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Abstract
In an era where machine learning permeates ev-
ery facet of human existence, and data evolves
incessantly, the application of machine learning
models transcends mere data processing. It in-
volves navigating constant changes exemplified by
the phenomenon of concept drift, which often af-
fects model performance. These drifts can be re-
current due to the cyclic nature of the underlying
data generation processes, which could be influ-
enced by recurrent phenomena such as weather and
time of the day. Stream Learning on data streams
with recurrent concept drifts attempts to learn from
such streams of data. The survey underscores the
significance of the field and its practical applica-
tions, delving into nuanced definitions of machine
learning for data streams afflicted by recurrent con-
cept drifts. It explores diverse methodological ap-
proaches, elucidating their key design components.
Additionally, it examines various evaluation tech-
niques, benchmark datasets, and available software
tailored for simulating and analysing data streams
with recurrent concept drifts. Concluding, the sur-
vey offers insights into potential avenues for future
research in the field.

1 Introduction
With the emergence of Industry, 4.0, more and more pro-
cesses are monitored digitally, thus continuously generating
tremendous quantities of data [Dreyfus et al., 2022]. Data
accessibility enables the implementation of impactful on-
line data-driven machine learning models [Dreyfus et al.,
2022]. However, these data-driven models are impacted by
concept drifts: input distribution shifts in the underlying
data [Dreyfus et al., 2022]. Concept drifts can differ due
to impact, transition type, reach of change, recurrence, and
blips/outliers/noise [Gunasekara et al., 2023].

The literature describes real and virtual concept drifts con-
sidering impact. The former affects the decision boundary of
the model. The latter does not influence the decision bound-
ary. Hence, the model is unaffected [Gunasekara et al.,

a) abrupt recurrent drift b) incremental recurrent drift

d) partial recurrent drift

e) evolving recurrent drift

c) gradual recurrent drift

Figure 1: Recurrent concept drifts by concept transition.

2023]. Concerning transition type, the drifts are categorized
into sudden (abrupt), gradual, and incremental drifts, consid-
ering the evolution of the relationship between features and
the target and the speed of change. In sudden or abrupt drifts,
the current data distribution changes to a new one within a
short period [Gunasekara et al., 2023]. For gradual drifts, this
transition happens gradually [Suárez-Cetrulo et al., 2023].
Here, one could observe instances from both distributions for
a certain period. The transition time is very long for incre-
mental drifts [Gunasekara et al., 2023]. With recurrent con-
cept drifts, a particular data distribution reoccurs in the stream
after a certain period. Recurrent concept drifts could also
have different transition types going from one distribution to
another. Literature also categorizes concept drifts consider-
ing their reach of change: drifts that affect all of the features
are regarded as global drifts, and drifts that affect some of the
features are called local drifts [Suárez-Cetrulo et al., 2023].
Random blips/outliers/noise are situations where, for a very
short period, few instances do not belong to the current dis-
tribution popup in the stream [Suárez-Cetrulo et al., 2023].

This survey mainly focuses on recurrent concept drifts.
Due to the cyclic nature of many physical phenomena, Stream
Learning (SL) methods that can handle recurrent concept
drifts were used in many real-world applications. A SL
method that supports recurrent concept drifts was used to de-
tect air quality using readings of neighboring sensors [Hal-
stead et al., 2022b]. Here, inference in air quality data was
complex due to spatial non-linearities and abrupt temporal
changes. Spatiotemporal relationships, environmental and
contextual features such as meteorological conditions (wind),
urban activity (traffic and heater use), and points of inter-
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est (locations of factories) were not available for the model.
Thus, the model was required to adapt to these recurrent con-
texts dynamically. Furthermore, SL with recurrent concept
drifts support were used in two energy optimization prob-
lems [Wu et al., 2023]. The first, tries to optimize between
energy storage and energy usage during tariff periods. The
second one attempts to predict HVAC (heating, ventilation,
and air conditioning) electricity, considering factors such as
temperature and humidity. Factors such as seasonality and
human activity induce recurrent concept drifts in both cases.
In another real-world problem, per-concept models were used
to predict the outlet temperature in a Vertical Roller Mill sys-
tem with recurring concepts due to regulating strategies [Sun
et al., 2021]. Depending on the regulating strategy, previous
concepts could reemerge. In another instance where species
activity registered on a sensor that changed depending on the
time of the day, custom models related to each species pro-
duced better results in determining the species than a generic
model [Moreira dos Reis et al., 2018]. Furthermore, recent
research on data-driven model maintenance in industry 4.0
highlights the importance of SL on data streams with recur-
rent concept [Dreyfus et al., 2022].

Considering the above and many real-world applications,
this survey focuses on SL for data streams with recurrent
concept drifts. The survey by [Suárez-Cetrulo et al., 2023]
mainly focuses on SL in general and explains different meth-
ods to handle recurrent concept drifts. However, it did not dis-
cuss evaluation methods, benchmark datasets, and software
implementations for SL on data streams with recurrent con-
cept drifts. A recent survey [Gunasekara et al., 2023] looks
at Online Continual Learning (OCL) from a Stream Learning
perspective. Though it refers to [Suárez-Cetrulo et al., 2023]
for the latest SL work for recurrent concept drifts, the main
emphasis there is how SL could improve Online Continual
Learning. Hence, it misses a thorough investigation of SL
on data streams with recurrent concept drifts. This survey at-
tempts to fill the above-mentioned survey gaps by explaining
design components, evaluation methods, benchmark datasets,
and software implementations for SL on data streams with
recurrent concept drifts. The survey also dwells into similar
settings such as concept evolution with recurrent classes for
SL and Online Continual Learning to find intersections and
differences with those research fields.

This paper is structured as follows. First, we provide def-
initions of recurrent concept drifts. Considering their design
components we explain popular SL methods for recurrent
concept drifts in the following section. In the subsequent sec-
tions, we explore different evaluation methods, open-source
software, benchmark datasets and future directions. Conclud-
ing remarks are presented in the final section.

2 Problem Statement
Consider an online learning algorithm A learning from an
online (potentially infinite) non-Independent and Identically
Distributed (IID) data stream. Here, the data stream can
be defined as a stream of unknown distributions D =
D1, D2, . . . , DN over X × Y , where X and Y are input
and output random variables. The transition of Dj → Dj+1

a) periodic recurrent drifts

b) semi-periodic recurrent drifts

c) random recurrent drifts

Figure 2: Recurrent concept drifts by time of recurrence.

could happen such that Dj ̸= Dj+1, to result in a con-
cept drift [Gama et al., 2014]. Specifically, it is a drift in
the conditional probability distributions, where Pj(y|X) ̸=
Pj+1(y|X) [Gama et al., 2014; Gao et al., 2020]. Further-
more, if Dj−k = Dj+1, this new distribution can be consid-
ered a recurrence of a k-th previous distribution. Such a drift
is identified as a recurrent concept drift in literature [Suárez-
Cetrulo et al., 2023].

Recurrent concept drifts could also have different transi-
tion types going from one distribution to another. Figure 1a
illustrates abrupt recurrent concept drifts. Here, the distri-
bution shifts from one concept to the other are abrupt. On
the other hand, figure 1b explains incremental recurrent con-
cept drifts, where instances slowly change over to the new
concept from the previous concept, and this incremental tran-
sition of concepts is present throughout the recurrent drifts.
With gradual recurrent concept drifts, concepts change grad-
ually. During the drift period, instances from both concepts
appear in the stream for some time. This is illustrated in fig-
ure 1c with instances from the blue concept appearing in the
stream with the pink concept until it completely switches over
to the pink concept. Then, again, instances slowly transition
into the blue concept while instances from the pink concept
gradually disappear from the stream. Partial recurrent con-
cept drifts are when a given recurrent concept is only seen
partially at the subsequent recurrence. For example, in figure
1d, the pink concept is partially present in the subsequent re-
currence, while the blue concept is fully present in the next
recurrence. Figure 1e explains an evolving recurrent concept
drift where a given recurrent concept slowly evolves into a
new concept over a period of time. Here, one can see the
pink recurrent concept slowly evolving into the orange con-
cept throughout the recurrences.

On the other hand, the recurrence of a given concept could
have many forms, depending on the time of recurrence. As
shown in figure 2a, recurrences follow a periodic pattern in
periodic recurrent drifts. Seasonal weather changes are a
good example of periodic recurrent drifts, where each season
occurs around the same time of the year. In semi-periodic re-
current drifts, only certain concepts reoccur periodically. For
example, in figure 2b, only the blue concept reoccurs regu-
larly, while other concepts follow a random recurrence pat-
tern. The recurrence pattern for each concept is hard to de-
termine in a data stream with random recurrent drifts. This
is illustrated with random recurrences for each concept in fig-
ure 2c.

Researchers working in the field should be aware of the
different intricacies in recurrent concept drifts, considering
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drift transition type and concept recurrence pattern which is
highlighted in figures 1 and 2.

3 Handling Recurrent Concept Drifts
The literature identifies many methods to detect drifts in
the input distribution: methods based on differences be-
tween two distributions, methods based on sequential anal-
ysis and methods based on statistical process control [Gu-
nasekara et al., 2023]. Works by [Khamassi et al., 2018] and
[Gama et al., 2014] contain thorough reviews of drift detec-
tors for Stream Learning. Once a drift is detected, they dis-
cuss many methods to identify recurrent concepts. Concep-
tual equivalence assumes when two classifiers behave sim-
ilarly in prediction for a time window, both classifiers de-
scribe the same concept [Yang et al., 2006]. The idea of
concept similarity was initially proposed in REDLLA [Li
et al., 2012] to detect recurring drifts in the absence of la-
beled data. Though the authors did not name this as such,
the approach aimed to recognize similar concepts using Eu-
clidean distances between concept clusters representing dif-
ferent concepts. Different distance measures for concept sim-
ilarity are discussed in other research [Angel et al., 2016;
Gomes et al., 2013]. RCD [Gonçalves Jr and De Barros,
2013] holds a pool of buffers and compares the current buffer
against all to find similar concepts using a multivariate non-
parametric statistical test.

Managing a concept history [Yang et al., 2006; Alippi
et al., 2013], which contains a classifier for each con-
cept, is popular among the research community. This idea
of a concept history is described using different terminol-
ogy like pool of classifiers [Hosseini et al., 2013], concept
list [Li et al., 2012] and concept repository [Wu et al., 2021;
Wu et al., 2022] in SL for data streams with recurrent concept
drifts.

3.1 Explicit Handling of Recurrences
Some SL methods that deal with recurrent concept drifts
build a classifier for each data batch and use a reposi-
tory/ensemble management technique to maintain the repos-
itory/ensemble. These methods do not employ a drift de-
tector to detect drifts. LEARN++.NSE trains a new classi-
fier for each batch of data and combines the classifiers using
weighted voting [Elwell and Polikar, 2011]. For recurring
concepts, it assumes that the weights of learners relating to
the recurrent concept will increase, and therefore, the final
prediction will consider relevant knowledge. PMRCD also
builds a classifier for each data batch. The method main-
tains a pool of ensembles for each concept [Hosseini et al.,
2012]. A maximum number of concepts and classifiers were
assumed to handle the memory limitations. The authors pro-
posed a mechanism to manage the classifier pool by merging
and splitting concepts. A similar approach of maintaining a
classifier pool and selecting the best ensemble was discussed
in Dynse [Almeida et al., 2018]. ASE also considered dy-
namically handling the ensemble size for recurrent concept
drifts [Duda et al., 2017]. Considering the current data chunk,
it evaluates whether adding an item to the ensemble increases
the accuracy for the entire data stream. The method uses

Kullback-Leibler discrepancy to measure the suitability of the
elements. GraphPool [Ahmadi and Kramer, 2018] maintains
a pool of concepts by applying a merging mechanism when-
ever necessary: after receiving a new batch of data, it extracts
a concept representation considering the correlation among
features. Then, it compares the current representation to the
representations in the pool using a statistical multivariate like-
lihood test. GraphPool merges all the corresponding concepts
if they are similar. Like PMRCD, it also uses Naı̈ve Bayes
classifiers. Furthermore, GraphPool maintains the transition
among concepts via a first-order Markov chain. This informa-
tion is used in prediction. It can use either a single classifier
or a weighted majority vote among classifiers for prediction.

3.2 Meta Learning
Independently of the number of base learners, some SL
methods for recurrent concept drifts act as a wrapper algo-
rithm to determine the best model or models for the cur-
rent concept after detecting a drift. Thus, they act as meta-
learners [Suárez-Cetrulo et al., 2023]. RCD creates a new
classifier for each concept and stores a sample of data used to
build it [Gonçalves Jr and De Barros, 2013]. When it detects
a new concept, the algorithm compares the incoming data to
previous ones using a non-parametric multivariate statistical
test to verify if both contexts come from the same distribution.
If so, the corresponding classifier is reused. Concept Profiling
Framework (CPF) [Anderson et al., 2016] handles recurring
concepts using a classifier pool. It evaluates which model to
reuse when a concept drift is detected using conceptual equiv-
alence with classification accuracy. New models are added
into the pool in case of a drift and pruned considering their
reuse frequency. CPF is shown to be very effective on syn-
thetic data with clear recurrent drifts but fails to outperform
RCD on real-world benchmarks [Anderson et al., 2019]. One
of the limitations of CPF is that it relies on a fixed buffer size
to determine what model to reuse. This makes it slower to re-
act to drift than the other approaches [Anderson et al., 2019].
An enhanced version of CPF was proposed in ECPF [Ander-
son et al., 2019]. It trains both a new and used classifier on
new data and retains the more accurate classifier when con-
cept drift occurs. ECPF creates a copy of the old classifier so
that training on new data does not impact the old classifier.
PEARL [Wu et al., 2022] utilizes an exact technique and a
probabilistic graphical model with Lossy Counting to replace
drifted trees in an ensemble with relevant trees from a reposi-
tory. The exact technique uses pattern matching to find the set
of drifted trees that co-occurred in the past for predictions. At
the same time, the probabilistic graphical model captures tree
replacements among recurrent concept drifts and replaces the
exact technique when stable.

3.3 Concept Clusters
Unsupervised concept representations and distance metrics
for concept similarity were also used by the SL commu-
nity working on data streams with recurrent concept drifts
to identify recurrences [Li et al., 2012; Wu et al., 2012;
Gomes et al., 2012]. In REDLLA [Li et al., 2012], when
growing a tree, the k-Means clustering algorithm produces
concept clusters and labels unlabeled data at the leaves. The
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deviation between current and historic concept clusters was
used to identify concept drifts and recurring concepts. A sim-
ilar approach was proposed in SUN [Wu et al., 2012]. There
instead of k-Means, authors used k-Modes as the clustering
algorithm. A framework using the Context Spaces Model
with Context Information was proposed in ContexTrac to rep-
resent different concepts [Gomes et al., 2012]. However,
they did not elaborate on a method to extract Context Infor-
mation from a concept. A clustering-based semi-supervised
framework, ESCR [Zheng et al., 2021], uses Jensen Shannon
divergence on classification confidence score [Haque et al.,
2016] to detect recurrent concept drifts. It detects recurring
concept drift by looking for any significant change in clas-
sifier confidence scores. Then, it determines the possibility
of recurring concept drift via Jensen-Shannon divergence by
calculating the distance between two confidence score dis-
tributions. ESCR performed better than REDLLA and RCD
on some synthetic datasets. However, its performance was
poor compared to other baselines when the dataset contains
irrelevant attributes. CDMSE [Li et al., 2021] works with
missing labeled data. There, the predicted class labels by an
ensemble model were partitioned into clusters for each data
chunk to infer their class labels. Then a concept drift detec-
tion method based on the divergence of distributions between
adjoining data chunks was used to distinguish recurring con-
cept drifts. The method performed slightly better than SUN
and REDLLA on different percentages of unlabeled data.
CCP [Katakis et al., 2010] is a very early method that used
data stream clustering for SL on data streams with recurrent
concept drifts. It proposes a general framework for classify-
ing data streams by exploiting stream clustering to build and
update an ensemble of incremental classifiers dynamically.
Data stream clustering framework UClust [Namitha and San-
thosh Kumar, 2020] was proposed to handle unlabeled data
streams with recurrent concepts. Clusters detected through
CluStream [Aggarwal et al., 2003] were used to detect drifts
and identify concept recurrences. In the CDCMS framework,
clustering in the model space was used to build a diverse
ensemble and identify recurring concepts [Chiu and Minku,
2020]. The authors argue that diversity accelerates adaptation
to different types of drifts when the new concept is similar to
the past concepts.

3.4 Drift Prediction
Some methods attempt to predict the next drift or the con-
cept, considering the recurrent nature of the concept’s ap-
pearance in the stream. These methods try to either proac-
tively influence the drift detection mechanism or re-actively
correct the detection signal by the drift detector. MM-PRec
[Angel et al., 2016] trains a meta-learner that uses a Hid-
den Markov Model to predict when a drift will happen and
the most suitable concept for each situation if it is recur-
rent. To measure concept similarity, the authors used a func-
tion based on fuzzy logic. The extra computing required to
train the meta-model was identified as the method’s main
drawback. Predictive Change Confidence Function (PCCF)
for modeling recurrent changes and predicting change points
was derived using the average time between changes and its
standard deviation [Maslov et al., 2016].The PCCF mod-

Sec Method Year DD DP LM LN/A MetaL MetaF Clust CEqSim Ens CPool
3.1 LEARN++∗ 2011 X X

PMRCD 2012 X X
Dynse 2018 X X
ASE 2017 X X
GraphPool 2018 X X X

3.2 RCD 2013 X X X X X
CPF 2016 X X X X
ECPF 2019 X X X X
PEARL 2022 X X X X

3.3 REDLLA 2012 X X X X X
SUN 2012 X X X X X
ContexTrac 2012 X X X X
ESCR 2021 X X X X X
CDMSE 2021 X X X X
CCP 2010 X X X
UClust 2020 X X X X X X X
CDCMS 2020 X X X

3.4 MM-PRec 2016 X X X X X
PCCF 2016 X
BLPA 2017 X X
CPRD 2019 X X
ProSeed 2016 X X
ProChange 2018 X X X
MDP 2018 X X X X
Nacre 2021 X X X

3.5 SELeCT 2022 X X
FiCSUM 2023 X X

Table 1: Design components of the proposed methods for recur-
rent concept drifts in each section (Sec). DD: Drift Detection, DP:
Drift Prediction, LM: Labels Missing, LN/A: Labels Not Available,
MetaL: Meta Learning, MetaF: Meta Features, Clust: Clustering
CEqSim: Conceptual Equivalence/Concept Similarity, Ens: Ensem-
ble, CPool: Concept Pool. LEARN++∗: LEARN++.NSE

els recurrent streams as convolutions of Gaussian distribu-
tions of the time intervals between changes. The method
can be used to post-process a detection by a drift detec-
tor or dynamically adjust the sensitivity of a drift detector.
Later, BLPA [Maslov et al., 2017] used PCCF to improve
Bayesian Online Change Point Detector (BOCPD) [Adams
and MacKay, 2007] for recurrent concept drifts. BOCPD
was also used to develop Change Point Recurrence Distri-
bution (CPRD) as an empirical estimate of the recurrent
behavior of observed change points [Reich et al., 2019a;
Reich et al., 2019b]. ProSeed [Chen et al., 2016] uses a prob-
abilistic network that uses stream volatility patterns to predict
future changes. Like PCCF, this method also works indepen-
dently of the drift detection technique. ProSeed was incor-
porated into the drift detector SEED [Huang et al., 2014] to
yield a proactive drift detector. Experimental results showed
that ProSeed performed better than reactive drift detectors for
data streams with reoccurring volatility trends. The same ap-
proach was used in ProChange [Koh et al., 2018] to improve a
drift detector using Hellinger distance to detect virtual drifts
and Hoeffding inequality to detect real drifts for unlabeled
transactional data. Metadata Drift Predictor (MDP) proposes
a dynamically adapting drift detector using drift-related meta-
data clustering [Anderson et al., 2018]. MDP allows the drift
detector to be more sensitive when metadata is similar to
past drifts and more conservative when metadata is dissim-
ilar. In their empirical evaluations, MDP performed more ac-
curately compared to ProSeed. Nacre proposes a framework
that contains a recurrent drift classifier, a sequence predic-
tor, and a drift coordinator for smooth adaptation of recurrent
concept drifts [Wu et al., 2021]. The recurrent drift clas-
sifier maintains a concept repository for previously learned
concepts. The drift sequence predictor predicts the next drift
point based on the previous drift intervals. The drift coor-
dinator manipulates the recurrent drift classifier and the drift
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sequence predictor to adapt to drifts proactively. Nacre uses
PEARL [Wu et al., 2022] as the recurrent drift classifier.

3.5 Meta Features
Apart from performance statistics such as accuracy, error rate,
kappa, area under the curve, or classifier confidence score,
some methods use different meta-features to improve SL on
data streams with recurrent concept drifts. CCP stores the
running mean and standard deviation for each numeric at-
tribute and the fraction of instances for each bin in the case of
nominal attributes over a sliding window. These features are
identified as ‘Conceptual Vectors’ in CCP. GraphPool takes
this idea further by storing a covariance matrix of attributes
for each class. Cluster feature vector [Zhang et al., 1996] was
used to store information about each cluster in UClust. Au-
thors of FiCSUM [Halstead et al., 2023a] argue that no single
meta-feature can fully represent a concept. They propose a
general framework for combining various meta-features into
a single representation. They propose a method for effi-
ciently computing, storing, and querying an arbitrary meta-
feature set as a single representation. They also propose
a method for dynamic learning of meta-features that distin-
guishes concepts for a given dataset. According to the au-
thors, FiCSUM enables feature selection methods, such as
mutual information, to be applied to concept representation
meta-features [Halstead et al., 2023a]. The idea was initially
proposed in 2021 however, in the initial version, it was identi-
fied that introducing irrelevant meta-features may reduce per-
formance. A new data structures which facilitates feature se-
lection to learn the relevant meta-features was introduced in
the later version[Halstead et al., 2023a]. SELeCT [Halstead
et al., 2022a] maintains a distinct internal state for each clas-
sifier. It uses meta-features described in FiCSUM to describe
a state. Considering the previous states, it selects the best
classifier for the current state of the stream. SELeCT con-
tains three components: a method for representing a concept
as a system state, a method for computing state priors and
likelihoods, and a continuous state selection statistical test to
select the active state for an incoming observation.

Table 1 summarises how the above-mentioned-design com-
ponents were used in different SL methods for data streams
with recurrent concept drifts. It further shows that some solu-
tions employ many techniques to address the issue, whereas
others use only a few. We can also observe that techniques
involving clustering and concept meta-features have gained
traction in recent years.

4 Evaluation
It is crucial to correctly evaluate a newly proposed method or
a drift detector to understand its strengths and weaknesses.
Except for typical prequential evaluation and data stream
cross-validation along with accuracy, kappa, and other met-
rics [Gunasekara et al., 2023], novel techniques proposed for
SL on data streams with recurrent concept drifts require eval-
uation methods that demonstrate their suitability for such data
streams. The literature explains a few evaluation methods for
SL on recurrent concept drifts. They mainly fall into three
categories: i) evaluation methods that evaluate the general

performance of a method on a data stream with recurrent con-
cept drifts, ii) evaluation methods that evaluate the model se-
lection for each concept on a data stream with recurrent con-
cept drifts, iii) evaluation methods which evaluate drift detec-
tion methods for data streams with recurrent concept drifts.

4.1 Evaluating Relative Performance
Other than reporting typical prequential evaluation of a newly
proposed classifier A on a data stream with recurrent con-
cept drifts, this evaluation compares the performance of clas-
sifier A against a baseline classifier B. Early work pro-
posed a variant of Q statistic [Gama et al., 2013]: Qi =
log(Berri/Aerri), where the index i refers to the time-stamp,
and Aerr and Berr refers to the error rate of the classifiers
under comparison [Gama and Kosina, 2014]. In more recent
work, Cumulative Accuracy Gain (CAG) [Wu et al., 2022]:∑

((accuracy(A) − accuracy(B)) was proposed to evalu-
ate a new method for recurrent concept drifts. CAG repre-
sents a sum of accuracy differences against a baseline at a
given sample frequency. Apart from accuracy, CAG evalu-
ation could also be applied using kappa statistics. In both
the above evaluation methods, the base classifier B selection
greatly influences the final evaluation.

4.2 Evaluating Model Selection for Each Concept
Most of the SL methods proposed for data streams with recur-
rent concept drifts keep a pool of classifiers/buffers for each
concept and attempt to retrieve the most suitable one from
the pool for a given concept. To evaluate this, three mea-
surements of context identification are discussed in the liter-
ature [Halstead et al., 2021]. Proposed measurements con-
sider concepts that are previously known and their context
and model are use as nominal and discrete for a given dataset.
Here, context refers to an underlying condition that results in
a concept. For example, a stream may be in a given context A
for a period of observations and then swap to context B over
the subsequent period. At the same time, a system may use
model A it has created over a period of time and then swap to
model B.

F1c measures the context linkage considering model use
in these cases. It measures the strength of the relationship be-
tween each < model, context > pair, e.g. < Model A, rain
>, using recall (the fraction of rain samples which occurred
under Model A) and precision (the fraction of samples un-
der Model A where it was also raining). For given s and c,
where s is the time steps a given model was active and c is
the time steps a given underlying context was present. The
authors calculated the recall(R) and precision(P ) of s on c:
R(s, c) = |{t|t∈s and t∈c}|

|c| , P (s, c) = |{t|t∈s and t∈c}|
|s| and fur-

ther calculated the F1 score: F1(s, c) = 2 R(s,c)P (s,c)
R(s,c)+P (s,c) .

The above is used to calculate three transparency mea-
sures. i) Average Context F1c: is the maximal F1 score
obtained considering the cooccurrence of a single model
and each context, averaged across all underlying contexts:
F1c =

∑
c∈C

1
|C| maxs F1(s, c). For any given under-

lying context, this measures the approximate average F1
score a single model hopes to achieve. ii) Average Sys-
tem F1s: is the maximal F1 score obtained by considering

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Survey Track

8033



the cooccurrence of each model and a single context, aver-
aged across all models, weighted by length of active time:
F1s =

∑
s∈S

|s|
|S| maxc F1(s, c). This measures the average

F1 score a model chosen randomly has on its closest context
match, given only the system’s model history. iii) s ≈ c:
the number of models which achieve a recall and precision
above 80% on one underlying context. These models have
the potential to predict underlying contexts.

According to the authors, F1c and F1s have similar prop-
erties to the standard F1 measure, which ranges from 0 to 1.
The s ≈ c measure ranges from 0 to the maximum number of
underlying concepts present in the stream. A high F1c indi-
cates that changes in concept were successfully identified. In
FiCSUM, F1c is identified as C-F1 [Halstead et al., 2023a].

4.3 Evaluating Drift Detection on Synthetic Data
MDP explains an evaluation framework for drift detection
on synthetic datasets [Anderson et al., 2018]. As one can
specify when the true drifts occur, they can be compared to
when the drifts are detected. False positive rate FP is the pro-
portion of drifts detected when no drift occurred since the
last drift detection. Here, the true positive rate (TP) = 1 -
FP. The false negative rate FN is defined as the proportion
of true drifts followed by another drift before a drift detec-
tion. These measures are compared to highlight the trade-
off between Type I (FP) and Type II (FN) errors in each
method. The authors also considered the drift detection de-
lay, the mean number of instances between an actual drift,
and the subsequent drift detection. Similar evaluations on
drift detection and drift detection delay are also presented in
other work as well [Maslov et al., 2016; Huang et al., 2014;
Koh et al., 2018].

5 Open Source Software
Most of the methods discussed in section 3 have a GitHub
fork of a popular SL framework like Massive Online Anal-
ysis (MOA), scikit-multiflow, or River with the implementa-
tion. LEARN++.NSE is available as a learner in MOA. PCCF
and ProChange are available as separate Python programs.
MOA implementations of CPF, ECPF, MDP, and PEARL are
available as separate repositories. scikit-ika, which is based
on scikit-multiflow, contains implementations of PEARL and
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6 Benchmark Datasets
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SEA, Hyperplane, Agrawal, Random Tree, LED and different
concept drift simulators are available in MOA. Although real-
world datasets Electricity and Sensor [Angel et al., 2016] are
widely used in SL literature for data streams with recurrent
concept drifts, their exact concept recurrences are unclear.

contexts at training time.We also assume that although an extensive
set of latent factors can cause concept drifts, there are smaller subset
of observable variables related to most of them. Although we have
access to these variables during training, we do not assume their
availability afterward.

Our primary contribution is a method that, given an unlabeled
sample at deployment, returns the most similar data seen at training.
In other words, it returns what is the most likely known distribution
(context) to be followed by the sample. Contrarily to other statistical
tests for matching data distribution [10], our method is robust
regarding extreme changes in P(Y ).

Given the unlabeled deployment sample, our method provides
not only its context but also an estimate of the current class distri-
bution P̂(Y ). The utility of such estimate is two-fold. First, it is the
direct answer to quanti�cation queries. Second, we can use it to
adjust the decision threshold of the classi�ers, providing accurate
results for applications where the class priors vary signi�cantly.

We make a comprehensible evaluation of our proposal and show
that:

(1) We can identify the correct context under varying class dis-
tributions with high accuracy;

(2) For quanti�cation problems, our method is signi�cantly
more accurate than the state-of-the-art under changes in
P(X ). Additionally, other quanti�cation methods can bene�t
from our context identi�cation approach;

(3) Our method is more accurate than the state-of-the-art in
data stream classi�cation with data drifts in P(X ) and P(Y )
and total absence of class labels;

(4) Our method is signi�cantly more accurate than a single
model that ignores contexts altogether, for both quanti�ca-
tion and classi�cation;

(5) Our proposal is e�cient and prone to an incremental imple-
mentation, �tting stream settings.

This paper is organized as follows. Section 2 presents a motiva-
tion for this research; Section 3 reviews the literature regarding
the tackled problem; Section 4 describes our proposal; Section 5 ex-
plains our experimental setup; Section 6 presents and discusses our
�ndings; Section 7 discusses our proposal’s e�ciency; and Section 9
presents our �nal conclusions and prospects for future work.

2 MOTIVATION
In the last years, our research group has designed a sensor for
�ying insects [27]. The sensor uses infrared light to capture the
movement of the insect wings and machine learning to classify the
insect signals into species and sex.

This sensor can augment existing mosquito traps, creating a de-
vice that can attract, capture, and also count the insects. Hence, such
trap can be a valuable tool for mosquito control and surveillance.

For control, classi�cation is the primary task. Real-time clas-
si�cation allows us to create a trap that only captures insects of
interest, such as a disease vector or agricultural pest. Other species
can be released, reducing the environmental impact of the device.

For surveillance, quanti�cation is the primary task. Counting
the number of captured insects by species and sex over time gives
us an estimate of the insect population in the trap area. Heat maps

integrate the counts of multiple traps and provide an essential tool
for teams to plan and execute larger-scale control interventions.

Data collected by the trap presents drifts. There are a large set of
factors that in�uence the �ying behavior of insects (and, therefore,
P(X )) such as temperature, humidity, air pressure, age, availability
of water and food and so forth. However, temperature is a prominent
factor. Figure 1 illustrates temperature in�uence on the wing-beat
frequency, one of the features we extract from the signals.
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Figure 1: In�uence of temperature on the wing-beat fre-
quency of Aedes aegypti mosquitoes.

An aggravating factor is that the class distribution is unknown
and highly variable. It depends on two primary factors: the local
availability of the species of interest and the insect circadian rhythm.
The circadian rhythm is a biological process that governs peaks of
activity and resting. For many insect species, these peaks occur at
dawn and dusk, as shown in Figure 2.

Figure 2: Histograms representing the circadian rhythm of
Aedes aegypti and Culex quinquefasciatus mosquitoes.

For this application, we possess plenty of labeled training data.
We gather these data in the laboratory using insectaries, which
are containers with a sensor attached. Each insectary maintains
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Figure 3: Different temperature contexts which influence the wing-
beat frequency of Aedes aegypti mosquitoes in Aedes-Culex dataset.
Source: [Moreira dos Reis et al., 2018].

On the other hand, real-world datasets Aedes-Culex, Aedes-
Sex, Arabic-Digit, CMC, Handwritten-QG, and Wine con-
tain clear recurring contexts [Moreira dos Reis et al., 2018].
For example, figure 3 shows the different temperature con-
texts that influence the wing-beat frequency of Aedes aegypti
mosquitoes in the Aedes-Culex dataset. FiCSUM uses these
contexts to identify resulting concepts. The building electric-
ity demand simulation dataset used in [Wu et al., 2023] also
contains recurrent concepts.

7 Future Directions
Considering the recent developments in SL and machine
learning in general, this section aims to explore possible inter-
sections of those fields with SL on data streams with recurrent
concept drifts.

7.1 Unlabeled Data and Concept Evolution
Apart from one recent work [Namitha and Santhosh Ku-
mar, 2020], there has not been much attention paid to un-
labeled data streams with recurrent concepts among the re-
search community. Considering that most real-world data is
unlabeled, this could be an exciting research direction the SL
community working on recurrent concept drifts could peruse.

Section 2 definition of a recurrent concept drift at concept
j+1 only considers the recurrent concepts where Pj(y|X) ̸=
Pj+1(y|X). On the other hand, concept evolution only con-
siders evolving target variables. Here at j + 1, new set of
classes emerge compared to j: Pj(y) ̸= Pj+1(y) [Gao et
al., 2020]. Here, the distribution shift is in the label data
instead of the input data. Apart from completely new (pre-
viously not seen) classes at j + 1, [Masud et al., 2011;
Gao et al., 2020] considers concept evolution with the re-
appearance of any previously seen class that was not avail-
able at j. There are only a few works in this area of concept
evolution with recurrent classes. Most of the techniques dis-
cussed in section 3 could be applied in this setting. Thus, we
see this as a natural expansion of current SL on data streams
with recurrent concept drifts.

7.2 Online Continual Learning
Online Continual Learning also considers online learning of
tasks with different label/input distributions [Gunasekara et
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to [22], the best algorithm is one that has the highest
final accuracy, however we note that the BWT metric
is also able to benefit from low accuracy during train-
ing (i.e. this e↵ect improves the metric). Instead, we
believe the best CL-algorithm is one that has high ac-
curacy, which can be improved by including new data,
without sudden performance drops. Ideally, this would
be measured continuously during training, and the area
below the accuracy curve used as a metric. Yet practi-
cally this has a high computational cost, and testing at
well-chosen discrete intervals is a reasonable approxi-
mation. For further discussions, see [23, 24, 12].

3. Continual Learning Benchmark for Autonomous
Driving

In this section, we describe the design and de-
velopment of our continual learning benchmark, us-
ing SODA10M [25], an industry-scale dataset for au-
tonomous driving. Self-driving vehicles can change ur-
ban mobility significantly, but there are still challenges
to overcome. One such challenge is demonstrating the
versatility of AI-based automated driving systems to
cope with challenging and dynamic real-world scenar-
ios. Several corporations are now driving many thou-
sands of miles a day autonomously, creating streams of
sensor measurements that form a natural source of con-
tinual learning data. This problem setting leads to natu-
ral and gradually changing distribution shifts, an excel-
lent benchmark for CL-algorithms. Next, we introduce
the SODA10M dataset, and provide a detailed overview

of our two challenge benchmarks that utilise the avail-
able data.

3.1. SODA10M Dataset
Both tracks build on the SODA10M dataset [25],

which contains 10M unlabelled images and 20k labelled
images. Image data consists of dash-camera recorded
footage, obtained from vehicles driving through four
Chinese cities, with images recorded at 10 second in-
tervals. Ordering images chronologically largely en-
tails visual footage of a car exploring the city and its
neighbourhoods. The image label set has bounding
box annotations for 6 object classes and covers dif-
ferent ‘domains’ (cities, weather conditions, time of
day and road type) – see Figure 2. See Figure 4 for
some examples images (arranged in tasks for CLAD-
D, as will be discussed in Sec. 3.4). While self- and
semi-supervised learning are interesting research direc-
tions [26], we leave incorporating the unlabelled images
for future work, and make use of the labelled dataset
portion exclusively for our benchmark challenges.

3.2. Challenge Subtracks
As our goal involves working towards more realistic,

real-world settings for continual learning, we approach
the design of the challenge benchmarks with this mind-
set. As referred to in Section 2.1, there currently ex-
ist two main axes along which continual learning real-
world task realism increases: firstly, the problem formu-
lation itself and secondly, more realistic context shifts.
Ideally, we combine these aspects into a single com-
prehensive benchmark. Yet, given that continual object
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ing (i.e. this e↵ect improves the metric). Instead, we
believe the best CL-algorithm is one that has high ac-
curacy, which can be improved by including new data,
without sudden performance drops. Ideally, this would
be measured continuously during training, and the area
below the accuracy curve used as a metric. Yet practi-
cally this has a high computational cost, and testing at
well-chosen discrete intervals is a reasonable approxi-
mation. For further discussions, see [23, 24, 12].

3. Continual Learning Benchmark for Autonomous
Driving

In this section, we describe the design and de-
velopment of our continual learning benchmark, us-
ing SODA10M [25], an industry-scale dataset for au-
tonomous driving. Self-driving vehicles can change ur-
ban mobility significantly, but there are still challenges
to overcome. One such challenge is demonstrating the
versatility of AI-based automated driving systems to
cope with challenging and dynamic real-world scenar-
ios. Several corporations are now driving many thou-
sands of miles a day autonomously, creating streams of
sensor measurements that form a natural source of con-
tinual learning data. This problem setting leads to natu-
ral and gradually changing distribution shifts, an excel-
lent benchmark for CL-algorithms. Next, we introduce
the SODA10M dataset, and provide a detailed overview

of our two challenge benchmarks that utilise the avail-
able data.

3.1. SODA10M Dataset
Both tracks build on the SODA10M dataset [25],

which contains 10M unlabelled images and 20k labelled
images. Image data consists of dash-camera recorded
footage, obtained from vehicles driving through four
Chinese cities, with images recorded at 10 second in-
tervals. Ordering images chronologically largely en-
tails visual footage of a car exploring the city and its
neighbourhoods. The image label set has bounding
box annotations for 6 object classes and covers dif-
ferent ‘domains’ (cities, weather conditions, time of
day and road type) – see Figure 2. See Figure 4 for
some examples images (arranged in tasks for CLAD-
D, as will be discussed in Sec. 3.4). While self- and
semi-supervised learning are interesting research direc-
tions [26], we leave incorporating the unlabelled images
for future work, and make use of the labelled dataset
portion exclusively for our benchmark challenges.

3.2. Challenge Subtracks
As our goal involves working towards more realistic,

real-world settings for continual learning, we approach
the design of the challenge benchmarks with this mind-
set. As referred to in Section 2.1, there currently ex-
ist two main axes along which continual learning real-
world task realism increases: firstly, the problem formu-
lation itself and secondly, more realistic context shifts.
Ideally, we combine these aspects into a single com-
prehensive benchmark. Yet, given that continual object
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final accuracy, however we note that the BWT metric
is also able to benefit from low accuracy during train-
ing (i.e. this e↵ect improves the metric). Instead, we
believe the best CL-algorithm is one that has high ac-
curacy, which can be improved by including new data,
without sudden performance drops. Ideally, this would
be measured continuously during training, and the area
below the accuracy curve used as a metric. Yet practi-
cally this has a high computational cost, and testing at
well-chosen discrete intervals is a reasonable approxi-
mation. For further discussions, see [23, 24, 12].

3. Continual Learning Benchmark for Autonomous
Driving

In this section, we describe the design and de-
velopment of our continual learning benchmark, us-
ing SODA10M [25], an industry-scale dataset for au-
tonomous driving. Self-driving vehicles can change ur-
ban mobility significantly, but there are still challenges
to overcome. One such challenge is demonstrating the
versatility of AI-based automated driving systems to
cope with challenging and dynamic real-world scenar-
ios. Several corporations are now driving many thou-
sands of miles a day autonomously, creating streams of
sensor measurements that form a natural source of con-
tinual learning data. This problem setting leads to natu-
ral and gradually changing distribution shifts, an excel-
lent benchmark for CL-algorithms. Next, we introduce
the SODA10M dataset, and provide a detailed overview

of our two challenge benchmarks that utilise the avail-
able data.

3.1. SODA10M Dataset
Both tracks build on the SODA10M dataset [25],

which contains 10M unlabelled images and 20k labelled
images. Image data consists of dash-camera recorded
footage, obtained from vehicles driving through four
Chinese cities, with images recorded at 10 second in-
tervals. Ordering images chronologically largely en-
tails visual footage of a car exploring the city and its
neighbourhoods. The image label set has bounding
box annotations for 6 object classes and covers dif-
ferent ‘domains’ (cities, weather conditions, time of
day and road type) – see Figure 2. See Figure 4 for
some examples images (arranged in tasks for CLAD-
D, as will be discussed in Sec. 3.4). While self- and
semi-supervised learning are interesting research direc-
tions [26], we leave incorporating the unlabelled images
for future work, and make use of the labelled dataset
portion exclusively for our benchmark challenges.

3.2. Challenge Subtracks
As our goal involves working towards more realistic,

real-world settings for continual learning, we approach
the design of the challenge benchmarks with this mind-
set. As referred to in Section 2.1, there currently ex-
ist two main axes along which continual learning real-
world task realism increases: firstly, the problem formu-
lation itself and secondly, more realistic context shifts.
Ideally, we combine these aspects into a single com-
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be measured continuously during training, and the area
below the accuracy curve used as a metric. Yet practi-
cally this has a high computational cost, and testing at
well-chosen discrete intervals is a reasonable approxi-
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versatility of AI-based automated driving systems to
cope with challenging and dynamic real-world scenar-
ios. Several corporations are now driving many thou-
sands of miles a day autonomously, creating streams of
sensor measurements that form a natural source of con-
tinual learning data. This problem setting leads to natu-
ral and gradually changing distribution shifts, an excel-
lent benchmark for CL-algorithms. Next, we introduce
the SODA10M dataset, and provide a detailed overview

of our two challenge benchmarks that utilise the avail-
able data.

3.1. SODA10M Dataset
Both tracks build on the SODA10M dataset [25],

which contains 10M unlabelled images and 20k labelled
images. Image data consists of dash-camera recorded
footage, obtained from vehicles driving through four
Chinese cities, with images recorded at 10 second in-
tervals. Ordering images chronologically largely en-
tails visual footage of a car exploring the city and its
neighbourhoods. The image label set has bounding
box annotations for 6 object classes and covers dif-
ferent ‘domains’ (cities, weather conditions, time of
day and road type) – see Figure 2. See Figure 4 for
some examples images (arranged in tasks for CLAD-
D, as will be discussed in Sec. 3.4). While self- and
semi-supervised learning are interesting research direc-
tions [26], we leave incorporating the unlabelled images
for future work, and make use of the labelled dataset
portion exclusively for our benchmark challenges.

3.2. Challenge Subtracks
As our goal involves working towards more realistic,

real-world settings for continual learning, we approach
the design of the challenge benchmarks with this mind-
set. As referred to in Section 2.1, there currently ex-
ist two main axes along which continual learning real-
world task realism increases: firstly, the problem formu-
lation itself and secondly, more realistic context shifts.
Ideally, we combine these aspects into a single com-
prehensive benchmark. Yet, given that continual object
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al., 2023]. But in OCL, task reoccurrence is not guaranteed.
Here, the learning system is forced to remember old tasks.
Hence, after training on a given task, instances from all the
previous tasks are considered in the evaluation [Gunasekara
et al., 2023]. Thus, forgetting of previous tasks after learning
a new task can be calculated.

OCL considers two settings with different types of distri-
bution shifts: Online Domain Incremental Continual Learn-
ing (ODICL) and Online Class Incremental Continual Learn-
ing (OCICL). ODICL is similar to SL on data streams
with concept drifts where distribution shifts are in the input
data [Gunasekara et al., 2023]. On the other hand, OCICL
focuses online learning on tasks with different label distribu-
tions. It is similar to SL with concept evolution. Considering
the similarity in two settings: SL and OCL [Gunasekara et
al., 2023] explains how some of the ideas from SL on recur-
rent concept drifts could be useful in OCL. Specifically, drift
detection and prediction to detect and predict tasks, model
repository management techniques to manage a pool of Neu-
ral Network (NN)s and model selection techniques to select a
Neural Network for prediction on instances from a past task.

On the other hand, some of the real-world OCL datasets
such as: CORe50 and Online Domain Incremental Continual
Learning version of CORe50 [Gunasekara et al., 2022] and
many of the datasets discussed in [Verwimp et al., 2023] can
be used to evaluate SL models for data streams with recurrent
concept drifts. Figure 4 contains a summary of different real-
world OCL datasets. As per figure 4, some datasets contain
clear distribution shifts going from one task to the other, and
in most of those datasets, the start and end of the task are
clearly defined to support the OCL evaluation. Such real-
world datasets can be very useful in evaluating SL methods
proposed for data streams with recurrent concept drifts.

7.3 Evaluation for Recurrent Concept Drifts
The main limitation of the performance evaluation methods
discussed in section 4.1 for SL on recurrent concept drifts is
that they require a baseline method. Thus, the performance of
the proposed algorithm is dependent upon the performance of
the baseline method. Here, one could choose a general SL al-
gorithm as the baseline to evaluate an algorithm specifically
proposed for recurrent concept drifts. This does not allow us
to evaluate how accurately the proposed algorithm performs
on recurrent concept drifts. On the other hand, model selec-

tion evaluation methods discussed in section 4.2 only con-
sider selecting the correct model for the relevant concept.
They do not give us an indication of the model’s predictive
performance.

Novel evaluation methods that specifically address a given
algorithm’s suitability when learning from a data stream with
recurrent concept drifts could be an area that the research
community could further explore. When evaluating the per-
formance of a new algorithm, it is best to avoid a baseline
algorithm, as evaluation is a bit subjective to the performance
of the selected baseline. Possible inspirations could come
from Online Continual Learning evaluations [Gunasekara et
al., 2023]. Online Domain Incremental Continual Learning
specifically is quite similar to Stream Learning [Gunasekara
et al., 2023]. Different tasks with distribution shifts in the
input data appear in the stream. The evaluation method is
aware of the drift points of the stream. After learning a new
task, the OCL method is evaluated against separate test sets
of all the already learned tasks. Apart from accuracy, one in-
teresting metric discussed in OCL is forgetting [Gunasekara
et al., 2023]. Here, the current task’s performance of the
OCL method is compared against previous tasks’ best per-
formance, with lower forgetting indicating a model improve-
ment over past tasks.

For data streams with recurrent concept drifts, if the start
and end points of a concept and its relevant recurrent con-
cept are known, then one can track the performance of recur-
rent concept explicitly. This process can provide useful in-
sights for each recurrent concept. It can help identify which
recurrent concept performs best with which proposed algo-
rithm. Similar to current stream learning evaluation meth-
ods, this new evaluation can be applied with accuracy, kappa,
and other evaluation metrics discussed in SL literature [Gu-
nasekara et al., 2023]. One could also use a similar metric as
forgetting to evaluate the model improvement over different
reincarnations of the same concept.

8 Conclusions

This survey focuses on Stream Learning methods for data
streams with recurrent concept drifts. It highlights the impor-
tance of SL on data streams with recurrent concept drifts con-
sidering concept recurrence in the data streams generated by
the increasing digitization processes. The survey explains the
currently available methods, their design components, evalu-
ation methods, benchmarks, and the availability of software
implementations. It highlights the need for evaluation meth-
ods that do not use a baseline algorithm. Furthermore, it in-
quires into Online Continual Learning and Concept Evolution
with recurrent classes to find possible intersections and direc-
tions for future research.

Though we see the importance of explainability in recur-
rent concept drifts, where one explains the reasons for recur-
rences, explainable Stream Learning itself is still in its in-
fancy. We hope future work in explainable Stream Learning
would lay the foundations for explaining recurrent concept
drifts.
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