioneering LLMs, such as GPT-2 [Radford et al., 2019],
BERT [Devlin et al., 2018], RoBERTa [Liu et al., 2019],
and XLNet [Yang et al., 2019]. More recently, the rise
of more powerful LLMs (e.g., multi-modal large language
models [Yin et al., 2023]) has revolutionized AI usage be-
cause of their exceptional ability to handle complex tasks.
We adopt a similar criterion to that in [Zhao et al., 2023;
Jin et al., 2023] and divide LLMs into two categories:
embedding-visible LLMs and embedding-invisible LLMs.
The embedding-visible LLMs are usually open-sourced with
inner states accessible. Notable examples include T5 [Raffel
et al., 2020], Flan-T5 [Chung et al., 2022], LLaMA [Tou-
vron et al., 2023a; Touvron et al., 2023b], ChatGLM [Du et
al., 2022], etc. These open-sourced LLMs are adaptable for
various downstream tasks, demonstrating impressive capabil-
ities in both few-shot and zero-shot learning settings, with-
out the need to retrain from scratch. On the other hand, the
embedding-invisible LLMs are typically closed-sourced with
inner states inaccessible to the public. This type of LLMs in-
clude PaLM [Chowdhery et al., 2023], GPT-3 [Brown et al.,
2020], GPT-4 [Achiam and et al., 2023]. For these models,

1https://github.com/UConn-DSIS/Empowering-Time-Series-
Analysis-with-LLM

researchers are limited to conducting inference tasks through
prompting via the API calls. These LLMs can be potentially
exploited for time series analysis.

2.2 Leveraging LLMs in Time Series Analysis
The rapid development of LLMs in natural language pro-
cessing has unveiled unprecedented capabilities in sequen-
tial modeling and pattern recognition. It is natural to ask:
How can LLMs be effectively leveraged to advance general-
purpose time series analysis?

Our survey aims to answer the question based on a thor-
ough overview of existing literature. We claim that LLMs
can serve as a flexible as well as highly competent compo-
nent in the time series modeling. The flexibility lies in a wide
spectrum of available LLMs that can be employed and the
variety of ways they can be configured for time series anal-
ysis (Section 3). Regarding their competence, LLMs can
be tailored for a wide range of real-world applications with
domain-specific context (Section 4). Certainly, there still ex-
ists several challenges in this field and we discuss future op-
portunities (Section 5).

Next, we highlight the difference between our survey and
a few recent relevant ones in terms of the scope and focus.
Deldari [2022] and Ma et al. [2023] both include the sum-
mary of pre-trained techniques for time series where Del-
dari [2022] is specialized in self-supervised representation
learning (SSRL) methods for multi-modal temporal data (not
only time series). Mai et al. [2023b] summarizes large pre-
trained models (including LLMs) for time series in geospa-
tial domain. Jin et al. [2023] provides a comprehensive
survey of large pre-trained models for time series and gen-
eral spatial-temporal data. Compared with [Jin et al., 2023;
Mai et al., 2023b], our survey focuses on LLMs for time
series analysis, which is the only one categorizing existing
methods based on modeling strategy. Our survey is also
uniquely positioned to provide detailed introductions of not
only universal methodology design but also various appli-
cations with domain-specific context. Figure 2 and Table 1
demonstrate our uniqueness.

3 Taxonomy of LLMs in Time Series Analysis
In this section, we conduct a detailed discussion of existing
research that utilizes LLMs for universal time series model-
ing and thoroughly analyze the design of their components,
where we categorize and brief the designs of domain-specific
methods. We will also elaborate by tailoring them to specific
domain contexts in Section 4. The detailed taxonomy is pro-
vided in Table 1.

General Pipeline of LLMs. To adopt LLMs for time series
analysis, three primary methods are employed: direct query-
ing of LLMs (Section 3.1), fine-tuning LLMs with tailored
designs (Section 3.2-3.4), and incorporating LLMs into time
series models as a means of feature enhancement (Section
3.5). Specifically, three key components can be leveraged to
fine-tune LLMs as shown in Figure 2: The input time se-
ries are first tokenized into embedding based on proper tok-
enization techniques, where proper prompts can be adopted2
to further enhance the time series representation. As such,
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Figure 2: Categorization of component design for fine-tuning time
series LLMs (Section 3.2-3.4)

LLMs can better comprehend prompt-enhanced time series
embedding and be fine-tuned for downstream tasks, based on
sophisticated strategies.

3.1 Direct Query of LLMs
PromptCast [Xue and Salim, 2023] is the first work that di-
rectly conducts general time series forecasting in sentence-
to-sentence fashion using pre-trained LLMs. It introduces a
novel forecasting setting, i.e., prompt-based time series fore-
casting that embeds lag information as well as instructions
into the prompts and uses output sentences from the LLMs
to conduct forecasting. Directly querying LLMs can also
be beneficial in domain-specific scenarios [Yu et al., 2023;
Wang et al., 2023], particularly when leveraging advanced
pre-trained LLMs (e.g., GPT-4 [Achiam and et al., 2023]
and OpenLLaMA [Geng and Liu, 2023; Computer, 2023;
Touvron et al., 2023b]) in conjunction with context-inclusive
prompts that provide relevant domain knowledge.

While direct usage of LLMs for time series forecasting can
be zero-shot or few-shot, instruction-based fine-tuning, and
Chain-of-Thoughts (COT) [Lightman et al., 2023; Wei et al.,
2022; Zhang et al., 2023b] have shown positive effects on
the reasoning process. LLMTime [Gruver et al., 2023] also
demonstrates that LLMs are effective zero-shot time series
learners with proper text-wise tokenization on time series.

3.2 Time Series Tokenization Design
The aforementioned works [Xue and Salim, 2023; Yu et al.,
2023; Gruver et al., 2023] convert numerical values of time
series data into string-based tokens so that LLMs can seam-
lessly encode time series as the natural language inputs. In
this subsequent section, we exclusively focus on the tokeniza-
tion design to represent time series data more effectively. In
practical applications, time series analysis often encounters
the challenge of distribution shifts. To address this issue, ma-
jor works adopt channel independence and reversible instance
normalization (RevIN) [Kim et al., 2021] before tokenization.

Patch representation [Nie et al., 2023] for time series
has shown promising results in time series analysis with
transformer-based models. For a univariate time series in-
put with length L: X1D ∈ RL, the patching operation first
repeats the final value in the original univariate time series
S times. Then, it unfolds the input univariate time series
through a sliding window with the length of patch size P and
the stride size of S. Through patching, the univariate time
series will be transformed into two-dimensional representa-
tions Xp ∈ RP×N , where N is the number of patches with

N =
⌊
(L−P )

S

⌋
+ 2. It can be mathematically formulated as:

Xp = Unfold (Right Pad (X1D) , size = P, stride = S) (1)

Patching tokenization design preserves the original relative
order of the data and aggregates local information into each
patch. One Fits All (OFA) [Zhou et al., 2023], Time-
LLM [Jin et al., 2024] and other works [Chang et al., 2023;
Sun et al., 2024; Cao et al., 2024; Liu et al., 2023b;
Bian et al., 2024; Jia et al., 2024; Pan et al., 2024] primar-
ily adopt this method to tokenize time series data. Prior to
tokenization, to enhance the characterization of time series
data, an additive decomposition method can be used to ex-
tract trend, seasonal, and residual components from the orig-
inal time series data, i.e., Xt = XT

t + XS
t + XR

t . Either
classical additive decomposition or additive STL decompo-
sition [Cleveland et al., 1990] can be used to extract corre-
sponding components [Pan et al., 2024; Cao et al., 2024].

In order to harmonize the modalities of numerical data and
natural language, an auxiliary loss has been introduced by
TEST [Sun et al., 2024] to enhance the cosine similarity be-
tween the embeddings of time series tokens and selected text
prototypes, as well as to ensure proximity in the textual pro-
totype space for similar time series instances. For a similar
purpose, Time-LLM [Jin et al., 2024] proposes to use a multi-
headed attention mechanism to align the patched time series
representation with the pre-trained text prototype embedding,
acquired through linear probing. Specifically, Time-LLM re-
programs time series patches in each attention head via:

Z
(i)
k = Softmax

(
Q

(i)
k K

(i)⊤
k√

dk

)
V

(i)
k (2)

where query matrices Q(i)
k = X̂

(i)
p WQ

k , key matrices K(i)
k =

E′WK
k , value matrices V(i)

k = E′WV
k , and E′ is the reduce-

sized pre-trained word embedding.
In addition to patch-based tokenization approaches,

Chronos [Ansari et al., 2024] employs bin-based quan-
tization to convert numerical values into discrete tokens,
UniTime [Liu et al., 2023b] fuses the time series input with
random binary masks and adopts another reconstruction ob-
jective to enhance the representations.

3.3 Prompt Design
PromptCast [Xue and Salim, 2023] develops template-based
prompts for LLM time series forecasting, while some meth-
ods [Yu et al., 2023; Xue et al., 2022a; Wang et al., 2023;
Liu et al., 2023a; Jia et al., 2024; Liu et al., 2023b] en-
rich the prompt design by incorporating LLM-generated or
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gathered background information, which highlights the im-
portance of context-inclusive prompts in real-world applica-
tions. Besides the background and instruction prompts, Time-
LLM [Jin et al., 2024] adds statistical information of the time
series data to facilitate time series forecasting. Compared
with fixed and non-trainable prompts, a soft and trainable
prompt makes it easier for LLMs to understand and align
with the input [Lester et al., 2021]. Prefix soft prompts are
the task-specific embedding vectors, learned based on a loss
from LLMs’ output and the ground truth.

TEST [Sun et al., 2024] initializes the soft prompts with
uniform distributions, text embedding of the downstream
task labels, or the most common words from the vocabu-
lary. TEMPO [Cao et al., 2024] and S2IP-LLM [Pan et al.,
2024] focus on retrieval-based prompt design. The former se-
lects highly representative soft prompts from key-value pools,
while the latter chooses the most similar semantic anchors
derived from pre-trained word embeddings for fine-tuning
through a similarity score matching mechanism.

3.4 Fine-tuning Strategy
Fine-tuning pre-trained LLMs is pivotal to leveraging LLMs’
strong pattern recognition and reasoning capabilities to facili-
tate downstream tasks. Several existing works opt to fine-tune
pre-trained LLMs directly (one stage) for time series analy-
sis. The main difference lies in how the modules’ parame-
ters are updated during the fine-tuning process. As a standard
practice [Lu et al., 2022; Houlsby et al., 2019], OFA [Zhou
et al., 2023] and S2IP-LLM [Pan et al., 2024] fine-tune the
positional embedding and layer normalization layers, and
freezes self-attention layers and Feedforward Neural Net-
works (FFN) as they contain majorities of the learned knowl-
edge. LLM4TS [Chang et al., 2023] and TEMPO [Cao et
al., 2024] further fine-tune the self-attention modules using
Low-Rank Adaptation (LoRA) [Hu et al., 2021] by introduc-
ing trainable low-rank bypasses to the query (Q) and key (K)
matrices in the self-attention mechanism. Instead of directly
modifying the original weight matrices WQ and WK , LoRA
introduces AQ, AK , BQ, and BK , which are much smaller
in size compared to WQ and WK . The modified query and
key matrices in LoRA can be represented as:

LoRA(Q) = XWQ +XBQAQ

LoRA(K) = XWK +XBKAK
(3)

where AQ, AK are the trainable low-rank matrices, and BQ,
and BK are the projection matrices that project the input X
into a lower-dimensional space. The addition of these low-
rank matrices to the original query and key matrices allows
the model to fine-tune more effectively and efficiently with
fewer trainable parameters. Besides one-stage fine-tuning,
LLM4TS [Chang et al., 2023] and aLLM4TS [Bian et al.,
2024] propose a two-stage fine-tuning strategy to accommo-
date LLMs to time series data. The pretraining stage is super-
vised autoregressive fine-tuning, where the backbone predicts
contiguous patches based on a sequence of patches as inputs.

3.5 Integrating LLMs in Time Series Models
Rather than directly querying or fine-tuning time series LLMs
to generate output, some studies use frozen LLMs as a

component that is inherently capable of enhancing the fea-
ture space of time series. A frozen LLM can serve as a
highly capable function in multi-stage modeling that pro-
vides intermediate processing of data or the output of the
preceding component, and feeds it to the subsequent neu-
ral networks [Xue et al., 2022a; Shi et al., 2023] or re-
gression analysis [Lopez-Lira and Tang, 2023]. Specifically,
LLMs can be efficiently applied within a multimodal self-
supervised framework for time series analysis. Here, em-
beddings from time series data and LLM-generated text em-
beddings are used as positive and negative pairs to refine the
model through contrastive loss optimization [Sun et al., 2024;
Li et al., 2023]. Because of LLMs’ inherent capability to un-
derstand natural language, they are also a good fit for generat-
ing complex inter-series dependencies for downstream multi-
variate time series modeling whenever external related text is
available. LA-GCN [Xu et al., 2023] and Chen et al. [2023b]
use LLMs to learn the topological structure of multivariate
time series from domain-specific text.

4 Applications of Time Series LLMs
In this section, we review the existing applications of LLMs
to general and spatial-temporal time series data, which covers
universal and domain-specific areas including finance, trans-
portation, healthcare, and computer vision.

4.1 General Time Series Analysis
Universal Applications
The aforementioned time series LLMs have been evaluated
on a wide spectrum of benchmark datasets covering energy,
traffic, electricity, weather, illness, business, aeronautics, and
security [Zhou et al., 2023; Sun et al., 2024; Gruver et al.,
2023; Xue and Salim, 2023; Cao et al., 2024; Chang et al.,
2023; Spathis and Kawsar, 2023; Jin et al., 2024; Pan et al.,
2024; Liu et al., 2023b; Ansari et al., 2024; Bian et al., 2024].
The tasks include forecasting, classification, imputation, and
anomaly detection. These universal modeling methods can
be tailored to each of these domains with specific knowledge.

While these applications are designed for structured time
series data, a few recent studies have explored LLMs for
a type of naturally observed temporal data with irregulari-
ties - the event sequence data. LAMP [Shi et al., 2023]
first proposes to integrate an event prediction model with
an LLM that performs abductive reasoning on real-world
events. In the proposed framework, event candidate predic-
tions are generated from historical event data (time, subject,
and object) using a pre-trained base event sequence model,
and an LLM is prompted to suggest possible cause events.
This step is instruction-tuned with a few expert-annotated
examples. For retrieval of relevant events, these events
will be constructed as embeddings and matched against past
events based on cosine similarity scores. Finally, an en-
ergy function with a continuous-time Transformer [Xue et
al., 2022b] learns to rank predictions with scores and out-
put the event with the strongest retrieved evidence. The pro-
posed framework outperforms state-of-the-art event sequence
models on real-world benchmarks, indicating the superior
performance of event reasoning via LLMs. Similarly, Gun-
jal and Durrett [2023] attempts to use an LLM to construct
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Method Data Type Domain Task Modeling Strategy LLM Code
Query Token Prompt Fine-tune Integrate

Time-LLM [Jin et al., 2024] M-TS General Forecasting ✗ ✓ ✓ ✗ ✗ LLaMA, GPT-2 Yes[1]

OFA [Zhou et al., 2023] TS General Multiple ✗ ✓ ✗ ✓ ✗ GPT-2 Yes[2]

TEMPO [Cao et al., 2024] TS General Forecasting ✗ ✓ ✓ ✓ ✗ GPT-2 Yes[3]

TEST [Sun et al., 2024] M-TS General Forecasting
✗ ✓ ✓ ✗ ✓

BERT, GPT-2
Yes[4]

Classification ChatGLM, LLaMA2

LLM4TS [Chang et al., 2023] TS General Forecasting ✗ ✓ ✗ ✓ ✗ GPT-2 No

PromptCast [Xue and Salim, 2023] TS General Forecasting ✓ ✗ ✓ ✗ ✗ Bart, BERT, etc. Yes[5]

LLMTIME [Gruver et al., 2023] TS General Forecasting ✓ ✓ ✗ ✗ ✗ GPT-3, LLaMA-2 Yes[6]

UniTime [Liu et al., 2023b] M-TS General Forecasting ✗ ✓ ✓ ✓ ✓ GPT-2 Yes[7]

aLLM4TS [Bian et al., 2024] TS General Multiple ✗ ✓ ✗ ✓ ✗ GPT-2 No

GPT4MTS [Jia et al., 2024] M-TS General Forecasting ✗ ✓ ✓ ✓ ✗ GPT-2 No

Chronos [Ansari et al., 2024] TS General Forecasting ✗ ✓ ✗ ✓ ✗ GPT-2,T5 Yes[8]

S2IP-LLM [Pan et al., 2024] TS General Forecasting ✗ ✓ ✓ ✓ ✗ GPT-2 Yes[9]

LAMP [Shi et al., 2023] TS General Event Prediction ✓ ✗ ✓ ✗ ✓ GPT-3&3.5, LLaMA-2 Yes[10]

[Gunjal and Durrett, 2023] TS General Event Prediction ✓ ✗ ✓ ✗ ✗ GPT-3.5, Flan-T5, etc. No

[Yu et al., 2023] M-TS Finance Forecasting ✓ ✗ ✓ ✓ ✗ GPT-4, Open-LLaMA No

[Lopez-Lira and Tang, 2023] M-TS Finance Forecasting ✓ ✗ ✓ ✗ ✓ ChatGPT No

[Xie et al., 2023] M-TS Finance Classification ✓ ✗ ✓ ✗ ✗ ChatGPT No

[Chen et al., 2023b] M-TS Finance Classification ✗ ✗ ✓ ✗ ✓ ChatGPT Partial[11]

METS [Li et al., 2023] M-TS Healthcare Classification ✓ ✗ ✓ ✗ ✓ ClinicalBERT No

[Jiang et al., 2023] M-TS Healthcare Classification ✗ ✗ ✗ ✓ ✗ NYUTron(BERT) Yes[12]

[Liu et al., 2023a] M-TS Healthcare Forecasting
✓ ✗ ✓ ✓ ✗ PaLM NoClassification

AuxMobLCast [Xue et al., 2022a] ST Mobility Forecasting ✗ ✗ ✓ ✓ ✓
BERT, RoBERTa Yes[13]

GPT-2, XLNet

LLM-Mob [Wang et al., 2023] ST Mobility Forecasting ✓ ✗ ✓ ✗ ✗ GPT-3.5 Yes[14]

ST-LLM [Liu et al., 2024] ST Traffic Forecasting ✗ ✓ ✗ ✓ ✗ LLaMA, GPT-2 Yes[15]

GATGPT [Chen et al., 2023a] ST Traffic Imputation ✗ ✓ ✗ ✓ ✗ GPT-2 No

LA-GCN [Xu et al., 2023] M-ST Vision Classification ✗ ✓ ✗ ✗ ✓ BERT Yes[16]

Table 1: Taxonomy of time series LLMs. The data type TS denotes general time series, ST denotes spatial-temporal time series, the prefix
M- indicates multi-modal inputs. The task entry Multiple includes forecasting, classification, imputation and anomaly detection. Query
denotes direct query the whole LLMs for output, Token denotes the design of time series tokenization, Prompt indicates the design of
textual or parameterized time series prompts, Fine-tune indicates if the parameters of LLMs are updated, Integrate indicates if LLMs are
integrated as part of final model for downstream tasks. Code availability is assessed on May 20th, 2024. The Github links are embedded.

structured representations of event knowledge (schema) di-
rectly in natural language, to achieve high recall over a
set of human-curated events. In the experiments, multiple
LLMs are considered and schemas are evaluated on different
datasets, which highlights the importance of designing com-
plex prompts for higher event coverage.

Finance
A recent trend in existing literature highlights the emer-
gence of LLMs specialized for financial applications. Yu et
al. [2023] focuses on a stock return prediction task by in-
corporating multi-modal data including the historical stock
price, generated company profiles, and summarized weekly
top news from GPT-4. Based on the designed prompt, this
paper tests both instruction-based zero-shot/few-shot queries
(with an effective alternative using COT approach) on GPT-4

and instruction-based fine-tuning on Open LLaMA. Results
demonstrate that fine-tuned LLMs are capable of making de-
cisions by analyzing multi-modal financial data, thereby ex-
tracting meaningful insights and yielding explainable fore-
casts. Similarly, Lopez-Lira and Tang [2023] directly queries
ChatGPT and other large language models for stock market
return predictions by using news headlines. A linear regres-
sion of the next day’s stock return is conducted on the recom-
mendation score. A positive correlation between the scores
and subsequent returns is observed, showing the potential of
LLMs to comprehend and forecast financial time series.

Xie et al. [2023] conducts an extensive study that queries
ChatGPT (with designed prompts and COT alternatives) to
test its zero-shot capabilities for multi-modal stock move-
ment prediction. The experiments are conducted on three
benchmark datasets that contain both stock prices and tweet
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data. Interestingly, even if ChatGPT demonstrates its effec-
tiveness, the performance varies across datasets and underper-
forms even simple traditional methods. Observed limitations
suggest the need for specialized fine-tuning techniques (e.g.,
the aforementioned Yu et al. [2023]) in the financial context.

Beyond direct queries or fine-tuning, Chen et al. [2023b]
proposes a framework that uses an external LLMs as a fea-
ture enhancement module for multi-modal stock movement
prediction. Specifically, ChatGPT first generates an evolving
graph structure of companies via prompting of news head-
lines at each time step, after which the static features of com-
panies, the inferred structure, and historical stock prices are
fed into a GNN and an LSTM for price movement predic-
tion. This paper also provides an evaluation of portfolio per-
formance with higher annualized cumulative returns, lower
volatility, and lower maximum drawdown, suggesting the ef-
ficacy of LLMs in financial applications.

We also acknowledge recent research efforts to develop fi-
nancial LLMs where text input includes temporal informa-
tion [Wu et al., 2023; Xue et al., 2023; Zhang et al., 2023a].
These models, however, are more NLP-centric, with tasks in-
cluding financial sentiment analysis, Q&A, and named entity
recognition, which are less relevant to our survey.

Healthcare
Recent studies in healthcare have highlighted LLMs’ capa-
bility to comprehend multi-modal medical context including
physiological and behavioral time series, such as EEG (Elec-
troencephalogram), ECG (Electrocardiogram), and Elec-
tronic Health Records (EHRs). METS [Li et al., 2023] frame-
work aims to integrate LLMs into an ECG encoder clas-
sification. The model contains an ECG encoder based on
ResNet1d-18, and a frozen large clinical language model,
ClinicalBert [Huang et al., 2020] that is pre-trained on all text
from the MIMIC III dataset. A multi-modal self-supervised
learning framework is used to align the paired ECG and text
reports from the same patient while contrasting the unpaired
ones via cosine similarity. In the zero-shot testing stage, the
medical diagnostic statements constructed from discrete ECG
labels are fed to ClinicalBert, and the similarity between ECG
embedding and text embedding will be used for ECG classi-
fication. It first demonstrates the effectiveness of LLM-based
self-supervised learning in multi-modality medical contexts.

Jiang et al. [2023] proposes to develop an all-purpose clin-
ical LLM, i.e., NYUTron, which is trained on EHRs and
subsequently fine-tuned on three common clinical tasks and
two operational tasks, such as the prediction of readmis-
sion, in-hospital mortality, comorbidity index, length of stay,
as well as the insurance denial status. In this framework,
clinical notes and task-specific labels are queried from the
NYU Langone EHR database, which are used to pre-train a
BERT model with masked language modeling objectives and
perform subsequent fine-tuning. The trained model demon-
strates improvements compared to traditional benchmarks on
all tasks, suggesting the generalization capability of LLMs
trained on clinical text. Note that a similar work [Yang et al.,
2022] also aims to build a large clinical language model from
scratch, but is more tailored to clinical NLP tasks.

In addition to the developments of healthcare LLMs,

healthcare datasets have given us other insights. For example,
Liu et al. [2023a] tests a pre-trained PaLM [Chowdhery et al.,
2023] on wearable and medical sensor recordings with three
settings, zero-shot, prompt engineering, and prompt tuning
for multiple healthcare tasks (cardiac signal analysis, phys-
ical activity recognition, metabolic calculation, and mental
health). Their results emphasize the importance of health-
care time series for improving the capability of medical lan-
guage models in the few-shot setting. Similarly, Spathis and
Kawsar [2023] provide a case study of the tokenization of
popular LLMs on mobile health sensing data, where a modal-
ity gap and potential solutions are discussed, such as prompt
tuning, model grafting that maps time series via trained en-
coders onto the same token embedding space as text, as well
as the design of new tokenizers for multi-modal time series.

4.2 Spatial-Temporal Time Series Analysis
Traffic
In ST-LLM [Liu et al., 2024], a spatial-temporal tokeniza-
tion component is proposed so that an LLM is tailored for
traffic forecasting tasks, where the input with exogenous in-
formation (e.g., hour of day, day of week) is encoded and
integrated through point-wise convolutions and linear pro-
jections. Furthermore, the partial frozen training strategy is
leveraged, with the multi-head attention in the last a few lay-
ers unfrozen in the fine-tune process to effectively handle
spatial-temporal dependencies. Besides the general setting,
the ST-LLM demonstrates advantages in terms of few-shot
and zero-shot forecasting scenarios. In addition to forecast-
ing, the spatial-temporal imputation is initially explored by
GATGPT [Chen et al., 2023a] that leverages a given topology
of traffic networks together with LLMs. It exploits a trainable
graph attention module to enhance the embedding of irregular
spatial-temporal inputs for imputation tasks.

Human Mobility
Xue et al. [2022a] first leverages a non-numerical paradigm
to perform spatial-temporal forecasting on human mobility
data. Specifically, a mobility prompt, consisting of contextual
Place-of-Interest (POI), temporal information, and mobility
data, is designed and used to query the pre-trained LLM en-
coder, based on which the prompt embedding and the numer-
ical token of mobility data is used to fine-tune the decoder
to generate the token of prediction. An auxiliary POI cate-
gory classification task built on top of a fully connected layer
helps regularize the model training toward contextual fore-
casting and improve performance. Instead of using prompt
embedding as feature enhancement, LLM-Mob [Wang et al.,
2023] directly queries an LLM for not only human move-
ment prediction but also explanations based on an elabo-
rated prompt. It integrates domain-specific knowledge of
both long-term (i.e., historical stays) and short-term mobil-
ity patterns (i.e., the most recent movements) into the design
of context-inclusive prompts. LLMs are guided to compre-
hend the underlying context of mobility data, and generate
accurate forecasts as well as reasonable explanations.

Computer Vision
One recent study of skeleton-based action recognition [Xu et
al., 2023] also exhibits the importance of LLMs as an effec-
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tive feature enhancement method in computer vision. Mo-
tivated by the potential of LLMs to capture the underlying
knowledge, provide reasoning, and analyze actions within
a skeleton sequence, this paper integrates LLM to generate
faithful structural priors and action relations to assist spatial-
temporal modeling. The names of all joints and action labels
are fed into a pre-trained BERT to get the text embeddings,
where edges of skeleton topology and action relation can
be calculated using Euclidean distance. The semantic rela-
tionships encoded by the LLM can enhance spatial-temporal
modeling with graph convolution and facilitate classification.

5 Future Research Opportunities
Time series analysis with LLMs is an emerging and rapidly
growing research area. Despite significant advances that have
been made in the area, there are still many challenges, which
open up a number of research opportunities:
Tokenization & Prompt Design. Tokenization plays a foun-
dational role in capturing temporal dynamics of the input time
series data. Existing techniques either rely on a single times-
tamp or patches of time steps to perform tokenization which
could be insufficient to encode the time series for either gen-
eral or specific applications. Therefore, it is important to de-
velop novel tokenization methods that can better capture the
temporal dynamics and facilitate underlying applications. For
instance, [Rasul et al., 2023] employed lag features where
the lags are derived from a set of appropriate lag indices for
quarterly, monthly, weekly, daily, hourly, and second-level
frequencies that correspond to the frequencies in the corpus
of time series data. Based on appropriate tokenization, it is
equally important to investigate how to design better prompts
to further improve the model performance. For instance, we
may develop a prompt learning architecture based on [Wang
et al., 2022] to tailor prompts for specific tasks.
Interpretability. Existing methods for LLMs based time se-
ries analysis aim to develop better tokenization, prompt de-
sign, fine-tune strategy, and integrate them to improve the
model performance. However, these models are typically
black-box, and therefore their output lacks explainability. In
some applications, it is critical to explain the rationale of
the model output to make it trustworthy. For this purpose,
we may explore prototype-based methods and gradient-based
methods to provide interpretations for the LLMs’ output. We
may also leverage knowledge distillation to train an explain-
able student model [Mai et al., 2023a] to enhance the inter-
pretability of LLMs.
Multi-modality. Time series data could be associated with
data from other sources. For instance, in healthcare, we may
not only collect the continuously monitored heart rate and
blood pressure (time series) and medical records (texts and
tabular data) but also collect X-rays (images). In this case, it
is important to investigate how to incorporate multi-modality
input via LLMs, align different modalities of input in the em-
bedding space, and interpret the output accordingly.
Domain Generalization. One of the key challenges for
LLM-based time series analysis is domain generalization
which aims to generalize the model learned from one or more
source domains to unseen target domains. Therefore, it is

essential to tackle the distribution shift or domain shift prob-
lem by leveraging appropriate time series augmentation tech-
niques, learning temporal features that are invariant across
domains (i.e., shared temporal dynamics or structures that
are common to all domains), or meta-learning which aims to
rapidly adapt to new time series tasks with limited examples
from the target domain.
Scaling Laws of Time Series LLMs. One critical research
direction over LLMs is to understand their scaling laws,
which aim to learn the patterns that depict how the increment
of LLMs’ size (e.g., in terms of the number of parameters)
may impact their performance. Based on time series data, it
is also crucial to verify whether the existing scaling laws are
still valid based on either zero-shot learning, prompt learn-
ing, fine-tuning LLMs, or integration which will be tailored
to specific time series tasks and applications.
Time Series LLMs as Agents. LLM-based time series anal-
ysis can capture the temporal dynamics of the input time se-
ries and therefore can be used to assist in decision-making
processes. By analyzing large volumes of time series data
and their associated actions or rewards, LLMs can predict the
outcomes based on historical data and summarize potential
options based on the current status. As agents, time series
LLMs can be adapted based on user preference, history, or
context, to provide more personalized prediction and deci-
sions. They can also serve as intermediaries or facilitators to
seamlessly integrate with various systems and data sources
to gather pertinent information, initiate actions, and deliver
more extensive services.
Bias and Safety. LLMs are trained on large-scale datasets
collected from the internet and other sources which could in-
evitably involve bias. Because of this, LLMs may not only
replicate but also amplify biases. To mitigate this issue, we
should consider including a diverse range of data in the train-
ing set to reduce potential biases. We may also develop al-
gorithms to detect, assess, and correct potential biases in the
LLMs’ output. Meanwhile, it is critical for time series LLMs
to provide accurate and reliable output, especially in mission-
critical systems such as healthcare and power systems. We
should conduct rigorous tests over a wide range of scenarios
to ensure the reliability and safety of LLMs’ outputs.

6 Conclusion
In this survey, we provide a detailed overview of existing
time series LLMs. We categorize and summarize the exist-
ing methods based on the proposed taxonomy of methodol-
ogy. We also thoroughly discuss the applications of time se-
ries LLMs and highlight future research opportunities.
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