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Abstract
Many real-world datasets can be naturally repre-
sented as graphs, spanning a wide range of do-
mains. However, the increasing complexity and
size of graph datasets present significant challenges
for analysis and computation. In response, graph
reduction, or graph summarization, has gained
prominence for simplifying large graphs while pre-
serving essential properties. In this survey, we
provide a comprehensive understanding of graph
reduction methods, including graph sparsification,
graph coarsening, and graph condensation. Specif-
ically, we establish a unified definition for these
methods and introduce a hierarchical taxonomy to
categorize the associated challenges. Our survey
then systematically reviews the technical details of
these methods and emphasizes their practical appli-
cations across diverse scenarios. Further, we out-
line critical research directions to ensure the con-
tinued effectiveness of graph reduction techniques.

1 Introduction
Graph-structured data has become ubiquitous in various do-
mains, ranging from social networks and biological sys-
tems [Wu et al., 2020]. The inherent relational structure of
graph data makes it powerful for modeling complex interac-
tions and dependencies. Moreover, with the rise of graph ma-
chine learning techniques, especially graph neural networks
(GNNs) [Wu et al., 2020], the utilization of graph datasets
has seen unprecedented growth, leading to advancements in
tasks such as node classification and graph classification.

Recent years have witnessed an exponential increase in the
size and complexity of graph datasets. Large-scale networks,
such as social graphs and citation networks [Hu et al., 2021],
challenge the scalability and efficiency of existing algorithms
and demand innovative solutions for efficient model training.
Despite recent efforts to design GNNs that can scale with
large graphs [Jia et al., 2020], an alternative approach focuses
on reducing the size of the graph dataset, including the num-
ber of graphs, nodes, and edges, which we term as graph re-
duction. In this paper, we define graph reduction as the pro-

Graph Reduction

Original Dataset	
𝒯 = 𝒢(𝒱,ℰ),	 𝑁= |𝒱| Reduced Dataset	

𝒮 = 𝒢!(𝒱’,ℰ’), 𝑁’ = |𝒱′|

𝑵’ < 𝑵 and/or 
𝓔! < 𝓔

Maintaining Key 
Information

Figure 1: A general framework of graph reduction. Graph reduction
aims to find a reduced (smaller) graph dataset that can preserve cer-
tain information of the original graph dataset.

cess of finding a graph dataset of smaller size while preserv-
ing its key information. Specifically, this definition requires
an algorithm that takes the original graph dataset as input and
produces a smaller one. As shown in Figure 1, graph reduc-
tion aims to extract the essential information from the mas-
sive graph dataset by maintaining its structural and semantic
characteristics. In addition to accelerating graph algorithms,
graph reduction offers a range of advantages. First, reduced
graphs demonstrate compatibility with various downstream
models architectures [Jin et al., 2022b]. Second, graph re-
duction may contribute to privacy preservation since it alters
the original structure or node attributes, making them chal-
lenging to recover [Dong et al., 2022]. Third, the reduced
graph is notably smaller and more comprehensible for hu-
mans compared to its larger counterpart, which aids in graph
visualization [Imre et al., 2020].

Given the importance of graph reduction, numerous algo-
rithms have been developed, falling into three distinct strate-
gies: graph sparsification [Althöfer et al., 1993; Batson et
al., 2009], graph coarsening [Loukas and Vandergheynst,
2018; Dorfler et. al, 2012], and the more recent graph con-
densation [Jin et al., 2022b; Jin et al., 2022a; Xu et al., 2023;
Liu et al., 2022]. Graph sparsification revolves around the ap-
proximation of a graph by retaining only a subset of its edges
and vital nodes. In contrast, graph coarsening does not elim-
inate any nodes but instead groups and aggregates nodes into
super nodes, with original inter-group edges being aggregated
into super edges using a specified aggregation algorithm. Dif-
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fering from the aforementioned two strategies, graph conden-
sation has been recently introduced as a method to condense
a graph by synthesizing a smaller graph while preserving the
performance of GNNs. Despite the proliferation of these
methods, they have often been studied in isolation, leaving
the connections and distinctions between them somewhat ob-
scured. Therefore, it is both necessary and timely to offer a
systematic overview of these existing algorithms in order to
enhance our understanding of graph reduction techniques.
Contributions. In this work, we aim to present a comprehen-
sive and up-to-date survey focusing on graph reduction tech-
niques and their diverse applications in tackling graph-related
challenges. Our contributions are summarized as:
(a) We offer the first comprehensive review of graph reduc-

tion methods, encompassing graph sparsification, graph
coarsening, and graph condensation.

(b) We develop a unified perspective for existing graph re-
duction methods, differentiating them based on their
characteristics in Section 2, and provide a detailed review
of representative algorithms in Section 3.

(c) We discuss practical applications of graph reduction
methods in Section 4, shedding light on real-world sce-
narios where these techniques prove valuable.

(d) In Section 5, we identify key challenges and promis-
ing future research directions, guiding the continued ad-
vancement of graph reduction techniques.

Connection to Existing Surveys. In contrast to previous re-
views that focus on one of the graph reduction paradigms [Hu
and Lau, 2013; Gao et al., 2024; Xu et al., 2024], our study
offers a comprehensive view of the emerging field of graph
condensation and presents a unified framework that bridges
graph condensation with conventional graph reduction tech-
niques. Additionally, our survey explores synergies between
graph reduction and graph neural networks, an aspect rarely
covered in existing surveys. Comparing with existing sur-
veys on acceleration of graph algorithms [Liu et al., 2022;
Zhang et al., 2023], we emphasize that a reduction strat-
egy should produce a static graph to accelerate a wide spec-
trum of downstream algorithms, rather than accelerating the
algorithm itself. Furthermore, our work shares connections
with recent surveys on dataset distillation [Geng et al., 2023;
Sachdeva and McAuley, 2023], while they predominantly fo-
cus on condensation methods applied to image data.

2 Notations and Taxonomy
Given the node set V and edge set E , we denote a graph as
G = (V, E). In attributed graphs, nodes are associated with
features, and thus can be represented as G = (A,X), where
X = [x1,x2, ...,xN ] denotes the node attributes and A de-
notes the adjacency matrix. The graph Laplacian matrix is
L = D − A, where D is a diagonal degree matrix with
Dii =

∑
j Aij . We use N = |V| and E = |E| to denote

the number of nodes and edges, respectively.
A Unified Framework of Graph Reduction. Given a graph
G = (V, E), graph reduction outputs a graph G′ = (V ′, E ′)
which contains N ′ nodes and E′ edges, subject to N ′ < N ,
or E′ < E edges. The reduced graph G′ preserves the desired
information of the original graph G. This process can be un-
derstood as finding a graph G′ that minimizes a loss function

L explicitly or implicitly, which measures the difference be-
tween G and G′ in terms of certain information:

G′ = argminG′ L(G,G′). (1)

On top of that, we can categorize existing graph reduction
techniques into the following three groups:
Definition of Graph Sparsification. Given a graph G =
(A,X), graph sparsification selects existing nodes or edges
from the graph G and outputs G′ = (A′,X′). In other words,
the elements in A′ or X′ are the subset of those in A or X.
Definition of Graph Coarsening. Given a graph G =
(A,X), graph coarsening outputs G′ = (A′,X′) contain-
ing N ′ super-nodes and E′ super-edges, where N ′ < N . It
generally requires finding a surjective mapping from the orig-
inal graph to a coarse graph denoted as C ∈ {0, 1}N×N ′

.
We further define the reverse assignment matrix P =
rowNormalize(C⊤). Then the coarse graph is usually con-
structed by A′ = C⊤AC,X′ = PX.
Definition of Graph Condensation. Given a graph dataset
T = (A,X,Y), with Y being the node labels, graph
condensation aims to learn a small-synthetic graph S =
(A′,X′,Y′), where S contains learnable parameters and
N ′ < N , such that a GNN trained on S obtains a compa-
rable performance to the one trained on T .
Distinctions. First, graph condensation synthesizes fake
graph elements, while sparsification selects existing ones and
coarsening aggregates them. The latter two strategies en-
joy certain interpretability in the reduction process. Second,
these strategies have distinct objectives. Graph condensation
aims to maintain the performance of GNN models in down-
stream tasks, while the other two often target at preserving
graph properties. Third, graph condensation relies on la-
bels, whereas the other two generally do not. In Figure 2,
we present a detailed taxonomy of these methods, and we
provide a qualitative comparison of the three graph reduction
strategies mentioned earlier in Table 1.

3 Methodology
3.1 Graph Sparsification
Graph sparsification involves the selection of crucial edges
or nodes based on specific criteria. We categorize existing
techniques into two groups based on their preservation goals:
those focused on preserving graph properties and those dedi-
cated to maintaining model performance.

Preserving Graph Properties
Traditional sparsification target at preserving essential graph
properties including pairwise distances, cuts, and spectrum.
These methods usually sample the subgraphs that achieve the
minimal loss L(G′, G) iteratively, which measures the ap-
proximation to the original graph w.r.t. one of the above graph
properties. A reduced graph is called spanner if it maintains
pairwise distances, and sparsifier if it preserves cut or spec-
trum [Batson et al., 2013]. To evaluate these algorithms, one
common way is to establish the loss bound for their output
graph G′: If G′ is proved to satisfy L(G′, G) ≤ ϵ, ϵ ∈ (0, 1),
it is called ϵ-spanner/sparsifier. Specifically, L(G′, G) is ex-
pressed as |D(G′, G)−1| with D(·, ·) defined as D(G′, G) =
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Figure 2: Taxonomy of existing graph reduction methods.

Strategy Interpretability Label Utilization Objective Output Remark
Sparsification ✓ × Property/Performance Preservation Subgraph Selects subgraphs with maximal information
Coarsening ✓ × Property/Performance Preservation Supergraph Merges close nodes
Condensation × ✓ Performance Preservation Synthetic graph Generates small graphs with high utility

Table 1: General qualitative comparison of graph reduction methods. “Scalability”: the ability to scale up to large graphs, “Interpretability”:
the existence of correspondence between nodes in the original and reduced graphs, “Label Utilization“: the reliance on label information.

SP(G′)
SP(G) for spanner and x⊤L′x

x⊤Lx
for sparsifier. SP(G) denotes

the sum of the shortest path length for all node pairs in G, and
x ∈ RN is an arbitrary vector.

Spanner. [Althöfer et al., 1993] first develop an algorithm
called SPANNER to obtain spanners in graphs. It starts with
an empty graph defined on the original node set and adds
edges from the original graph only if their weight is smaller
than the current distance between their connected nodes in the
reduced graph. [Baswana and Sen, 2003] tighten this upper
bound with a linear time algorithm that merely explores the
edges in the neighborhood of a node. Also, SparRL [Wick-
man et al., 2022] designs a reinforcement learning process
and adjusts reward functions to preserve pairwise distance.

Sparsifier. One representative sparsifier is called Twice Ra-
manujan Sparsifier (TRS) [Batson et al., 2009], which proves
that for every undirected graph G, there exists a weighted
graph G′ with at most (N − 1)/2 edges such that G′ is the
(1 + ϵ)-sparsifier of G with high probability. This approach
derives G′ by decomposing the graph into subgraphs with
high conductance, calculating pairwise effective resistance
(ER) [Spielman and Srivastava, 2008], and sampling edge
based on normalized ER as probabilities. Then the edges in
the reduced graph are reweighted as the probabilities. Other
methods do not merge the nodes themselves; instead, they
merge the paths between each pair of target nodes, result-
ing in a reweighted edge. Kron reduction [Dorfler et. al,
2012] is initially developed to address challenges in electrical
networks, specifically to simplify resistance networks while
maintaining the pairwise ER. This method selects nodes and
calculates the coarse graph Laplacian L′ by computing Schur
complement of unselected nodes. Recently, [Sugiyama and
Sato, 2023] extend it to a directed graph with self-loop. In
contrast to selecting nodes arbitrarily, [Fang et al., 2010]
calculate Schur complement after finding the largest node set
consisting of nodes not adjacent to each other.

Preserving Performance
With the emergence of GNNs, a new goal of graph sparsi-
fication has arisen: maintaining the prediction performance
of GNNs trained on the sparsified graph. In this context, the
sparsification process selects the top-k nodes or edges based
on various scoring methods, such as ER [Spielman and Sri-
vastava, 2008] and explanations from a trained GNN [Ying
et al., 2019]. Many methods employ model-free heuristics as
the scoring strategy, which calculate the score with metrics
derived from the graph structure. For example, [Salha et al.,
2019] use k-core decomposition to find interconnected sub-
graphs with different density index k. By treating subgraphs
corresponding to high values of k as the reduced graph, they
effectively circumvent the computational demands associated
with calculating node embeddings for large graphs. Further-
more, recent work WIS [Razin et al., 2023] highlights that the
ability to model node interactions is primarily determined by
the metrics walk index (WI), i.e., the number of walks orig-
inating from the boundary of the partition. Then, important
edges are selected based on sorted WI values. Although these
metrics offer insights from a certain perspective of the graph,
they might not be compatible with the downstream models
and tasks.

In contrast, recent years have witnessed many model-based
scoring methods, which utilize a parameterized model to cal-
culate the score. For instance, [Jin et al., 2022b] adopt coreset
methods [Sener and Savarese, 2018] to select nodes based on
their embeddings from a trained GNN model. Apart from
these general scoring methods which can be used for any
modality, recent works on the interpretability of GNN, e.g.,
GNNexplainer [Ying et al., 2019] can also score the nodes
and edges. IGS [Li et al., 2023] sparsifies a graph based on
edge importance obtained from GNNexplainer and feeds the
sparsified graph into the next iteration.

Other sparsification methods belong to the graph structure
learning [Jin et al., 2023] which iteratively optimizes the spar-
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sification process by interaction with GNNs. For example,
UGS [Chen et al., 2021] simultaneously prunes the graph ad-
jacency matrix and the GNN weights. Recognizing that UGS
fails to preserve topology, GST [Zhang et al., 2024a] is pro-
posed to combine semantic and topological information dur-
ing sparsification. However, these structure learning methods
are closely tied to specific selection models or sparsified GNN
models. The transferability of their sparsified graphs to other
graph algorithms remains inadequately explored.

3.2 Graph Coarsening
The selection of nodes or edges in sparsification methods
can inevitably lose some information. To ensure that a suf-
ficient amount of information is preserved, coarsening tech-
niques have been developed, which usually involve group-
ing nodes and aggregating them. This process can be car-
ried out iteratively, yielding hierarchical views of the original
graph. Existing coarsening methods can be categorized into
two groups depending on whether a reconstruction objective
exists: reconstruction-based methods and reconstruction-free
methods, which will be elaborated upon subsequently.

Reconstruction-Based Methods
Reconstruction-based coarsening methods involve a two-step
process. First, they reconstruct the original graph from the
coarse graph, where super nodes are mapped back to their
original nodes. This way, the super nodes are lifted to sizes
comparable to those in the original graph [LeFevre and Terzi,
2010]. Subsequently, the goal is to find the coarsening map-
ping matrix (C or P) that can minimize the differences be-
tween the reconstructed graph and the original one. These
coarsening techniques can be broadly categorized into spatial
or spectral coarsening methods, depending on whether they
try to reconstruct the adjacency or Laplacian matrix.

Spatial coarsening. Spatial coarsening adopts the Recon-
struction Error (RE) [LeFevre and Terzi, 2010] as the objec-
tive function L := REp(Al|A) = ||Al − A||pF, where the
lifted adjacency matrix Al can be expressed as a function of
P and A [Riondato et al., 2017]. As the first work proposing
RE, GraSS [LeFevre and Terzi, 2010] randomly samples part
of node pairs and merges one of them causing the smallest in-
crease of RE. Similarly, [Beg et al., 2018] propose a weighted
sampling scheme to sample vertices for merging that will re-
sult in the least RE.

Spectral coarsening. Spectral coarsening methods [Purohit
et al., 2014] usually compare the Ll and L by comparing their
eigenvalues or eigenvectors. The lifted Laplacian matrix is
defined as Ll = P⊤L′P [Kumar et al., 2023]. [Loukas and
Vandergheynst, 2018] propose restricted spectral approxima-
tion and derive a relaxed evaluation called Relative Eigen-
value Error (REE) defined as REE =

∑k
i=1 |λi − λ′

i|/λi

, where λi and λ′
i are the top-k eigenvalues of the matri-

ces L and L′, respectively. Note that they use L′ instead of
Ll because the comparison of eigenvalues does not require
the alignment of the sizes. They also give the theoretical
guarantee of greedy pairwise contraction approaches, where
different node pair scoring methods can be used including
Heavy Edge [Dhillon et al., 2007], Algebraic Distance [Chen
and Safro, 2011] and Local Variation (LV) [Loukas and Van-

dergheynst, 2018]. Aside from these heuristics, [Zhao et al.,
2018] scale the edge weights by stochastic gradient descent to
further align the eigenvalues after coarsening. FGC [Kumar
et al., 2023] takes both the graph structure and the node at-
tributes as the input and alternatively optimizes C and X′.

Reconstruction-Free Methods
Despite the proliferation of reconstruction-based methods,
other approaches do not rely on the reconstruction while
still keeping the key information. Some methods attempt to
find the most informative summaries of a network. To ana-
lyze social networks with diverse attributes and relations, k-
SNAP [Tian et al., 2008] produces a summary graph where
every node inside a super node has the same values for se-
lected categorical attributes, and is adjacent to nodes with
the same selected relations. To extend the above methods fo-
cusing on only one task, Netgist [Amiri et al., 2018] defines
a task-based graph summarization problem and uses RL to
learn node merging policies.

Graph Coarsening in GNNs
There are growing numbers of works that combine coarsen-
ing with GNNs. For instance, SCAL [Huang et al., 2021]
first trains a GNN model in a coarse graph, with super node
label Y′ = argmax(PY) and directly uses this model to in-
ference. [Buffelli et al., 2022] match the node embeddings
output by GNNs among graphs in different coarsening ratios.

3.3 Graph Condensation

While sparsification and coarsening methods have proven ef-
fective in reducing the size of graph data, they have inher-
ent limitations. As many of these methods prioritize preserv-
ing specific graph properties, they do not leverage the down-
stream task information and could lead to suboptimal model
performance. Furthermore, these techniques rely on the as-
sumption of the existence of representative nodes or edges in
the original graph, which might not always hold true in the
original dataset. To address these issues, graph condensation,
first introduced by [Jin et al., 2022b], has come into play.

Motivated by dataset distillation [Geng et al., 2023], graph
condensation revolves around condensing knowledge from a
large-scale graph dataset to construct a much smaller syn-
thetic graph from scratch. The goal is to ensure that mod-
els trained on this condensed graph dataset exhibit compa-
rable performance to those trained on the original one. In
other words, we can see graph condensation as a process of
minimizing the loss defined on the models trained on the real
graph T and the synthetic graph S . Thus, the objective func-
tion in Eq. (1) can reformulated as follows:

S = argminS L(GNNθS (T ),GNNθT (T )), (2)

where GNNθS and GNNθT denote the GNN models trained
on S and T , respectively; L represents the loss function used
to measure the difference of these two models. Based on the
specific designs of L, we classify existing graph condensa-
tion methods into three categories: matching-based methods,
kernel ridge regression methods, and others.
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Matching-Based Methods
To find the optimum synthetic graph dataset that minimizes
the loss for a GNN trained on it, while having the lowest loss
on the original graph dataset, one approach is to match some
meta-data elements related to S and T like gradients w.r.t. the
model parameters and distribution of node classes.

Gradient Matching. For computing the optimum synthetic
graph dataset S , Eq. (2) can be rewritten as the following bi-
level problem that generalizes to the distribution of random
initialization Pθ0

:

minS Eθ0∼Pθ0
[L (GNNθS (A,X),Y)] , (3a)

s.t. θS = argminθ L
(
GNNθ(θ0) (A

′,X′) ,Y′) , (3b)

where θ (θ0) denotes that θ is a function acting on θ0. To
simplify the bi-level optimization of Eq. (3a) and (3b), [Jin
et al., 2022b] propose GCond framework, the first graph con-
densation method, that matches the gradients from both graph
datasets match during each step of training:

min
S

Eθ0∼Pθ0

[∑T−1

t=0
D (∇θLS ,∇θLT )

]
, (4a)

where D(·, ·) represents a distance function, T stands for the
total number of steps in the entire training trajectory, θt refers
to the model parameters at t-th training epoch, and LS and
LT are cross-entropy loss functions over synthetic and real
datasets, respectively. By optimizing the above objective,
the training process on the smaller synthetic graph dataset
S mimics the path taken on the larger real dataset T , which
leads to models trained on real and synthetic datasets end-
ing up with similar solutions. To prevent overlooking the im-
plicit correlations between node attributes and graph struc-
ture, GCond condenses the graph structure by leveraging a
function to parameterize the adjacency matrix A′:

A′
ij = σ

([
MLPΦ

([
x′
i;x

′
j

])
+MLPΦ

([
x′
j ;x

′
i

])]
/2

)
, (5)

where MLPΦ is a multi-layer perceptron parameterized with
Φ and [.; .] indicates concatenation. However, the optimiza-
tion process in GCond involves a nested loop as shown in
Eq. (4a), which hinders the scalability of the condensation
method. To address this, DosCond [Jin et al., 2022a] pro-
poses a one-step GM scheme, where it exclusively matches
the network gradients for the model initialization θ0 while
discarding the training trajectory of θt. By dropping the
summation in Eq. (4a), the objective function of DosCond
becomes: minS Eθ0∼Pθ0

[D (∇θLS ,∇θLT )]. Note that,
DosCond treats the graph structure A′ as a probabilistic
model to learn a discretized graph structure by learning a
Bernoulli distribution over the edge set. Moreover, DosCond
offers a theoretical insight into the GM scheme in graph
condensation: the smallest gap between the resulting loss
(achieved by training on synthetic graphs) and the optimal
loss is upper bounded by the gradient matching loss. Ad-
ditionally, it is worth mentioning that DosCond is the first
method that does graph condensation focusing on graph clas-
sification for reducing the number of multiple graphs. In sub-
sequent research, EXGC [Fang et al., 2024] further identi-
fies two primary causes for the inefficiency of those graph
condensation methods: the concurrent updating of large pa-
rameter sets and the parameter redundancy. Built on the GM

scheme, it employs the Mean-Field variational approxima-
tion to expedite convergence and integrate explanation tech-
niques [Ying et al., 2019] to selectively focus on important
nodes during the training process, thereby enhancing the effi-
ciency of graph condensation.

Several subsequent studies target at improving GM for
graph condensation to enhance the effectiveness of GCond.
Unlike GCond, which uses a single fully connected graph to
generate the condensed graph dataset, MSGC [Gao and Wu,
2023] is introduced to leverage multiple sparse graphs to cre-
ate diverse neighborhoods for nodes that enhance the captur-
ing of neighborhood information. This, in turn, allows GNNs
to generate more informative embeddings in the condensed
graphs. Regarding the generalizability across different GNN
architectures, SGDD [Yang et al., 2023] is proposed to ex-
plicitly prevent overlooking the original graph dataset struc-
ture A by broadcasting it into the construction of synthetic
graph structure A′. [Gao et al., 2023] identify the poten-
tial issues in existing graph condensation methods for induc-
tive node representation learning and emphasize the under-
explored need for an explicit mapping between original and
synthetic nodes. Consequently, a GM-based method named
MCond is introduced, which explicitly learns a sparse map-
ping matrix to smoothly integrate new nodes into the syn-
thetic graph for inductive representation learning. MCond
employs an alternating optimization scheme compared to
GCond, allowing the synthetic graph and mapping matrix
to take turns updating toward dedicated objectives. Further-
more, CTRL [Zhang et al., 2024b] argues that using cosine
similarity for gradient matching leads to biases, and suggests
adding gradient magnitudes into the objective function intro-
duced in GCond for a more accurate match. Their empirical
findings also show that this approach better aligns frequency
distributions between condensed and original graphs.

Despite the effectiveness of the previously mentioned
graph condensation methods, [Feng et al., 2023] recognize
that these methods tend to exhibit fairness issues. By identify-
ing the group fairness [Mehrabi et al., 2021], it demonstrates
that as distillation performance increases, fairness (Demo-
graphic Parity ∆DP ) decreases [Feng et al., 2023]. Par-
ticularly, it is showcased that, by measuring the fairness of
GNNs trained on original graphs versus those trained on con-
densed graphs, an improvement in performance correlates
with heightened fairness issues in the synthetic condensed
graph. To address this challenge, FGD is introduced, as a fair
graph condensation method. This is achieved by incorporat-
ing the coherence metric into the GM loss function outlined
in Eq. (4a). Particularly, the coherence metric is a bias cal-
culator that captures the variance of the estimated sensitive
group membership. Similarly, to address the fairness issue
of current graph condensation methods, [Mao et al., 2023]
propose graph condensation with Adversarial Regularization
(GCARe), which is a method that directly regularizes the con-
densation process to distill the knowledge of different sub-
groups fairly into resulting graphs.

Distribution Matching. While GM-based methods offer
benefits compared to traditional methods, it faces two chal-
lenges. First, the condensation process becomes computa-
tionally expensive when minimizing the GM loss due to the
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need for computing second-order derivatives with respect to
GNN parameters. Second, the architecture-dependent nature
of the GM loss may hinder the condensed graph’s generaliza-
tion to new GNN architectures [Liu et al., 2022]. Alterna-
tively, the Distribution Matching (DM) approach seeks to ac-
quire synthetic graph data whose distribution closely approx-
imates that of real data. Particularly, DM-based algorithms
directly optimize the distance between the two distributions
using metrics such as Maximum Mean Discrepancy (MMD).
For example, CaT [Liu et al., 2023b] updates the condensed
graph S using the DM objective function to find the optimal
synthetic graph as follows:

ℓMMD =
∑

c∈C
rc ·

∥∥∥Mean (Ec)−Mean
(
Ẽc

)∥∥∥2 , (6)

where C is the set of node classes, Ec and Ẽc are the em-
beddings of nodes with class c in the original and condensed
graph, respectively, and rc is the class ratio for class c. Other
works, such as PUMA [Liu et al., 2023c], employ a simi-
lar approach for various applications like continual learning.
Another work DisCo [Xiao et al., 2024] is proposed to ad-
dress scalability issues in current matching-based condensa-
tion methods by condensing nodes and edges separately. It
is found to be significantly faster than existing methods be-
cause it conducts separate condensation processes for edges
and nodes by preserving their distributions.

Kernel Ridge Regression Methods
To mitigate heavy computation in the optimization problem
in Eq. (3a), KIDD [Xu et al., 2023], the first Kernel Ridge
Regression (KRR) method for graph condensation, simplifies
the optimization objective into a single-level problem by sub-
stituting the closed-form solution of the lower-level problem
into the upper-level objective. To implement KRR for graph-
level tasks, a graph kernel is essential [Xu et al., 2023]. Thus,
a Graph Neural Tangent Kernel (GNTK) [Du et al., 2019]
for the KRR graph classifier is chosen, as GNTK effectively
characterizes the training dynamics of GNNs and yields such
a closed-form solution. Concretely, if GNNθS in Eq. (3a)
is instantiated as the KRR and the squared loss is applied,
Eq. (3a) and Eq. (3b) can be instantiated as a single objective
function which is as follows:

min
S

LKRR =
1

2

∥∥∥yT −KT S (KSS + ϵI)
−1

yS

∥∥∥2 , (7a)

where ϵ > 0 is a KRR hyper-parameter, KT S is the ker-
nel matrix between original and synthetic graphs and KSS is
the kernel matrix between synthetic graphs1; yS and yT are
the concatenated graph labels from real dataset and synthetic
dataset, respectively.

Other Methods
In this subsection, we delve into alternative methods for
graph condensation, separate from techniques aligned with
specific approaches. For example, [Liu et al., 2023a] found
that typical graph condensation methods use GNNs or graph
filters, leading to spectrum bias. They propose GCEM to

1Each kernel indicates infinitely wide multi-layer GNNs trained
by gradient descent through squared loss [Du et al., 2019]

avoid this bias by matching eigenbases of real and syn-
thetic graphs during condensation. Since direct alignment
isn’t feasible due to differing subspace sizes, GCEM matches
node attributes instead, ensuring similar distributions: Le =∑C

c=1

∑K
k=1

∥∥hc,k − h′
c,k

∥∥2, where hc,k and h′
c,k are the

representation of the c-th class center in k-th subspace for
real and synthetic graphs, respectively.

[Zheng et al., 2023] propose SFGC, a structure-free graph
condensation method using a matching-based approach that
only outputs the condensed node features X′, as the structure
information of the real graphs is embedded in X′. Concretely,
unlike gradient matching-based methods, SFGC aligns their
long-term GNN training trajectories using an offline expert
parameter distribution as guidance.

In addition, MIRAGE [Gupta et al., 2023] is introduced
to condense multiple graphs to address graph classification
problems. It utilizes GNNs to break down any graph into a
collection of computation trees and then extracts frequently
co-occurring computation trees from this set. It is shown that
a concise set of top-k frequently co-occurring trees can ef-
fectively capture a significant portion of the distribution mass
while preserving rich information.

4 Applications
While the primary purpose of graph reduction was to enhance
the efficiency of graph algorithms, its versatility has led to its
advantageous utilization in a range of applications.

Neural Architecture Search. Neural architecture search
(NAS) technique is characterized by its intensive computa-
tional demands, necessitating the training of numerous archi-
tectures on the full dataset and choosing the top performer
based on validation results. To address the computational
challenge in NAS for GNNs, graph condensation methods
are utilized for searching the best GNN architecture [Jin et
al., 2022b; Yang et al., 2023]. The architectures trained on
condensed graphs significantly speed up the search process,
showing a reliable performance correlation between training
on condensed and full datasets. [Ding et al., 2022] present
a graph condensation method for NAS, indicating that tradi-
tional objectives don’t generalize well across GNNs. Their
method focuses on preserving hyperparameter optimization
outcomes, surpassing other condensation techniques in iden-
tifying the optimal architecture.

Continual Graph Learning. The common strategy in con-
tinual learning (CL) is memory replay [Kemker and Kanan,
2018], which involves storing representative samples from
previous tasks in a buffer to recall knowledge when needed.
In the context of graphs, CL can be benefited by informative
reduced graphs. As introduced in Section 3.3, CaT [Liu et al.,
2023b] is applied to continual graph learning by condensing
the incoming graph and updating the model with condensed
graphs, not the whole incoming graph. To further improve
CaT, [Liu et al., 2023c] introduce PUMA which utilizes
pseudo-labeling to incorporate data from unlabeled nodes,
boosting the informativeness of the buffer and addressing the
problem of neglected unlabeled nodes. In addition, the spar-
sification method [Zhang et al., 2023] reduces the number of
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nodes and edges according to the Ricci curvature evaluation
and stores them into a replay buffer for CL.

Visualization & Explanation. [Zhao et al., 2018] com-
bine spectral graph coarsening method [Loukas and Van-
dergheynst, 2018] and sparsification methods [Feng, 2016]
to develop a nearly linear time algorithm for multilevel graph
visualization. Pyramid Transform [Shuman et al., 2015] se-
lects nodes corresponding to top-k eigenvector repeatedly and
creates a multi-resolution view of large graphs. GDM [Nian
et al., 2023] employs graph condensation to explain GNN be-
havior during the training process.

Privacy. It has been empirically investigated that reduced
datasets offer good privacy preservation [Dong et al., 2022].
In the context of a federated learning framework that priori-
tizes local data privacy, the method introduced by FedGKD
[Pan et al., 2023] stands out. This approach employs a fea-
ture extractor to condense a small graph during each round
of the learning process. Following this condensation, the lo-
cal models are trained using these condensed graphs. Once
this training is complete, the models proceed to the federated
aggregation phase. This process ensures that sensitive data re-
mains secure while still allowing for effective training across
multiple decentralized devices.

Data Augmentation. Methods for graph reduction can be
employed to generate various perspectives of a graph by
repeatedly applying reductions at different ratios, thereby
augmenting the data for subsequent models. For example,
HARP [Chen et al., 2018] coarsens a graph in a series of lev-
els and then embeds the hierarchy of graphs from the coarsest
one to the original. As a condensation method, MSGC [Gao
and Wu, 2023] initializes multiple small graphs by various
connection schemes and employs gradient matching to op-
timize them. This process results in a variety of node em-
bedding sets, increasing diversity and thereby augmenting the
data.

5 Conclusion and Future Work
In conclusion, this paper presents a detailed survey of graph
reduction, covering definitions, taxonomy, and various tech-
niques. Now we further highlight the current research land-
scape in this field and suggest potential future research paths.

Comprehensive Evaluation. Despite the proliferation of
graph reduction methods, a significant gap exists in the field
concerning the establishment of a comprehensive evaluation
methodology for these emerging approaches. The prevailing
focus in existing graph reduction methods has primarily re-
solved around the ability to preserve specific graph proper-
ties or sustain the performance of GNNs on particular down-
stream tasks. On one hand, the development of novel reduc-
tion algorithms should embrace a more inclusive approach,
extending to the preservation of a diverse range of graph prop-
erties and accommodating various downstream tasks. On the
other hand, there is an urgent need to broaden the scope of
evaluation criteria. This expansion should simultaneously en-
compass the preservation of multiple graph properties and
cater to various downstream tasks. By doing so, valuable
insights into the practical utility of reduced graph datasets

across different applications and domains can be obtained.

Scalability. Despite recent research efforts to accelerate
graph condensation, the scalability issue persists. This in-
creased computational overhead presents two primary chal-
lenges: (1) Generating informative condensed graphs of
larger sizes demands significantly more computation. (2)
Condensing large-scale graphs presents computational and
resource challenges that need careful resolution.

Interpretability of Condensation Process. While graph
condensation can itself serve as an explanation or visual-
ization of the original graph, the challenge lies in the in-
terpretability of the condensation process. First, since most
condensation methods transform the original one-hot bag-of-
words node attributes X into continuous synthetic node at-
tributes X′, it remains unclear how to interpret the acquired
condensed features. Second, there is the question of how to
interpret the condensed graph structure. One potential ap-
proach to addressing these issue is to explore the development
of a general framework for enhancing interpretability during
the graph condensation process and incorporating GNN in-
terpretability techniques into this endeavor [Ying et al., 2019;
Yuan et al., 2020]. Furthermore, it is essential to conduct fur-
ther theoretical analysis to complement and expand upon the
insights presented by [Jin et al., 2022a].

Distribution Shift. Training GNNs on reduced graphs and
evaluating them on original distribution graphs can cause a
distribution shift due to the elimination of many graph el-
ements. However, there is no consensus on defining graph
data distribution or selecting properties to accurately repre-
sent it. While several condensation methods utilize one kind
of distribution matching as we mentioned in Section 2, other
measures of distribution may change after the reduction, e.g.,
size shift. Future graph reduction should consider the po-
tential distribution shift issues and preserve more information
related to distribution to enhance the generalization of models
trained on reduced graphs.

Robustness. Node attributes after graph reduction risk los-
ing fidelity, posing challenges in distinguishing them from
the original graph structure. This makes them susceptible to
data poisoning attacks, with injected triggers during the re-
duction process serving as potential backdoor vulnerabilities
as it happens in other data modalities like image [Wang et al.,
2018]. However, there is a significant gap in systematic eval-
uation concerning their robustness for graph modality. This
oversight extends to a lack of development in both attack
strategies and potential defenses tailored to reduced graph
structures. Future studies must investigate these aspects, fo-
cusing on the development of methodologies to assess and
enhance the robustness of reduced graphs.
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