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Abstract

Social learning plays an important role in the devel-
opment of human intelligence. As children, we im-
itate our parents’ speech patterns until we are able
to produce sounds; we learn from them praising us
and scolding us; and as adults, we learn by working
with others. In this work, we survey the degree to
which this paradigm – social learning – has been
mirrored in machine learning. In particular, since
learning socially requires interacting with others,
we are interested in how embodied agents can and
have utilised these techniques. This is especially in
light of the degree to which recent advances in natu-
ral language processing (NLP) enable us to perform
new forms of social learning. We look at how be-
havioural cloning and next-token prediction mirror
human imitation, how learning from human feed-
back mirrors human education, and how we can go
further to enable fully communicative agents that
learn from each other. We find that while individual
social learning techniques have been used success-
fully, there has been little unifying work showing
how to bring them together into socially embodied
agents.

1 Introduction
Social learning is “learning that is influenced by the obser-
vation of another individual or their products” [Bonnefon et
al., 2023]. The “embodiment hypothesis” in cognitive sci-
ence suggests that intelligence emerges as a result of embod-
iment within a social environment, that “starting as a baby
grounded in a physical, social, and linguistic world is crucial
to the development of the flexible and inventive intelligence
that characterizes humankind” [Smith and Gasser, 2005]. We
can define this embodiment as being when “the environment
is acting upon the individual and the individual is acting upon
the environment” [Bolotta and Dumas, 2022]. We explore
how social embodiment – learning that is influenced by the
actions and products of other agents in the learning environ-
ment – has played a role in the development of AI, and how
it could influence the development of embodied agents in the
real world.

Despite often not being recognised as such, a large propor-
tion of AI research can be considered or framed as employ-
ing aspects of social learning. In particular, models trained
on human-produced data often implicitly rely on learning to
imitate humans. Take for example language model pretrain-
ing, in which the model is trained to directly reproduce hu-
man text. The form of this social learning can have important
implications, for example through the reproduction of human
biases in textual data [Bender et al., 2021] and facial recogni-
tion [Buolamwini and Gebru, 2018]. As such, the prevalence
and impact of AI systems trained in this way warrants a more
thorough investigation of the mechanics of social learning.

From another perspective, social learning techniques have
largely seen success on supervised offline learning tasks with
fixed datasets. Real-world deployment often requires ac-
counting for more complicated, two-way interactions be-
tween agent and environment. This has traditionally been
done through individualistic reinforcement learning methods,
which have issues like sample inefficiency, unspecified re-
ward functions, and poor explainability [Dulac-Arnold et al.,
2021]. In contrast, humans – who develop in a socially em-
bodied setting – are able to quickly adapt to changes in the
environment. Since communication between agents has been
made easier by the development of LLMs, it is an apt time to
research the development of agents using social learning.

1.1 Social Learning in Humans
Social learning plays an instrumental role in the way humans
learn [Tomasello, 2009]. We do not learn individualistically
by simply observing the world – instead, we take advantage
of the fact that other humans have learnt before us and have
built up cultural knowledge. Indeed, Homo Sapiens’ exploita-
tion of cultural knowledge is exactly what has allowed us to
build complex societies and dominate the globe. Rather than
having bigger brains (and thereby having a cognitive advan-
tage), our ability to “accumulate information across genera-
tions and develop well-adapted tools, beliefs, and practices
that no individual could invent on their own” is responsible
for our success [Boyd et al., 2011].

Similarly, the transmission and generation of this cultural
knowledge is of paramount importance in human develop-
ment at both an individual and societal level. Social learning
enables this cultural transmission and development through
our interactions with others. This suggests to us that the
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Figure 1: The relationships among different social learning tech-
niques, agents and the learning environment. Note: Imitation is ini-
tiated by the learner rather than the teacher. As in Figure 2, the
learning approaches are coloured according to their classification in
Tomasello’s account of Social Learning.

promising route to achieving more advanced agents lies not
just in building bigger artificial brains (scaling) but also in
building artificial brains socially, that can learn from and
teach other agents, and take advantage of and develop this
rich cultural knowledge base [Bolotta and Dumas, 2022].

According to Tomasello’s influential theory of Social
Learning, it can be divided into Imitative Learning, Instruc-
tive Learning, and Collaborative Learning [Tomasello et al.,
1993]. The organisation of this survey follows this division,
as depicted in Figure 2.

Imitative Learning. In Tomasello’s theory of Social Learn-
ing, children learn by copying adults in a number of ways. A
distinction is drawn between emulation and true imitation. In
the case of the former, the child attempts to reproduce the ac-
tions and outcomes of the adult demonstrator; in the latter,
the child additionally models the intent behind the action and
learns from that. Such true imitation seems to require at the
least a nascent theory of mind, insofar as it requires modelling
the intents of others.

Instructive Learning. Instructive learning refers to the
process by which an adult or expert learner tries to teach a
non-expert learner. Other than explicit instruction, this pro-
cess can include feedback, explanations, demonstrations and
construction of a curriculum. Collectively, the process by
which these mechanisms are employed to aid a learner is re-
ferred to as scaffolding [Van de Pol et al., 2010].

Collaborative Learning. Collaborative learning is the set-
ting in which neither or none of the collaborators are experts.
In these cases, the learners must work together to progress
in the learning task. From a developmental perspective, this
emerges during early education – in contrast to imitation
learning which is observed almost from birth [Tomasello et
al., 1993]. However, it plays an important role in child-
hood development, especially in the development of language
outside of their asymmetric interactions with adult teachers.
For example, Vygotsky and Cole [1978] emphasise the role
of childhood play in enabling peers to practice social roles
within their capabilities.

Figure 2: The sections of this survey structured in relation to
Tomasello’s classification of Social Learning.

1.2 Social Learning in AI

At first glance, some forms of social learning techniques
have been widely used in AI at large [Duéñez-Guzmán et al.,
2023]. Diving deeper, we seek to make sense of these from
a unified perspective, and examine whether there are more
aspects of social learning that can be applied to AI.

In the simplest case, training data is generated or curated
by humans. Furthermore, many models are trained to gen-
erate more of this human-supplied data – this often consi-
tutes a form of imitation learning. For example, a generative
image model may be trained to imitate the art or photogra-
phy of humans. While such imitative models are powerful,
they are also inherently limited to recreating the level of the
source of their learning [Yiu et al., 2023]. Several instructive
techniques like feedback [Ouyang et al., 2022] and curric-
ula [Bengio et al., 2009] are also widely used in various do-
mains. Finally, collaborative learning regimes have been ex-
plored in the Multi Agent Reinforcement Learning (MARL)
literature [Gronauer and Diepold, 2022]. All these techniques
and their relations are depicted in Figure 1.

1.3 LLM Agents

The development of LLMs poses a striking opportunity to en-
able embodied agents to learn socially. Indeed, early exper-
iments with creating embodied agents almost entirely from
LLMs have shown that such agents are able to achieve re-
markable zero-shot performance on embodied tasks [Wang et
al., 2024]. This has been boosted by the development of Vi-
sion Language Models (VLMs) and other multimodal models
that have been used to create agents that can naturally lever-
age human demonstration data and cultural knowledge [Bro-
han et al., 2023; Wang et al., 2023]. In addition, since they
are language models, such agents possess an inherent ability
to communicate with each other, without the need to develop
such methods from scratch. This has accordingly enabled the
creation of cooperative groups of agents [Chen et al., 2024b].
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1.4 Objective of This Survey
There has not been a recent survey on social learning cov-
ering the developments arising from large language models
(LLMs). Meanwhile, a growing number of works have called
for more exploration of social learning approaches [Bonnefon
et al., 2023; Duéñez-Guzmán et al., 2023; Bolotta and Du-
mas, 2022; Yiu et al., 2023]. In this survey, we aim to provide
a review of recent works that use social learning techniques
with a view to building agents that can learn just through in-
teracting with others. Given the relative maturity of imitation
techniques for training generative models, in this survey we
put more focus on the potential for training agents using in-
structive and collaborative forms of social learning, as this has
been most directly enabled by the emergence of LLM Agents.

As depicted in Figure 2, we first consider existing ap-
proaches to imitation learning, both in the wider machine
learning literature, as well as in their application to building
embodied agents. Relatedly, we briefly consider some of the
work that has explored how to enable this imitation learning
in Section 3.1. In Section 3.2, we then extensively explore
how feedback has been used for aligning LLMs, and how
richer forms of feedback might be leveraged. Many of these
lessons are also applicable to Explanations and Instructions
as briefly covered in Section 3.3. We then explore the de-
gree to which curricula are useful for these embodied model
given some negative results in Section 3.4. We cover how
MARL has traditionally been used for collaborative learning
in Section 4.1 Finally, we cover the recent development of
collaborative LLM-agents in Section 4.2.

More generally, by carefully considering the gaps between
human social learning paradigms and current techniques used
in training embodied agents we hope to inspire research that
more fully utilises the advantages offered by social and cul-
tural learning.

2 Imitative Learning
2.1 LLM Pretraining
Large language models are largely trained on the task of next
token prediction – essentially predicting the next word in a
sentence. This is arguably a form of imitative learning in so
far as the model is fed observations of the productions of a
human agent (the sequence of tokens), and learns to autore-
gressively predict that sequence of tokens. As indicated in
Section 1.3, such models have achieved remarkable feats, to
the point of matching humans on a wide number of tasks.

Nevertheless this acquisition process is highly data hungry
– GPT-3 was trained on over 200 billion tokens, whereas the
average 12 year old would have only seen roughly 100 mil-
lion [Warstadt et al., 2023]. One potential explanation for
this is that the techniques used for training LLMs do not con-
sist in true imitation in the sense described by Tomasello et
al. [1993] and rather perform “emulation”. However, Kosin-
ski [2023] argues that LLMs already possess theory of mind,
although this position has been criticised [Yiu et al., 2023].

More pointedly, during the training regime, a large lan-
guage model is devoid of the socially-embodied context that
typically accompanies a child learner, such as being able to

build up a model of the social environment that may be use-
ful for prediction. In this context, language models have been
shown to recreate human biases, reproduce a static view in the
face of changing social mores, and lack accountability [Ben-
der et al., 2021].

We have already seen how childhood development relies
on other learning regimes [Tomasello et al., 1993], therefore
what remains to be seen is the development of models that
can actually leverage this socially embodied setting to further
learn and adapt through their collaboration with other agents.
Indeed, this has begun to be explored through building social
simulation environments [Liu et al., 2023]. Hopefully this
will enable us to move beyond LLMs just acting as “tools of
imitation” [Yiu et al., 2023] and mitigate some of the social
issues mentioned above.

2.2 Imitation Learning
The field of Imitation learning itself (and indeed its dual – in-
struction by demonstrations) has been a popular reward-free
method of training embodied agents. We do not aim to pro-
vide a comprehensive overview of the field, as covered by
e.g. [Hussein et al., 2017; Zheng et al., 2024]. Key examples
of techniques in the field include:

• Behavioural Cloning – in behavioural cloning, direct
access to the underlying policy of the teacher agent is
assumed, and used as a training signal.

• Inverse Reinforcement Learning (IRL) – in IRL, the
reward function is generated from the teacher’s policy
and then used to train the student model by existing re-
inforcement learning algorithms.

• Observational Imitation Learning (OIL) – Rather
than assuming direct access to the teacher’s policy, in
observational imitation learning, the learner agent only
has access to external observations of the teacher agent
acting in the learning environment.

These imitation learning techniques been widely used in the
development of embodied agents; For instance RT2 [Brohan
et al., 2023], an embodied foundation model for robotics, was
created by collating and training on a dataset made from a mix
of human demonstrations and question answering web data.
This model was then pretrained through OIL (in the form of
next token prediction). Similarly, AlphaStar [Vinyals et al.,
2019] was also pretrained from imitating games of profes-
sional players, and Ramrakhya et al. [2022] utilise an embod-
ied object-search strategy learnt from human demonstrations
and robot trajectories.

Section Summary: Imitative Learning techniques are
widely used, including in RL and NLP. There is neverthe-
less valuable work to be done exploring ways to increase the
sample efficiency of these techniques, and whether socially
embodied settings may play a role in this.

3 Instructive Learning
3.1 Demonstration
Demonstrations as an instructive learning paradigm consist
largely in the provision of examples that a student agent can
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imitate. Importantly this means that the teacher may impart
additional intent onto the demonstration through the choice
and mode of presentation of those examples. For example a
human teacher may draw attention to particular aspects of a
demonstrated process by narrating it. Indeed human demon-
strations are typically accompanied by explanations and nar-
rations. Furthermore Ramrakhya et al. [2022] verify that us-
ing imitation learning techniques on 70k human demonstra-
tions outperforms using 240k agent trajectories, indicating
that the quality of demonstrations can have a large impact.
We have seen relatively little research exploring these ele-
ments of demonstration learning. Sumers et al. [2023] con-
duct a study on the provision of demonstrations to humans
and find that if the demonstrations are not accompanied by
explanations, they are less effective than linguistic interac-
tions between teacher-student pairs for conveying concepts.

Bhoopchand et al. [2023] do explore some of the mecha-
nisms at play with demonstrations, especially in the light of
how they can be performed to maximise cultural transmis-
sion. They explore a navigation task with demonstrations
performed by humans, that are then dropped out. Naive im-
itation (or rather emulation) of the experts enables the agent
to perform well when the expert is there to follow, but once
the expert is removed, these agents fail to generalise. The au-
thors are able to create an agent that can imitate the plan of
the teacher through equipping the agent with 1) memory, 2)
an attentional bias towards the expert, 3) the expert “dropping
out” during training, and 4) randomisation of the domain to
ensure that the student agent is learning to utilise the expert
and not just memorise the paths. This “attentional bias” may
be related to the notion of intent as an aspect of “true imita-
tion” [Tomasello et al., 1993] and further accords well with
Tomasello’s [2009] theory of joint attention.

3.2 Feedback
Feedback is just information given by the teacher on the per-
formance of the learner. Consider the example of a student
learning to perform addition. If they perform an incorrect ad-
dition like 18+17=25 we could provide a simple label evalua-
tion (incorrect), a preferred answer (18+17=35), or language
feedback like “you forgot to carry over the tens term” – the
particular form of feedback that is appropriate will depend on
the situation.

Labels are of course omnipresent in machine learning, as
supervised learning forms a major paradigm. Learning from
preferences has also been developed especially in the field
of RL, where Reinforcement Learning from Human Feedback
(RLHF) has now been adapted for finetuning language mod-
els [Ouyang et al., 2022]. While we mostly consider linguis-
tic feedback, human feedback is often multimodal in nature,
and may include gestures, tone, expressions and other physi-
cal actions. We encourage readers to refer to [Lin et al., 2020]
for progress in these dimensions; we expect these to become
increasingly feasible and important as more works appear ex-
ploring multimodal models.

Preference-Based Feedback
Human preference-based feedback on generative AI output
has proven invaluable for aligning the outputs of foundation

models with human expectations through the use of ‘instruc-
tion tuning’ [Ouyang et al., 2022]. This finetuning technique
was designed for the purposes of alignment – the process
of optimising a model according to human values and needs
(e.g. following instructions). Typically this employs a three
step process: 1) collecting demonstration data and perform-
ing supervised finetuning; 2) training a reward model on com-
parisons between model outputs; and 3) optimising the model
as a policy against that reward model using an RL algorithm
(PPO). The success of this approach has played an instrumen-
tal role in the recent rise of LLMs by providing a scalable
and effective way to finetune models and control specific at-
tributes.

Despite this, there have been a number of issues due to
the cost of collecting human feedback data, and difficulty
in optimising using PPO. One interesting development of
late is Direct Preference Optimisation (DPO) [Rafailov et al.,
2024] – which skips training the reward model and uses the
LLM as an implicit reward model. This is essentially a KL-
constrained contrastive loss that trains the model directly on
preference datasets. Hejna et al. [2024] point out that this
method is not applicable to embodied trajectories and intro-
duce a generalised version called “contrastive preference op-
timisation”, wherein a dis-preffered trajectory is contrasted to
a preferred one.

These developments should enable us to train embodied
agents built with multimodal language models (e.g. [Brohan
et al., 2023]) using preference optimisation and bring this as-
pect of feedback into embodied agents.

Natural Language-Based Feedback
While it is relatively simple to use comparisons or scalar feed-
back scores, fully leveraging the richness of language feed-
back has proven more of a challenge.

Sumers et al. [2021] investigate learning under the regime
of “unconstrained linguistic feedback”. They categorise the
feedback given as evaluative – scalar feedback similar to that
described above, imperative – giving a preferred action e.g.
“you should have carried over the tens term”, or descriptive
– providing relevant information to the task. Sumers’ ap-
proach to leveraging these rich rewards is to provide models
that try to model the sentiment (a simple sentiment analy-
sis model and a more complicated model handcrafted from
Gricean pragmatics), as well as an inference network trained
to predict the rewards given by the teacher. In their experi-
ments, they firstly validate the importance of the more com-
plex models that can leverage the richer language feedback,
secondly they show that human teaching typically involves a
mix of all three categories of feedback in human experiments.

More recently, several works have exploited the recent ad-
vances in NLP to use LLMs to directly update the reward
functions used for training embodied models in accordance
with the feedback. For example in Eureka [Ma et al., 2023]
the authors train a robotic hand to execute complicated ges-
tural object manipulation (spinning a pen around) by updat-
ing a reward function from observations. Similarly, Yu et
al. [2023] use LLMs to define reward parameters that are then
optimised over for a variety of robot embodiments including a
quadruped and arm based robot. They find that this approach
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is generalisable and achieves 90% success rates across a wide
variety of tasks. The import of such approaches is that they
enable the utilisation of LLM’s high-level cultural knowledge
about actions to be translated into low-level actions.

A promising alternative solution to this is to use the feed-
back to condition future actions of the learning agent, and
rely on existing learning mechanisms to learn from these ac-
tions. Scheurer et al. [2022] use this paradigm to learn from
natural language feedback by generating multiple responses
conditioned on feedback. The response that is semantically
most similar to the feedback is then treated as the “correct”
response and used to finetune the model. Similarly, Chen et
al. [2024a] explore “Imitation learning from Language Feed-
back” in which they let the learner refine its answers based on
human feedback, and then finetune on these refinements.

Zha et al. [2023] further explore the mechanisms of mem-
orising and retrieving feedback for conditioning embodied
agent actions on the fly. They create a system for distilling
corrections into retrievable knowledge that can be used by
the LLM-agent in future generations. They use the feedback
to firstly perform replanning, and then to create a correction
that can be placed in a knowledge base (rephrased to be “con-
textually complete”) and retrieved in future situations where
relevant. In particular, they use both visual and textual rep-
resentations for the correction embedding so that it can be
retrieved when a situation is similar in either dimension.

3.3 Instruction and Explanation
Instruction following itself has been widely used as a task in
the alignment of models. In particular, the RLHF framework
described in Section 3.2 was popularised in NLP for instruc-
tion following [Ouyang et al., 2022]. This alignment pro-
cess (learning to follow instructions) has enabled foundation
models to learn to perform complex tasks from instructions.
A large body of works explore methods of instruction in the
form of prompting techniques like chain of thought [Wei et
al., 2022], that have been shown to improve reasoning abil-
ities. For example, Mu et al. [2024] finetune their embod-
ied model on complicated instructions that require the use of
chain of thought planning over egocentric videos.

Instruction following has also seen use as a paradigm in
the popular benchmarks TEACh [Padmakumar et al., 2022]
and ALFRED [Shridhar et al., 2020]. TEACh consists in
human-human dialogue sessions where one human is playing
the role of a teacher or commander; the other acts as a student
and must follow the instructions of the teacher, while being
able to ask questions for clarification. ALFRED is a relatively
simple task and involves following singular grounded instruc-
tions like “walk to the coffee maker on the right”. The latter
instruction can be seen as an example of the vision-language
navigation task, which is currently one of the more popular
paradigms in embodied AI, given that it was recently enabled
by increased performance of LLMs. These benchmarks how-
ever do not focus on actually learning from the interactions
with the instructors per se, nor indeed are the instructions tar-
geted at the learning agent.

Saha et al. [2024] explore more deeply modelling inter-
actions between students and teachers using theory of mind.
One of their research questions is the degree to which person-

alisations of explanations aid students. While they do find a
positive effect, its influence is relatively small. While person-
alisation of explanations have not been found to be beneficial
thus far, in an embodied RL setting it was found that the act
of giving explanations itself was helpful in aiding the teacher
learning [Das et al., 2023]. This is an example of the so called
protégé effect – when we try to explain or instruct others we
test and expand our own understanding of a concept by recon-
ceptualising it.

While it would be desirable to heavily use targeted instruc-
tions and explanations by asking for help when needed, the
provision of help, especially in the case of humans in the loop,
is expensive. Indeed per the theory of scaffolding, we expect
that as the learner gains proficiency, the learning experience
can be less structured, and intervention can be reduced over
time. As such one body of works considers the problem of
efficiency by learning when to ask for help. For example Ren
et al. [2023] train an agent to ask for help when there is a high
level of uncertainty in the task. The agent generates a set of
possible actions, and if the likelihood of the likeliest of them
being correct (as measured by the agent) is below a certain
threshold, the robot then asks for further instruction.

3.4 Curricula
Curriculum Learning is a machine learning approach that
parallels the scaffolding of human learning at a more ab-
stract level. The classic paradigm introduced by Bengio et
al. [2009] is to order the training data by complexity for some
notion of complexity, and progressively increase the level of
complexity as the learning progresses. Per Figure 1, curricu-
lum learning consists in the teacher agent altering the learning
environment rather than directly interacting with the learner
agent.

The idea behind this is that by structuring the data in this
way, the initial learning task becomes more feasible, and after
basic concepts are acquired, these can be used as a basis for
learning more complex concepts. While this seems simple,
there are two key problems. First of all defining complexity
for a given task is difficult – the curriculum may have to be
tailored for individual learners, and require insight into the
current capabilities of the learner. Additionally it may be un-
clear when the learner has sufficiently mastered a concept to
enable the complexity to increase.

Accordingly a body of works exists that try to automate
this process. This approach is typically called automatic cur-
riculum learning, and is a popular paradigm in the reinforce-
ment learning community (ACL). For instance, Matiisen et
al. [2019] explore a “Teacher Student Curriculum Learning”
paradigm in which a teacher agent monitors the student’s
training progress and is used to determine the tasks suitable
for the student. The mechanism used is the student’s progress
on a task – the teacher increases sample weight for tasks that
are seeing progress – the weight is then reduced when the task
has been mastered since the rate of progress is measurably
decreased. The authors treat the problem as a bandit learn-
ing problem and explore a number of sampling algorithms,
finding that such an automated curriculum can help for maze
solving in minecraft, and simple addition tasks using LSTMs.

Other works such as Ramrakhya et al. [2023] and Morad
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et al. [2021] use estimations of task success probabilities to
order the experience while training embodied navigation sys-
tems. In particular, they aim to find tasks of ‘intermediate
difficulty’. Interestingly, in the former they note that the ad-
dition of easy tasks to the training mix without curriculum
learning per se has a similarly beneficial effect, as the learn-
ing agent simply spends less time in easier episodes since it
can achieve them quickly.

Despite their success in RL domains,curriculum-based ap-
proaches have not seen as much success in NLP or computer
vision. Recently Warstadt et al. [2023] ran a competition to
train LLMs using a human-developmentally plausible dataset
and found that although curriculums were the most popular
approach explored by entrants, it was relatively ineffective for
improving sample efficiency. Indeed the key negative result
of their competition report was exactly that none of the com-
mon curriculum learning approaches offered substantial ben-
efits to the developmental task of language learning. Given
the differing success of curriculum learning approaches it is
likely that it’s benefit is largely dependent on how structured
the learning problem is.

Indeed embodied language models may be a more suitable
domain for the application of curriculum learning methods.
Wang et al. [2024] leverage the LLM’s knowledge of task
properties to derive new suitable tasks. Rather than relying on
handcrafted curricula or designing a separate automatic cur-
riculum, they simply prompt the LLM to come up with tasks
itself, conditioning the new tasks on the state of the agent,
previously learnt skills, the previous task completion history,
and the long term goals of the agent. They find that this auto-
matic curriculum is both critical for the agent’s success, and
furthermore beats out manually defined expert curricula. This
process of giving the agent meta-learning abilities is promis-
ing but likely requires more principled analysis; in any case
it speaks to the potential of using LLM-Agents to instantiate
social learning paradigms in a unified way.
Section Summary: More principled work remains to
be done on demonstration learning, such as investigating
whether ToM can enable student agents to imitate more ef-
ficiently. Feedback has been widely used in the form of pref-
erence learning. Leveraging general language feedback has
seen increasing use but requires more research. Approaches
like conditioning on feedback likely have similar applications
to leveraging explanations and instructions. Finally, while
curriculum learning has been widely used in RL, it is not as
promising for training LLMs – this may not however be the
case for LLM-Agents.

4 Collaborative Learning
4.1 Multi-Agent Reinforcement Learning (MARL)
Historically the majority of research on collaborative learn-
ing has occurred in the context of multi-agent reinforcement
learning. For instance AlphaStar [Vinyals et al., 2019] was
trained to grandmaster human level in the game StarCraft
II through playing with other players. The system was ini-
tialised using imitation learning, and then further finetuned
by an RL algorithm to perform well against a mixture of op-
ponents. The solution proposed by the authors is an evolution

of previous so called “self-play” strategies. This consists in
pitting different versions of an agent against itself in strategy
games. The key insight here was to firstly add a greater mix
of adversarial agents (previous versions of the learning agent)
in addition to agents that were specifically designed to exploit
the flaws of the agent in question.

Recently, an AI agent (Cicero) was trained for the game
Diplomacy at a human level, ranking in the top 10% of partic-
ipants in an online league [FAIR et al., 2022]. In Diplomacy,
players take the role of diplomats controlling countries, and
have to negotiate with other players, make promises, and de-
ceive them. By leveraging pretrained LLMs to conduct the
negotiation and model other users’ intents, a strategic reason-
ing model could then be used to plan actions and intents and
was then trained with a combination of RL methods including
self-play and behavioural cloning.

In the more cooperative setting, a number of recent works
have focused on the “learn to communicate” paradigm [Oroo-
jlooy and Hajinezhad, 2023]. In these paradigms, the sets
of agents may have to learn both what and when to commu-
nicate, and even some explorations of who to communicate
to via attention mechanisms [Gronauer and Diepold, 2022].
Many of these works have started from a point of zero linguis-
tic competence and require the agents to learn from scratch.
Accordingly a future trend will likely include the incorpo-
ration of existing language models [Gronauer and Diepold,
2022], similarly to the approach taken in the work of FAIR et
al. [2022] described above.

4.2 Collaborative LLM-Agents
A significant recent trend in NLP has been exploring the use
of communicative LLM-agents. Firstly, Park et al. [2023] ex-
plored using such generative agents as models of human be-
haviour – in particular, they simulated a town of agents that
perform daily activities and interact in natural language, en-
abled by a game environment that tracks the memories and
positions of each agent. These behaviours, including emer-
gent abilities at party planning, were rated as being largely
believable as human by crowdworkers.

Later, Qian et al. [2023] explored the creation of software
using teams of LLMs mimicking the ‘waterfall’ model of
software development. The authors broke down the devel-
opment process into a sequence of discussions between LLM
agents acting in roles (e.g. CEO, programmer etc.). In each
discussion the LLMs would act in turn as instructors and as-
sistants, making decisions through concensus. In contrast to
simply generating the codebase for a software development
project directly using an LLM designed for coding, they man-
aged to achieve an ∼88% success rate on achieving the soft-
ware development task.

Chen et al. [2024b] then went further to provide a more
general framework for communicative LLM based agents.
The process proceeds in rounds made up of 1) expert recruit-
ment – building up a group of roles to perform, 2) decision
making – deliberating over what to do 3) action execution,
and 4) evaluation in which the outcome is compared to the
goal and feedback is given.

In the embodied setting, Zhang et al. [2024] have explored
building cooperative embodied LLM agents. This report-
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edly requires more complicated models and theory of mind
- in particular their agents consist in modules handling belief,
communication, reasoning, and planning. The belief module
is intended to give the agents theory of mind by tracking the
knowledge of the scene, other agents, the self, and the task.
On benchmarks, the authors found that the LLM agents were
able to cooperate well on various benchmarks, and that the
theory of mind was necessary for this success.

Such cooperative LLM agents are already able to outper-
form state-of-the-art MARL agents on several tasks, such as
navigation [Li et al., 2023], without the extensive number of
training episodes typically required for the MARL agents.
Importantly however, in all these collaborative settings, no
learning per se is going on – the agents are able to achieve
complicated tasks through collaboration but only “learn” by
updating the memory or context used in their internal decision
making processes (since they are frozen language models).

More generally, we expect that collaborative settings are
more useful for generating experience trajectories that would
be unachievable for singular agents which can then be lever-
aged for learning using ordinary learning mechanisms, rather
than being a source for learning mechanisms per se, in a sim-
ilar way to Scheurer et al. [2022] exploring conditioning on
feedback as a way of learning from natural language feedback
rather than providing a separate feedback learning mecha-
nism per se.

Section Summary: Collaborative Learning has been ex-
plored mostly through Multi Agent Reinforcement Learn-
ing. These have included interesting studies on optimising
the population of collaborators and emergent communica-
tion. In the case of LLM-Agents, there have been remarkable
achievements through applying prompting, including appli-
cation of ToM, but thus far limited work directly updating the
weights of the models constituting these agents, limiting their
adaptability.

5 Conclusions and Future Directions
Although social learning is not typically conceived as a key
paradigm or organising principle for machine learning, we
have shown that it permeates a large proportion of the ma-
chine learning literature.

Moreover, we have seen how performant LLMs have en-
abled the application of more advanced social learning tech-
niques using the preferred mode of human instruction – natu-
ral language. For example, in Section 3.2 we showed that this
has enabled the construction of models that can directly re-
spond to language feedback, and in Section 4.2 how they had
been used to build communicative agents purely from lan-
guage models that were able to outperform existing MARL
approaches.

Comparison and Combination of Social Learning
Paradigms. As shown in Table 1, the majority of ap-
proaches explored in this paper use multiple social learning
techniques. However, only four use all three of the main
categories and are largely not embodied. As we have argued,
equipping agents with linguistic capabilities has enabled
agents to leverage communication and instructive learning

Reference Iml Inl Col Emb ToM

[Belkhale et al., 2024] Y F,I – Y –
[Chen et al., 2024b] – I,F Y – –
[Chen et al., 2024a] Y I,F – – –
[Hejna et al., 2024] – F – Y –
[Mu et al., 2024] Y I – Y –
[Rafailov et al., 2024] – F – – –
[Saha et al., 2024] Y D,F Y – Y
[Wang et al., 2024] – C,F – Y –
[Bhoopchand et al., 2023] Y D – Y –
[Das et al., 2023] – I Y Y –
[Liu et al., 2023] Y F,I Y – –
[Li et al., 2023] – F Y – Y
[Ma et al., 2023] – F – Y –
[Park et al., 2023] – Y Y Y
[Qian et al., 2023] – F,I – Y –
[Ramrakhya et al., 2023] – C – Y –
[Ren et al., 2023] – F Y Y –
[Wang et al., 2023] – I,F – Y –
[Yu et al., 2023] – F – Y –
[Zha et al., 2023] – F,I – Y –
[Brohan et al., 2023] Y D – Y –
[FAIR et al., 2022] Y Y Y Y
[Ouyang et al., 2022] Y I,F – – –
[Padmakumar et al., 2022] – I Y Y –
[Ramrakhya et al., 2022] Y D – Y –
[Scheurer et al., 2022] Y F,I Y – –
[Morad et al., 2021] – C – Y –
[Sumers et al., 2021] – F – Y –
[Shridhar et al., 2020] – I Y Y –
[Vinyals et al., 2019] Y F,D Y Y –
[Matiisen et al., 2019] – C – Y –
[Bengio et al., 2009] – C – – –

Table 1: Social Learning techniques used: ImL: Imitative Learn-
ing, InL: Instructional Learning, CoL: Collaborative Learning, Emb:
Embodied, ToM: Theory of Mind, C: Curriculum, D: Demonstra-
tions, F: Feedback, I: Instruction, Y: Yes.

paradigms out of the box. Given this, we expect to see more
work exploring the combination of these approaches.

Learning Permanently through Social Conditioning.
The promising LLM-Agent approaches have thus far largely
relied on the knowledge acquired by the LLM through imi-
tation learning. There has been little work performing fur-
ther gradient updates once these models are socially em-
bodied, and the “learning” has largely constituted updates
to the agent’s memory modules (as in [Wang et al., 2024;
Zha et al., 2023]). Accordingly, identifying how models can
learn more permanently in these settings remains a research
priority. We see a promising direction in utilising low-level
learning methods on experiences conditioned on the social in-
teractions that entail “higher-level” learning mechanisms like
feedback and instruction. This has seen some application in
the non-embodied setting [Scheurer et al., 2022], but we ex-
pect this to be replicated for embodied settings in the near
future as we move beyond simply using LLM-agents without
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finetuning.
Multimodality. Our survey has been primarily concerned
with linguistic approaches, however the recent development
of multimodal models will likely enable richer forms of so-
cial interaction (and thereby learning). We have already seen
this in the case of demonstration learning from vision and
language [Brohan et al., 2023], but given the relative imma-
turity of video-foundation models it may be some time be-
fore we are able to fully leverage non-linguistic signals like
gestures and visual demonstrations for teaching embodied
agents. As discussed in Section 3.2, existing techniques for
learning from feedback could be applied to learn from these
signals.
Theory of Mind and Intent. As can be seen in Table 1,
there have been a number of approaches exploring the use of
Theory of Mind as a prerequisite for richer interactions be-
tween teachers, students, and peers. Indeed Theory of Mind
cuts across social learning. Modelling the intent of a teacher
enables a learner agent to fully leverage the learning signal, as
we discuss in Section 3.1. Modelling teacher agents also al-
lows learners to evaluate the teacher’s potential as sources of
learning [Gweon, 2021]. While ToM modules are a relatively
common aspect of agents, especially collaborative agents, we
have seen little work exploring these techniques so far. As
such, we expect to see more work investigating the effects of
these modules, especially given the interest in ToM initiated
by Kosinski [2023].
Application Domains. Social learning techniques are
broadly applicable in the field at large. Nevertheless, they
may play an especially important role in domains where so-
cial skills themselves are more relevant. For instance, in the
case of socially-assistive robotics, the ability to adapt to in-
dividual needs and build a relationship over time is espe-
cially important [Tapus et al., 2007]. Similarly, the abil-
ity to use models to teach humans skills would be a signif-
icant benefit of developing instructive social learning tech-
niques. For example, this has explored in the case of social
skill training [Yang et al., 2024]. In the meantime, we ex-
pect the majority of progress to occur in using social-learning
techniques for training agents in video games, due to the
low cost of training, ample amounts of training data, and
ease of interacting with humans. Games are already a test-
bed for many approaches covered above [Wang et al., 2024;
Wang et al., 2023; Vinyals et al., 2019], but we can expect
social learning to enable richer forms of collaborative play
with AI agents, as explored for example in the work of Gong
et al. [2023].
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