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Abstract
Matching markets consist of two disjoint sets of
agents, where each agent has a preference list over
agents on the other side. The primary objective is
to find a stable matching between the agents such
that no unmatched pair of agents prefer each other
to their matched partners. The incompatibility be-
tween stability and strategy-proofness in this do-
main gives rise to a variety of strategic behavior
of agents, which in turn may influence the result-
ing matching. In this paper, we discuss fundamen-
tal properties of stable matchings, review essen-
tial structural observations, survey key results in
manipulation algorithms and their game-theoretical
aspects, and more importantly, highlight a series of
open research questions.

1 Introduction
Two-sided matching markets describe a large class of prob-
lems wherein agents from one side of the market must be
matched to the agents in the other side according to their pref-
erences. These markets are present in a wide range of appli-
cations in economics, computer science, and artificial intel-
ligence such as school choice [Abdulkadiroğlu et al., 2005a;
Abdulkadiroğlu et al., 2005b], medical residency [Roth and
Peranson, 1999], refugee placement [Aziz et al., 2018;
Ahani et al., 2021], ridesharing platforms [Banerjee and Jo-
hari, 2019], electric vehicle charging [Gerding et al., 2013],
and recommendation systems [Eskandanian and Mobasher,
2020]. The primary objective is to find a stable matching
between the two disjoint sets (colloquially men and women)
such that no pair of agents prefer each other to their matched
partners.

The celebrated Deferred Acceptance (DA) algorithm [Gale
and Shapley, 1962] is an elegant mechanism that guarantees
a stable solution. Under this algorithm, agents from one side
(say men) make proposals to the agents on the other side (say
women). Each woman tentatively accepts her favorite pro-
posal and rejects the rest.1

1The use of gender-based pronouns to distinguish two disjoint
sets of agents (men/women) is merely for the ease of exposition and
for consistency with a plethora of work in matching markets.

The DA algorithm is only strategyproof for one side of the
market, i.e. the proposing side (men), enabling the agents on
the receiving side (women) to behave strategically. In fact, it
is well-known that any stable matching algorithm is suscepti-
ble to strategic misreporting of preferences by agents [Roth,
1982]. These strategic behaviors may negatively influence
the stability of the resulting outcome. Due to the practical
appeal of the DA algorithm, various models of strategic be-
havior have been investigated, both from computational and
axiomatic perspectives. The majority of these works focus
on “one-sided” manipulation strategies wherein the misre-
porting agent and the beneficiary are on the same side [Roth
and Rothblum, 1999; Teo et al., 2001; Vaish and Garg, 2017;
Dubins and Freedman, 1981; Huang, 2006]. However, strate-
gic behavior may not always be confined to the agents from
the same side, i.e. the manipulation may be “two-sided” with
a coalition of agents from different sides. For example, in
school choice problems, there is evidence that schools could
influence the preferences of students through indirect strate-
gies such as fee hikes [Hatfield et al., 2016]. Moreover, the
set of misreporting agents and the beneficiaries may not nec-
essarily overlap: an agent may misreport not to benefit itself,
rather to improve the outcome for other agents.

This paper is an excursion into strategic behavior of agents
in stable matching markets. We explore strategic behavior of
agents or coalitions of agents along the dimensions of one-
sided, two-sided, and manipulations with externalities. We
discuss strategic misreporting by permutation of the prefer-
ence list, truncation of the list, or strategies involving drop-
ping agents from the preference list. Through these distinc-
tions, we identify several classes of strategic behavior beyond
traditional studies, and along the way, highlight a series of
open research questions.

2 Preliminaries
Problem setup. An instance of the stable matching prob-
lem is given by a tuple ⟨M,W,≻⟩, where M is a set of men,
W is a set of women, and ≻ is a preference profile which
specifies the preference lists of all the agents. The preference
list of an agent i, denoted by ≻i, is a strict total order over
the agents on the other side. We write w1 ≻m w2 to denote
that m prefers w1 to w2 and w1 ⪰m w2 to denote “either
w1 ≻m w2 or w1 = w2”. Moreover, for a set X ⊆ M ∪W ,
we write ≻−X to denote a preference profile without the pref-
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erences of individual agents in set X; thus, ≻= {≻−X ,≻X}.
In this paper, we primarily consider one-to-one matchings
where |M | = |W | = n.

Stable matching. A matching is a function µ : M ∪W →
M ∪W such that µ(m) ∈ W for all m ∈ M , µ(w) ∈ M for
all w ∈ W , and µ(m) = w if and only if µ(w) = m. Given
a matching µ, a blocking pair with respect to the preference
profile ≻ is a pair (m,w) who prefer each other over their as-
signed partners, i.e., w ≻m µ(m) and m ≻w µ(w). A match-
ing is said to be stable if it does not have any blocking pair.
We write S≻ to denote the set of all stable matchings with
respect to ≻. The set of stable matchings, S≻, forms a dis-
tributive lattice, and its size can be exponential in n [Knuth,
1997]. For any pair of matchings µ, µ′, we write µ ⪰X µ′ if
all agents in X weakly prefer µ over µ′, i.e., µ(i) ⪰i µ

′(i) for
all i ∈ X . Note that if X = M , then µ is weakly better-off
for all men (analogously for women if X = W ).

Matching mechanisms. A matching mechanism ϕ returns
a matching µ corresponding to an instance ⟨M,W,≻⟩, i.e.
µ := ϕ(≻). The most seminal mechanism—proposed by
Gale and Shapley [1962]—is the deferred acceptance (DA)
algorithm that, given a preference profile, proceeds by a se-
ries of proposals and rejections. In the initial proposal phase,
each of the unmatched men propose to their favourite woman
who has not rejected them yet. In the subsequent rejection
phase, each woman tentatively accepts her favourite proposal,
rejecting the others. The algorithm terminates when no fur-
ther proposals can be made. Gale and Shapley [1962] showed
that given any preference profile ≻, the matching computed
by the DA algorithm, denoted by DA(≻), is stable, and men-
optimal as each man receives his favorite partner among
all stable matchings in S≻. Furthermore, the same match-
ing is simultaneously women-pessimal [McVitie and Wilson,
1971]. In other words, given a matching µ := DA(≻), every
man m ∈ M (weakly) prefers his matched partner in µ to
their partners in any other stable matching, and every woman
w ∈ W (weakly) prefers her match in any other stable match-
ing than the one in µ.

Manipulation. The set of strategic agents X ⊆ M ∪ W
contains a subset of manipulating agents A ⊆ X who misre-
port their preferences to (weakly) improve the matching out-
come for a fixed subset of beneficiary agents B ⊆ X . For-
mally, given a preference profile ≻ and a set of beneficiary
agents B ⊆ M ∪W , we say that a set of manipulating agents
A ⊆ M ∪W can strategically manipulate a mechanism ϕ if
there exists a misreport ≻′

A such that ϕ(≻−A,≻′
A) ⪰B ϕ(≻),

with a strict inequality for at least one agent i ∈ B. The strat-
egy ≻′ is said to be optimal when no other strategy results in
a matching which Pareto dominates ϕ(≻−A,≻′

A) for agents
in B; otherwise, it is called a suboptimal strategy.

The relation between the strategic agents, i.e. manipulat-
ing agents A and beneficiaries B, gives rise to a variety of
intriguing strategic behavior. For instance, A = B implies
self-manipulation by a coalition of agents, as in coalitional
manipulation by men (when A ⊆ M ) [Dubins and Freed-
man, 1981] or women (when A ⊆ W ) [Shen et al., 2021]. On
the other hand, A ̸= B implies manipulation to improve the
outcome possibly for other agents as in accomplice manipula-

tion [Hosseini et al., 2021]. We say a manipulation strategy is
one-sided if all manipulating and beneficiary agents are from
the same side (either men or women), i.e., A,B ⊆ M or
A,B ⊆ W ; otherwise, it is a two-sided manipulation strat-
egy, i.e. there exist at least one man m ∈ M and one woman
w ∈ W in A ∪ B. With this lens, we say that a strategy is
a single-agent manipulation when A = B and |A| = 1 (in
other words, |A ∪ B| = 1), e.g. settings studied by Teo et
al.; Vaish and Garg [2001; 2017]. Whenever |A∪B| > 1, the
manipulation is said to be coalitional.

Manipulation strategy. An agent’s manipulation strategy
is often through misreporting its preference: either by declar-
ing members in the tail of their preference as unacceptable
(truncation manipulation), or by changing the priority order-
ing of different members in its preference list (permutation
manipulation). A permutation manipulation is said to be in-
conspicuous if each manipulator only changes the position of
a single agent in its preference list. A manipulation strategy
is said to be with no-regret when the resulting matching is not
worse-off for any manipulator; otherwise, it is a with-regret
manipulation strategy.

3 Types of Manipulations
This section explores the various types of manipulations of
the DA algorithm. The first two subsections (Sections 3.1 and
3.2) explore different types of manipulations that result from
the relation between the manipulators A and the beneficiaries
B. Table 1 summarizes the current known results in strate-
gic manipulation and the open problems in this setting. In
the final subsection, we discuss manipulations which are per-
formed by external agents in scenarios that include bribery or
side-payments.

3.1 One-Sided Manipulation
We study four types of one-sided manipulations based on the
manipulation strategy employed and whether it is a single-
agent or coalitional manipulation.

Single-agent truncation manipulation. In the men-
proposing DA algorithm, no single man can benefit by trun-
cating his own preference list [Roth, 1982].

However, in cases where ⟨M,W,≻⟩ admits at least two
stable matchings, there always exists a woman who benefits
from truncating her preference [Gale and Sotomayor, 1985].
Her optimal strategy is to truncate preferences at her woman-
optimal matching partner, i.e., if a woman w receives the man
m in the women-proposing DA algorithm, then her optimal
strategy in the men-proposing DA algorithm is to report all
men below m in her true preference list as unacceptable. This
strategy requires less information, making truncation manipu-
lation robust and easy to perform [Roth and Rothblum, 1999].
In large markets, women may significantly alter their prefer-
ences by truncating a substantial portion (nearly all) of their
list in the optimal manipulation; the size of truncation in-
creases with reduced risk aversion and decreased correlation
across agents’ preferences [Coles and Shorrer, 2014].

Truncation manipulation by a single agent is also ‘exhaus-
tive’, meaning any manipulation achievable by any single-
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Beneficiaries, B
Self (B = A) Another man Another woman B ⊆ M B ⊆ W B ⊆ M ∪W

M
an

ip
ul

at
or

s,
A

Single man ✗1,2 ✓1,2 ✓3 ✓1,2 ✓4 ?
Single woman ✓5,6 ? ? ? ? ?
A ⊆ M Weak1,2 ✓1,2 ? ✓1,2 ? ?
A ⊆ W ✓7 ? ? ? ? ?
A ⊆ M ∪W Weak8 ? ? ? ? ?

Table 1: Summary: Types of Permutation Manipulations. Here ✗, denotes that DA is not manipulable by the corresponding manipulator
and beneficiary sets, whereas ✓, denotes that it is manipulable. ‘Weak’ represents that no beneficiary gets worse-off, but not all of them
become strictly better-off. Problems which have not been studied are marked with a question mark (?). Whenever these manipulations
preserve stability, we mark them in green, and when they do not, we mark them in red. 1 denotes a result by Dubins and Freedman [1981], 2

Huang [2006], 3 indicates results by Hosseini et al. [2021], 4 by Hosseini et al. [2022], 5 by Teo et al. [2001], 6 by Vaish and Garg [2017], 7

by Shen et al. [2021], and 8 by Demange et al. [1987].

agent manipulation strategy can be replicated or improved
upon by some truncation strategy [Jaramillo et al., 2014].

Open Problem 1. Is truncation manipulation exhaustive
against coalitional manipulations?

With respect to one-sided coalitions, truncation manipula-
tion strategies are not exhaustive. However, a generalization
of truncation strategies called dropping strategies, where any
subset of agents can be deemed unacceptable in the prefer-
ence list (not just all agents starting from a certain point), are
known to be exhaustive against one-sided coalitional manip-
ulations [Jaramillo et al., 2014]. The question of the exhaus-
tiveness of truncation manipulation (and its dropping strategy
generalization) against two-sided manipulations remains un-
explored.

Single-agent permutation manipulation. Similar to trun-
cation manipulation, a man cannot obtain a better partner by
permuting his own preference in the men-proposing DA al-
gorithm [Dubins and Freedman, 1981; Huang, 2006].2 How-
ever, women can manipulate the DA algorithm [Roth, 1982].

Example 1 (Permutation manipulation by a woman). Con-
sider a matching instance with four men and four women
having the following preference profile. The DA outcome is
underlined.

m1:w1 w∗
4 w2 w3 w1: m∗

3 m2 m1 m4

m2:w1 w∗
3 w2 w4 w2: m1 m∗

4 m3 m2

m3:w2 w3 w∗
1 w4 w3: m∗

2 m3 m1 m4

m4:w∗
2 w4 w1 w3 w4: m4 m∗

1 m3 m2

For A = B = {w1}, when she misreports her preference
as ≻′

w1
:= m3 ≻ m1 ≻ m2 ≻ m4 while others continue to

truthfully report their preferences, the resulting matching on
the execution of DA is marked by ∗; woman w1 prefers the
latter since she is matched to her most preferred man, m3.

In the men-proposing DA, the optimal single-agent permu-
tation manipulation strategy can be computed by a woman in
polynomial time [Teo et al., 2001]. Moreover, the optimal
manipulation can be achieved in an inconspicuous way, i.e.,

2However, DA does not satisfy a refinement of strategy-
proofness, called obvious strategy-proofness [Li, 2017], for the
proposing side [Ashlagi and Gonczarowski, 2018].

the manipulator only needs to change the position of a single
agent in its list [Vaish and Garg, 2017]. While under the opti-
mal manipulation, the resulting matching remains stable with
respect to the truthful profile (aka it is stability-preserving), a
suboptimal manipulation may no longer preserve stability.

After learning that a woman can benefit by permuting her
own preference, the next natural question that arises is: to
what extent can a woman benefit from a permutation manip-
ulation? Unlike truncation manipulation in which a woman
can always obtain her woman-optimal matching partner, there
are instances in which it is impossible for a woman to obtain
her women-optimal matching partner by permutation manip-
ulations alone [Teo et al., 2001].
Open Problem 2. Are there necessary and sufficient condi-
tions for achieving the women-optimal match through single-
agent permutation manipulation? And how likely is it for DA
to result in the women-optimal partner for a single manipu-
lator who performs an optimal permutation manipulation?

When multiple women independently manipulate their
preferences, in the optimal scenario, ( 12 + o(1))log(n) num-
ber of women are required to manipulate their preferences to
reach the women-optimal solution. However, nearly every
woman may need to manipulate if the set of (independent)
manipulators are randomly chosen [Ndiaye et al., 2021].
Coalitional truncation manipulation. If all women per-
form their optimal truncation manipulation, then the match-
ing produced by the men-proposing DA algorithm is the
women-optimal matching. Not only this strategy ensures that
the women-optimal matching can be achieved by coalitional
truncation manipulation, but also it guarantees that it is the
unique stable matching in the manipulated instance. In fact,
this strategy is a strong Nash equilibrium in the associated
game when all women are strategic [Shen et al., 2018].

This result can be extended to coerce any M -rational
matching3 as the unique stable matching through a coalitional
dropping strategies by women [Gonczarowski, 2014].
Coalitional permutation manipulation. While a man can-
not perform a single-agent manipulation in the DA algo-
rithm, a coalition of men can collectively misreport their
preferences to weakly benefit [Dubins and Freedman, 1981;

3An M -rational matching is a matching where every man prefers
to be matched to their partners rather than remaining single.
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Huang, 2006]. However, there always exists at least one man
in the coalition who continues to be matched to the same part-
ner; thus, the coalition cannot strictly improve through any
manipulation. To address this impossibility, Huang [2006]
studies whether men can collude to be strictly better-off in
expectation when random stable matchings are chosen.

On a structural note, the optimal coalition strategy for a
coalition of men while helping a (possibly distinct) set of
men-beneficiaries is characterized by ‘push-down’ operations
by every manipulator, i.e., pushing down some highly pre-
ferred women in the manipulating man’s preference list by
declaring them as less desirable [Huang, 2006]. Since this
manipulation makes the beneficiary men better-off than their
men-optimal matching, such a manipulation necessarily re-
sults in an unstable matching.

Shen et al. [2021] consider the optimal self-coalitional ma-
nipulation by a subset of women (i.e., A = B ⊆ W ) and
provide an efficient algorithm to compute the manipulated
strategy profile. This strategy profile is stability preserving,
inconspicuous (in every manipulating woman’s true prefer-
ence list), and is Pareto optimal for the women across all sta-
ble matchings. Interestingly, they show that this constructed
strategy is also a Nash equilibrium of the manipulation game
(see Section 4). While this paper studies what happens when
the manipulators are the beneficiaries themselves, one may
ask what happens when they are distinct.

Open Problem 3. What is the optimal coalitional strategy
for the manipulating women A ⊆ W , when the set of benefi-
ciaries B ⊆ W need not necessarily be exactly the same as
the manipulators (A ̸= B)?

Towards this, the works of Kobayashi and Matsui;
Kobayashi and Matsui [2009; 2010] becomes relevant. They
ask: given the preference list of all men ≻M and a matching
µ, can we determine whether there exists a preference profile
≻W reported by women for which we obtain µ on running
the men-proposing DA algorithm on (≻M ,≻W )? Based on
a simple condition on the relation between the men’s prefer-
ences and the desired matching µ, such a preference profile
of the women can be efficiently computed, whenever it exists.

3.2 Two-Sided Manipulation
The majority of work in stable matching considers one-sided
manipulation strategies. Yet, agents from both side of the
market may form strategic coalitions to improve their out-
come. Demange et al. [1987] showed that a coalition of ma-
nipulators consisting of both, men and women, cannot strictly
benefit from their own misreport. These results extend the im-
possibility of manipulations by a coalition consisting of only
men in the men-proposing DA algorithm [Dubins and Freed-
man, 1981].

In a broader sense, a two-sided coalition of agents may
form new strategic behavior, particularly when the manipu-
lators are not necessarily also the beneficiaries. In this line,
Bendlin and Hosseini [2019] proposed a manipulation strat-
egy through an accomplice.

Accomplice Manipulation. An accomplice man (A =
{m}) has the ability to misreport his preferences to improve

a woman’s (B = {w}) matching outcome while maintain-
ing his own match. This type of manipulation is particu-
larly significant when it enables a woman to achieve better
outcomes compared to what she could achieve through self-
manipulation alone.
Example 2 (Accomplice manipulation; adopted from Exam-
ple 1 in [Hosseini et al., 2021]). Consider a matching in-
stance with four men and four women having the following
preference profile; the DA matching in underlined in the in-
stance.

m1:w∗
3 w2 w1 w4 w1: m4 m∗

3 m1 m2

m2:w1 w∗
4 w2 w3 w2: m∗

4 m3 m2 m1

m3:w2 w4 w∗
1 w3 w3: m3 m∗

1 m2 m4

m4:w∗
2 w1 w3 w4 w4: m∗

2 m1 m3 m4

Notice that woman w1 cannot benefit from lying about her
own preferences since she only receives a proposal from m2

in the execution of DA. However, if m1 misreports his prefer-
ences as ≻′

m1
:= w1 ≻ w3 ≻ w2 ≻ w4, then in the resulting

matching (marked by ∗), w1’s match improves from m2 to
m3. Since m1 continues to be matched to w3, he incurs no
regret through this manipulation.

Like one-sided manipulations by women, any beneficial
accomplice manipulation can be equivalently performed via
an inconspicuous strategy; thus, an optimal accomplice ma-
nipulation can also be found in polynomial time. Moreover,
as long as the manipulator man incurs no regret during this
manipulation, accomplice manipulation also preserves stabil-
ity [Hosseini et al., 2021].

Note that a man may expand his strategy space to further
improve a woman’s matching if he is willing to incur some
regret during the manipulation [Hosseini et al., 2021]. Such
considerations becomes relevant in situations of bribery and
side-payments; we will discuss this further in Section 3.3.
One-for-All Manipulation. Consider the matching in-
stance in Example 2. Notice that m1’s misreport not only
benefits w1 but also w4, i.e., the resulting matching from the
manipulation Pareto dominates the original matching for all
women. Thus, extending accomplice manipulations, it is pos-
sible for an accomplice man to misreport in order to help all
the women; such a manipulation is referred to as one-for-all
manipulation [Hosseini et al., 2022]. Specifically, a one-for-
all manipulation is characterized by A = {m} and B = W .

Unlike single-agent manipulation by a woman and accom-
plice manipulation, the optimal one-for-all manipulation need
not be inconspicuous, i.e., there exist matching instances for
which an accomplice man needs to push-up more than one
woman in his preference list in the optimal strategy.4 De-
spite this, Hosseini et al. [2022] provide a polynomial time
algorithm for computing the optimal one-for-all manipulation
strategy. Moreover, as before, the optimal strategy is stability
preserving.

The next natural question that arises is whether a group of
men can collectively improve the preference of some woman,
more than they can do so individually.

4In a push-up operation, a manipulator moves-up a set of less
desired agents higher than its DA partner in its preference ordering.
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Open Problem 4. Do there exist instances in which a coali-
tion of men manipulate for a single beneficiary woman (i.e.,
A ⊆ M , B = {w}), even when none of them can individu-
ally help her? Are these manipulations stability preserving,
inconspicuous, and efficiently computable?

The technical simplification in two-sided manipulation so
far arose from the fact that it was sufficient to focus on incon-
spicuous strategies or push-up operations. However, the case
of a group of men helping a single women is complicated by
the plausible requirement of a combination of push-up and
push-down operations.
Two-for-One Manipulation. Interestingly, a woman can
benefit more from a collective misreport from a man and her-
self, as compared to self-manipulation by herself or through
an accomplice manipulation with the help of the man (A =
{m,w} and B = {w}). Such strategic coalitions are called
two-for-one manipulations [Hosseini et al., 2022].
Example 3 (Two-for-one manipulation; adopted from Exam-
ple 1 in [Hosseini et al., 2022]). Consider an instance with
five men and five women having the following preference
profile.

m1: w5 w∗
3 w4 w2 w1 w1: m∗

3 m4 m5 m1 m2

m2: w∗
4 w1 w5 w3 w2 w2: m1 m∗

5 m3 m2 m4

m3: w5 w4 w∗
1 w2 w3 w3: m5 m4 m3 m2 m∗

1

m4: w1 w4 w∗
5 w2 w3 w4: m∗

2 m5 m3 m1 m4

m5: w∗
2 w4 w3 w1 w5 w5: m5 m2 m∗

4 m3 m1

The DA outcome on this (truthful) profile is underlined.
One can check that woman w1 cannot benefit through either
a self-manipulation or an accomplice manipulation by any
man. However, if ≻′

m1
:= w1 ≻ w5 ≻ w3 ≻ w4 ≻ w2

and ≻′
w1

:= m3 ≻ m5 ≻ m1 ≻ m4 ≻ m2, then the resulting
matching is as shown by ∗; here, w1 is matched with her most
preferred man m3 while the accomplice man m1 continues to
be matched to w3, thus incurring no regret.

As seen in the example, two-for-one manipulation is not
merely the ‘sum-of-its-parts’; more precisely, a woman can
benefit more when both she and an accomplice man misre-
port, as compared to the case in which either only she or the
accomplice man misreports. However, such manipulations
do not share the stability preserving properties like accom-
plice and one-for-all manipulations. Moreover, it is unclear if
there always exists an inconspicuous equivalent of an optimal
two-for-one manipulation strategy. Nonetheless, Hosseini et
al. [2022] provide a polynomial time algorithm for comput-
ing the optimal two-for-one manipulation strategy.
Open Problem 5. Do all optimal (or sub-optimal) two-sided
manipulation strategies (e.g. two-for-one manipulation) have
inconspicuous counterparts? And under what conditions are
these two-sided strategies stability preserving?

Here, a manipulation is said to have an inconspicuous
equivalent when each manipulator only changes the position
of a single agent in its list.

3.3 Manipulation With Externalities
One type of strategic manipulation may involve externalities
wherein a (possibly external) agent wishes to manipulate the

outcome by bribing agents or by controlling the matching in-
stance.

When such an external agent is involved, one can explicitly
define the manipulative actions and manipulation objectives.
For instance, through a bribe, an external agent could ask an
active agent to swap two adjacent preferences, or completely
reorder the preferences. Towards control, the external agent
could add or remove agents from participating in the market.
These manipulative actions may be geared towards different
objectives such as improving the matched partners of as many
agents as possible, or ensuring that a desired pair of agents is
always (or, never) matched. While some of these problems
have polynomial-time algorithmic solutions, many of them
are computationally intractable [Boehmer et al., 2021].

The bribery setting entails swapping and reordering prefer-
ences of active agents. On a technical level, it can be seen as a
type of with-regret manipulations by active players [Hosseini
et al., 2021]. The underlying assumption in Sections 3.1 and
3.2 was that a single or a coalition of manipulators never re-
ceive a matching that is worse than those under their truthful
report. That is, the manipulation is a no-regret strategy. In
contrast, a with-regret manipulation enables manipulators to
receive side payments (aka bribery).

This formulation of bribery gives rise to several novel ques-
tions about both one-sided and two-sided manipulation, by
allowing manipulators to incur regret.
Open Problem 6. What are the optimal with-regret manipu-
lation strategies for different considerations of manipulators
(A) and beneficiaries (B)? When are these manipulations
stability preserving?

Allowing for regret increases the space of manipulation
strategies; thus, raising new computational questions in com-
puting optimal (or suboptimal) strategies. With-regret manip-
ulations have been studied for the case of accomplice manipu-
lation (A = {m}, B = {w}); here, the optimal strategies are
shown to be inconspicuous but not stability preserving [Hos-
seini et al., 2021]. However, other combinations of manipu-
lators A and beneficiaries B (i.e., men and women coalitions)
remain unexplored.

Moreover, given a fixed budget—measured by external
monetary compensation or the regret (e.g. drops in the
matched partners)—one may investigate computational com-
plexity of computing an optimal manipulation strategy. It
turns out that every manipulation considered by Boehmer et
al. [2021] is computationally intractable in the budgeted set-
ting [Gupta and Jain, 2022].

4 Effect of Manipulations
Thus far, we argued that strategic manipulations may have
a negative impact on the stability of outcomes in two-sided
matching markets. In this section, we discuss additional ef-
fects of strategic behavior on i) fairness among the two sides
and ii) incentivizing deviation from truthful reporting.

4.1 Manipulation for Good
Strategic manipulation of DA may result in improved match-
ings for women as beneficiary [Roth and Rothblum, 1999;
Teo et al., 2001; Vaish and Garg, 2017; Shen et al., 2018;
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Shen et al., 2021; Hosseini et al., 2021; Hosseini et al., 2022].
Recall that the DA algorithm always return a stable matching
that is men-optimal and women-pessimal. This rather unfair
treatment of the two sides may result in a significant welfare
gap between men and women. One of the most prominent
fairness notion is proposed by Gusfield and Irving [1989] that
aims at finding a stable matching with the minimum welfare
gap (aka sex-equality cost) among all stable solutions. Other
fairness measures aim at minimizing the worst-off agent (aka
regret-minimizing stable matchings) [Gusfield, 1987].

A careful review of Example 2 illustrates that the manip-
ulation (marked by ∗) results in a matching that is superior
compared to the truthful outcome with respect to fairness
measures such as sex equality, regret, and total welfare. This
raises the question of whether and how strategic manipulation
can be used to improve fairness in matching markets.
Open Problem 7. Can strategic manipulation be used for
social good, specifically, towards achieving fairness across
the two sets of agents?

In this vein, strategic behavior can be formulated as manip-
ulation with externalities with goals such as increasing fair-
ness, by agents (either active participants or external agents)
to obtain socially desirable outcomes while maintaining sta-
bility.

4.2 Manipulation Games
In strategic reporting, conflicts may arise among manipula-
tors in the case of single-agent permutation manipulation.
That is, while a woman benefits from manipulating her own
preferences individually, uncoordinated simultaneous manip-
ulation by multiple women can result in worse-off outcomes
for all manipulators compared to the truth-telling outcome.5

Example 4 (Conflict among manipulators; adopted from Ta-
ble 1 in [Shen et al., 2021]). Consider the instance in Exam-
ple 1. Both, women w1 and w2, can individually benefit by
misreporting their own preferences. Specifically, if w1 misre-
ports her preference as ≻′

w1
:= m3 ≻ m1 ≻ m2 ≻ m4, while

the others truthfully report their preferences, she gets matched
to m3 who is her most preferred man. Similarly, if w2 misre-
ports her preferences as ≻′′

w2
:= m1 ≻ m3 ≻ m4 ≻ m2 while

others (including w1) tell the truth, she is matched to her most
preferred man m1 in the execution of DA. However, if both
w1 and w2 simultaneously misreport their preferences, i.e.,
≻′′′:= (≻′

w1
,≻′′

w2
,≻−{w1,w2}), then the resulting matching

is {(m1, w1), (m2, w3), (m3, w2), (m4, w4)}. Here, both w1

and w2 end up worse-off compared to the truthful solution.
Given this example, the preference revelation problem of

agents can be modeled as a non-cooperative game where the
manipulators A are the players and their action space consists
of all possible preference profiles they can submit.

Manipulation games have been extensively studied in the
past in the context of one-sided manipulation (both, single-
agent as well as coalitional). For the single-agent permuta-
tion manipulation game by women, not only does every Nash

5Under the manipulation by truncation strategy, all women can
independently and simultaneously truncate their preferences without
affecting other women.

equilibrium result in a stable matching [Roth, 1984], but ev-
ery Nash equilibrium profile can be characterized in the fol-
lowing way: for every stable matching which is supported by
some preference profile, it is also attainable by a Nash equi-
librium preference profile [Zhou, 1991]. This settles the ques-
tion of the existence of a Nash equilibrium for this game—
the men-optimal stable matching is supported by the truthful
preference profile. In the case where the manipulators are
a subset of women, a strong Nash equilibrium always exists
and the resulting matching is unique [Shen et al., 2018].

Considering two-sided manipulations, understanding the
existence of Nash equilibria, their characterization, and the
properties of the resulting matching result in the following
open questions.

Open Problem 8. For what sets of manipulators A and ben-
eficiary B, does the preference revelation game have a Nash
equilibrium? Do all Nash equilibria (when they exist) result
in a stable matching?

Previous works have examined the manipulation game
for the special case of self-manipulation (A = B), by in-
dividuals as well as coalitions [Alcalde, 1996; Ma, 1995;
Sönmez, 1997; Kalai et al., 1979]. However, manipulation
games for two-sided strategies remain unexplored. In the spe-
cial case when A,B contains every coalition of agents, the
existence of a Nash equilibrium guarantees a strategy profile
in which no manipulation by any individual or group of indi-
viduals is possible.

When the Nash equilibrium strategy profiles for these
games do not result in stable outcomes, the relationship be-
tween stability loss and different Nash equilibria can be mea-
sured through the price of anarchy or the price of stabil-
ity [Koutsoupias and Papadimitriou, 1999; Roughgarden and
Tardos, 2007].

5 Overcoming Manipulation
This section discusses the different efforts aimed at overcom-
ing manipulability in two-sided stable matching problems.

5.1 Measuring Manipulability
Since all stable matching mechanisms are manipulable [Roth,
1982], one can measure the extent to which a mechanism
is manipulable to compare the ‘manipulability’ of differ-
ent matching mechanisms. For instance, a mechanism ϕ
is said to be less manipulable than mechanism δ if the set
of manipulating agents in δ Pareto dominates the set of
manipulating individuals in ϕ [Pathak and Sönmez, 2013;
Chen et al., 2016]. Or, in a weaker version, one can say that
ϕ is less manipulable than δ if it contains fewer number of
manipulating agents [Bonkoungou and Nesterov, 2023].

However, neither the Pareto dominance condition, nor the
weaker variant based on a comparison of the number of ma-
nipulating agents, consider the ‘degree’ by which a manipu-
lation alters the resulting matching. Thus, we ask:

Open Problem 9. How can we compare the manipulability
of different mechanisms based on the extent of change in the
resulting matching outcome? Can we identify and character-
ize the set of least manipulable mechanisms?
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Understanding the compatibility of the different compar-
ison metrics, and the set of least manipulable mechanisms
therein, is also an interesting avenue for future work.

5.2 Domain Restrictions
Inspired by the voting literature where it is well-known that
strategy-proof voting rules exist when agents’ preferences are
single-peaked [Moulin, 1980], we ask:

Open Problem 10. Are there any preference domains under
which the DA algorithm (or any other mechanism) is stable
and strategyproof?

Instances consisting of (appropriate two-dimensional ex-
tensions of) single-peaked and single-crossing preferences
have been shown to be strategyproof in the stable match-
ings setting [Salonen and Salonen, 2018]. Moreover, under
the large market assumption, every individual has nearly the
same utility across all stable matchings; thus, do not ben-
efit much from manipulations [Kojima and Pathak, 2009;
Roth and Peranson, 1999; Immorlica and Mahdian, 2005;
Lee, 2016]. However, these classes of instances are clearly
not exhaustive.

5.3 Computational Intractability
While manipulation strategies of the DA mechanism can be
found in polynomial time (see Sections 3.1 and 3.2), are
there other stable matching mechanisms which are compu-
tationally difficult to manipulate? Using Single Transferable
Votes (STV) mechanisms from the voting literature (which is
known to be NP-hard to manipulate [Bartholdi III and Or-
lin, 1991]), one can engineer stable matching mechanisms
in which it is NP-complete to determine whether an agent
can manipulate its preference for its own benefit [Pini et al.,
2009]. This mechanism also possesses a fairness property
called gender-neutrality6, echoing our discussion in Section
4.1. At the same time, some preference profiles are ‘univer-
sally manipulable’, i.e., for these matching instances, all sta-
ble matching mechanisms (not just DA) are computationally
easy to manipulate by a a single agent [Pini et al., 2009].

While NP-hardness is a worst-case guarantee, (i.e., if P ̸=
NP, every manipulation algorithm has some families of in-
stances on which it does not scale polynomially), the univer-
sal manipulability of certain instances tells us that there does
not exist a mechanism which is universally difficult to manip-
ulate. However, the average-case computational guarantee of
stable matching mechanisms remains unexplored.

Open Problem 11. Can we construct stable matching mech-
anisms which are difficult to manipulate on average?

5.4 Approximations
While it might not be possible to exactly satisfy stability and
strategy-proofness simultaneously, one can ask:

Open Problem 12. What are the best approximations of sta-
bility and strategy-proofness which can be simultaneously
satisfied?

6A property of the mechanism wherein swapping the roles of the
men and women results in the same outcome matching.

Toward this, one may want exact stability along with some
relaxation of strategy-proofness such as non-obvious manip-
ulations [Troyan and Morrill, 2020], Bayesian incentive com-
patibility [Aziz, 2019; Hartline et al., 2011], or strategy-
proofness in the large markets [Azevedo and Budish, 2019].

On the other hand, other approximations of stability, such
as X-stability [Hosseini et al., 2021], could allow for a set of
X agents to be part of a blocking pair. The objective is then to
find matching mechanisms that guarantee strategy-proofness,
similar to the well-studied random serial dictatorship mech-
anism [Abdulkadiroğlu and Sönmez, 1998] while simultane-
ously providing approximate stability guarantees.

Such an analysis of approximate versions of stability and
strategy-proofness would help our understanding of the trade-
offs and the frontiers of stability and strategy-proofness. For
example, a recent study showed that a random matching
mechanism derived from a deep learning model outperforms
the baseline formed by convex combinations of the DA al-
gorithm (which is stable, but not strategy-proof), the Top-
Trading Cycle mechanism [Shapley and Scarf, 1974] (which
is neither stable, nor strategy proof), and the random serial
dictatorship mechanism (which is strategy-proof, but not sta-
ble) [Ravindranath et al., 2021].

5.5 Experimental Evidence
Despite the theoretical incompatibility of strategy-proofness
and stability [Roth, 1984], it has been observed through sim-
ulations that only 5.1% of women improve their match by
misreporting preferences [Teo et al., 2001], and that, in re-
ality, individuals primarily report their preferences truthfully
[Guillen and Veszteg, 2021]. For truncation manipulations,
it was conjectured (and later theoretically proven [Immorlica
and Mahdian, 2005]) that the premise of this experimental
observation lay in the large size of the market [Roth and Per-
anson, 1999]. For a detailed survey on the experimental evi-
dence of manipulation strategies in matching markets, please
refer to Hakimov and Kübler [2019].

6 Conclusion
In this paper, we review the literature on the strategic aspects
of stable matching markets. After discussing the different
types of manipulations and their effects on the outcome, we
mention ways in which we can overcome such manipulative
behavior. In the process, we highlight a series of plausible
future directions. This survey (and the literature on manip-
ulation in stable matchings so far) primarily focuses on the
DA algorithm.7 Thus, an important future direction is under-
standing the different types and effects of strategic behavior
in other matching algorithms.
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