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Abstract

Despite the impressive performance of LLMs, their
widespread adoption faces challenges due to sub-
stantial computational and memory requirements
during inference. Recent advancements in model
compression and system-level optimization meth-
ods aim to enhance LLM inference. This survey
offers an overview of these methods, emphasiz-
ing recent developments. Through experiments on
LLaMA(/2)-7B, we evaluate various compression
techniques, providing practical insights for efficient
LLM deployment in a unified setting. The empir-
ical analysis on LLaMA(/2)-7B highlights the ef-
fectiveness of these methods. Drawing from survey
insights, we identify current limitations and discuss
potential future directions to improve LLM infer-
ence efficiency. We release the codebase to repro-
duce the results presented in this paper at https:
//github.com/nyunAI/Faster-LLM-Survey

1 Introduction
The advent of LLMs, marked prominently by models such as
GPT [Brown et al., 2020] and LLaMa [Touvron et al., 2023a;
Touvron et al., 2023b] series, has paved a new revolution
in language-related tasks, ranging from text comprehension
and summarization to language translation and generation.
These models, often consisting of billions of parameters, have
shown remarkable performance in capturing intricate pat-
terns, fine-detailed contexts, and semantic representations in
natural language. As a consequence, they have become in-
dispensable tools in various applications, leading to advance-
ments in various domains, including artificial intelligence, in-
formation retrieval, and human-computer interaction.

Despite their unparalleled performance, widespread adop-
tion of LLMs is hindered by their substantial computational
and memory requirements, which pose challenges for de-
ployment in resource-constrained environments. For exam-
ple, loading a LLaMa-70B model requires 140GB of VRAM
excluding the memory required for model inferencing. The
need for efficient deployment has led to recent research into
model compression as well as system-level modification tech-
niques tailored specifically for LLMs. These early works

have identified potential ways to improve the inference ef-
ficiency of LLMs. However, the current improvements are
often accompanied by significant drops in the performance of
the model, and novel research directions need to be identified
to find the desired solutions to this problem.

A recent survey study has provided a concise overview of
the recently proposed LLM compression methods, as well as
the evaluation metrics and the data used to benchmark them
[Zhu et al., 2023]. However, to further push the frontiers of
research towards practical inference improvement for LLMs,
a comprehensive study is still missing. In this survey paper,
we explore existing methods that aim at making LLMs effi-
cient through model compression as well as through system-
level optimizations. To fairly compare various methods, we
provide empirical observations using different compression
techniques applied to LLaMa(/2)-7B. Our evaluation includes
methods that provide a practical advantage and include struc-
tured pruning, quantization, and system-level optimizations
provided by different inference engines from the existing lit-
erature. We share valuable insights drawn from these experi-
ments to present a useful and practical understanding of effi-
cient LLMs. Additionally, we make the code and benchmarks
associated with the experiments publicly available. We also
examine the difficulties linked to current compression meth-
ods in both general deep learning and those specifically sug-
gested for LLMs, and we discuss potential directions of re-
search to overcome these problems.

Overall, the contributions of this paper are as follows.
• We offer a brief overview of the model compression

domain, emphasizing essential methodologies that have
made notable contributions to the field of lighter and
faster LLMs.

• Complementary to model compression, system-level
modifications have played an important role in speeding
up the LLM inference, and we discuss these approaches
as well.

• To provide a practical perspective, we present an em-
pirical analysis of well-known compression methods for
LLMs under a standardized setup. The insights derived
can help make informed decisions about the selection
of LLM compression methods based on the deployment
environment.

• Drawing upon insights derived from our survey and em-
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pirical analysis, we systematically pinpoint existing lim-
itations and propose viable pathways forward for achiev-
ing optimal efficiency in LLM inference.

2 Model Compression: An Overview
Model compression techniques have emerged as a crucial
area of research, offering promising solutions to enhance
the efficiency of resource-intensive deep learning models.
The domain of developing efficient Large Language Models
(LLMs) can significantly benefit from insights and method-
ologies used in this field. Before diving into the topic of
building efficient LLMs and the existing works around it,
we provide an overview of some of the popular approaches
employed in deep learning model compression. Below, we
first introduce the traditional approaches of model compres-
sion and briefly discuss the development related to the tradi-
tional deep learning models. Following this, we provide an
overview of the works related to compression of LLMs in the
existing literature.

2.1 Compression of Deep Models
Architecture pruning refers to the process of systematically
reducing the complexity of a neural network by eliminating
redundant or less impactful connections, neurons, or entire
layers [Janowsky, 1989]. This technique aims to enhance
model efficiency, reduce computational costs, and mitigate
overfitting without significantly compromising performance.
Pruning involves identifying and removing connections or
units based on various criteria, such as weight magnitudes [Li
et al., 2016], activation patterns [Molchanov et al., 2016], or
sensitivity analysis [Sanh et al., 2020]. The pruned model re-
tains its critical features while achieving a more compact rep-
resentation, which is particularly valuable in scenarios with
limited computational resources, such as edge devices or mo-
bile applications.

Among the widely studied pruning methodologies, the lot-
tery ticket hypothesis [Frankle and Carbin, 2019] provided
fundamental insights into the impact of weight initialization
and pruned network structure on neural network pruning.
Network Slimming [Liu et al., 2017; Chavan et al., 2022] in-
troduced a method to prune channels in CNNs and reduce the
size of weight dimensions in Transformers by imposing spar-
sity regularization on the channel scaling factor. Movement
pruning demonstrated large-scale pruning of BERT [Kenton
and Toutanova, 2019] models by leveraging the first-order in-
formation i.e. retain weights moving away from zero, as com-
pared to zero-order methods which retain weights with larger
magnitudes. [Lagunas et al., 2021] introduced block struc-
tures in weight matrices of transformer layers and employed
movement pruning on them for practical speedups. More re-
cently, [Jiang et al., 2023a] argued that fine-tuning is redun-
dant for first-order pruning and proposed Static Model Prun-
ing (SMP), a fine-tuning free pruning method for language
models.

Quantization reduces the precision of numerical values in
a neural network, typically from 32-bit floating-point num-
bers to lower bit-width representations, such as 8-bit integers
thus shrinking the memory footprint of the model, accelerat-
ing inference speed, and enabling more efficient deployment

on hardware with limited computational resources. During
quantization, weights and/or activations are rounded off to a
discrete set of values, introducing a trade-off between com-
putational efficiency and model accuracy. Even with this re-
duction in precision, state-of-the-art quantization methods are
capable of minimizing the impact on performance.

Quantization-Aware Training (QAT) [Ni et al., 2020] in-
volves the quantization of model parameters throughout the
training process, encompassing both the forward pass and
backward propagation. LSQ [Esser et al., 2019] proposed
a learnable step size for each weight in conjunction with
other network parameters. [Tailor et al., 2021] introduced
an architecture agnostic method for pruning graph neural net-
works. On the other hand, Post Training Quantization (PTQ)
[Banner et al., 2019] finds out the optimal clipping range
and channel-bit-width settings for weights and activations.
OSME [Choukroun et al., 2019] proposed a PTQ method in
which l2-distance between the quantized tensor and the cor-
responding floating-point tensor is minimized.

Knowledge distillation aims at training a computationally
efficient model, often referred to as the student model, to
mimic the predictions of a larger and more complex model
known as the teacher model. This process involves trans-
ferring the knowledge embedded in the teacher model, typ-
ically characterized by its soft probabilities or intermediate
representations, to the student model. Distillation is particu-
larly useful when deploying models in scenarios with limited
computational resources, as it enables the creation of smaller
models that retain the performance of their larger counter-
parts. Additionally, distillation helps combat issues such as
over-fitting, improves generalization, and facilitates the trans-
fer of knowledge learned by deep models to simpler ones.

Knowledge distillation techniques can be divided into three
classes i.e. response-based, feature-based and instance-
relation based. Response-based distillation [Hinton et al.,
2015] trains the student model to mimic the final outputs of
the teacher, while feature-based distillation [Tian et al., 2022]
trains the student to mimic intermediate feature maps of the
teacher. Relation-based distillation takes one step further by
using an objective which models the co-relation of the simi-
larity between various feature maps of the student and teacher
network. More recently, [Chen et al., 2023b] used knowledge
distillation during the pre-training stage and reduced the size
of BERT by 40%, making it 60% faster while retaining 97%
of its language understanding abilities.

Low-rank decomposition reduces the computational com-
plexity of models by decomposing weight matrices into
smaller ones with fewer dimensions which in turn approxi-
mate the initial full-rank matrix. This also reduces the number
of parameters in the model and speeds up matrix multiplica-
tions hence reducing memory and latency requirements.

[Jaderberg et al., 2014] proposed an architecture agnostic
method of accelerating convolutional layers using tensor de-
composition and discriminative fine-tuning; whereas [Denton
et al., 2014] proposed clustering methods with low-rank fac-
torization for faster CNNs. [Sainath et al., 2013] examined
low-rank matrix factorization in acoustic models, where the
factorization was applied on the final layer of the network.
[Lebedev et al., 2015] introduced canonical polyadic decom-
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position which is calculated using non-linear least squares for
speeding up CNNs. [Tai et al., 2016] proposed a global de-
composition optimization algorithm and thus performed bet-
ter than iterative methods.

2.2 Compression of LLMs
The compression of LLMs represents a distinctive challenge
compared to traditional deep learning models, primarily due
to the substantial scale of the former. Many established com-
pression methods rely on the paradigm of executing fine-
tuning steps to regain lost performance during the compres-
sion stage. However, this approach encounters significant
limitations when applied to LLMs owing to their considerable
size, necessitating a paradigm shift in the treatment of LLM
compression as an independent and new research domain.

Architecture pruning. LLM-Pruner [Ma et al., 2023] used
Taylor series expansion by leveraging a single gradient step
to estimate important parts of a pre-trained LLM. LoRAPrune
[Zhang et al., 2023] outperformed LLM-Pruner by using gra-
dients of LoRA [Hu et al., 2021] weights, offering compu-
tational efficiency. LoRAShear [Chen et al., 2023a] identi-
fied dependencies in LLMs, separated trainable variables into
groups, and achieved compression through pruning and fine-
tuning. Sheared LLaMA [Xia et al., 2023] introduced tar-
geted structured pruning and dynamic batch loading for end-
to-end component removal. FLaP [An et al., 2023] a fine-
tuning free structured pruning method which used a fluctua-
tion based metric to determine the importance score of vari-
ous weight columns.

Unstructured pruning methods, such as SparseGPT [Fran-
tar and Alistarh, 2023], adopted a one-shot technique without
the need for fine-tuning. WANDA [Sun et al., 2023] pruned
weights based on the product of weight values and activa-
tion inputs, eliminating the need for fine-tuning. Another
recent work suggested fusing of OBS [Hassibi et al., 1993]
and OBD [LeCun et al., 1989] criteria for weight selection
and determining layer sparsity based on sensitivities derived
from Hessian matrices [S. et al., 2023]. While the structured
and unstructured methods mentioned above show promise,
the observed performance drop for the achieved compression
level remains relatively high. Further efforts are required in
developing pruning methods that can lead to efficient LLMs.

Quantization. This class of methods has been relatively
more successful in the compression of LLMs. LLM.int8()
[Dettmers et al., 2022] made it possible to convert the higher
bit LLM weights into 8-bit without deterioration in perfor-
mance post-training. They proposed a two-stage quantization
scheme with vector-wise quantization and mixed-precision
decomposition for outliers. SmoothQuant [Xiao et al., 2023],
a training-free PTQ method, reduced both weights and acti-
vations of LLMs to 8 bits. QLoRA [Dettmers et al., 2023]
introduced 4-bit NormalFloat (NF4) and double quantization
to save memory without losing out on the performance of
models. OmniQuant [Shao et al., 2023] introduced Learnable
Weight Clipping (LWC) and Learnable Equivalent Transfor-
mation(LET). LWC prevents weights from attaining extreme
values by optimizing the clipping threshold, while LET deals
with activation outliers by quantizing weights instead of acti-
vations through a LET. SqueezeLLM [Kim et al., 2023] en-

abled compression up to 3-bit by using a sensitivity-based
non-uniform quantization scheme, where second-order infor-
mation is used to find the optimal bit precision. GPTQ [Fran-
tar et al., 2023] used second-order information to compress
models with up to 175 billion parameters to as low as 3 bits
per weight with minimal loss in accuracy, pushing the previ-
ously proposed 8-bit methods to a smaller size. [Lin et al.,
2023] observed that retaining 1% crucial weights can help re-
duce the degradation in quantization performance. They pro-
posed Activation-aware Weight Quantization (AWQ) which
finds the best channel-wise scaling, outperforming existing
techniques in general language modeling and domain-specific
tasks. ZeroQuant-FP [Wu et al., 2023] focused on float-
ing point quantization and found that FP8 outperforms INT8
for activations and FP4 is comparable to INT4 for weights.
They also incorporated low-rank compensation into their ap-
proach for enhancement. EXL21 proposed a mixed-precision
quantization algorithm, where different precision types for
each layer are computed while measuring quantization errors.
Their algorithm saves all the tries and associated error rates in
the measuring pass and given a target precision, the algorithm
quantizes the model by choosing, for each layer’s module, a
target precision with the lowest error rate. GGUF/GGML2

proposed a mixed set of quantizations to achieve K-Quants,
a mostly K quantization output. For example, 4bit K-Quant
uses 6bit for a few of the Attention and MLP layers and the
usual 4bit for others.

LLM-QAT [Liu et al., 2023] proposed a data-free distilla-
tion method where they queried a pre-trained model to gen-
erate data which was used to train a quantized student model
using a distillation loss. With the quantization of the KV-
cache as well, apart from weights and activations, they can
quantize 7B, 13B, and 30M LLaMA down to 4 bits. Bit-
Net [Wang et al., 2023a] introduced a 1-bit LLM transformer
architecture. It mainly replaces the standard nn.Linear
in PyTorch with BitLinear to train 1-bit weights. As the
size of the models increases, it comprehensively outperforms
counterparts trained on FP16. [Tao et al., 2022] proposed
token-level contrastive distillation and used dynamic scaling
to make quantizers adaptive to different modules.

Knowledge distillation. Among the knowledge distillation
methods, both white-box as well as black-box methods have
been used to compress large open-source language models.
Instead of solely relying on a fixed set of output sequences,
Generalized KD [Agarwal et al., 2023] trains the student on
its self-generated output sequences by leveraging feedback
from the teacher on such sequences. TED [Liang et al., 2023]
employs a dual-stage training process. In the first stage, task-
specific loss trains filters in both student and teacher models.
In the second stage, the student and its filters undergo train-
ing with a task-aware layer-wise distillation loss, alongside
student-teacher and task-specific losses. In another work [Jha
et al., 2023], the student model is initialized with a subset
of layers of the teacher and trained on the same corpus and
objective as the teacher. This helps to achieve task-agnostic
compression without using any distillation loss.

1https://github.com/turboderp/exllamav2
2https://github.com/ggerganov/ggml
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Other distillation methods include black-box techniques
such as Lion [Jiang et al., 2023b], where the student net-
work is trained using a three-stage adversarial loop consist-
ing of an imitation, discrimination, and generation stage. In
its discrimination stage, a propriety LLM is used to find hard
instructions, i.e. instructions for which the student’s outputs
significantly differ from the teacher’s outputs. As a final step,
the propriety LLM generates more samples similar to the hard
instructions on which the student is trained to complete the
loop. DISCO [Chen et al., 2023b] is a counterfactual knowl-
edge approach in which a propriety LLM is given a prompt
and is made to generate counterfactual augmentations in it.
Then a task-specific teacher model filters out these augmen-
tations, and the student model is trained on them. SCOTT
[Wang et al., 2023b] used contrastive decoding to generate ra-
tionale from the teacher along with the usual question-answer
pair to train the student model.

Low rank approximations. TensorGPT [Xu et al., 2023]
compressed the embedding layer of LLMs through Tensor-
Train Decomposition and stored it in a reduced Matrix Prod-
uct State, which can be computed in a distributed fashion.
LoSparse [Li et al., 2023] approximated weight matrix in
LLMs as the sum of a sparse matrix and another low-rank
approximation matrix. The low-rank matrices capture the ex-
pressive features among neurons as they involve doing Singu-
lar Value Decomposition and the remaining features are cap-
tured by the sparse matrix. [Kaushal et al., 2023] show that a
simple decomposition of the matrices in LLMs as a product
of two sparse low-rank matrices can offer noticeable com-
pression and speedup at a small compromise of perplexity.

Overall, the research direction of using low-rank approxi-
mations to compress LLMs is new but exhibits the potential to
improve inference efficiency. Two recent works have shown
that low-rank approximations can often improve reasoning
abilities and undergo compression through layerwise rank re-
duction in the weight space [Sharma et al., 2023] and/or in
the latent feature space [Chavan et al., 2023]. These methods
offer the advantage of requiring minimal computational re-
sources for the compression process due to their layerwise ap-
proach to matrices involved. However, it should be noted that
the level of lossless compression achieved using these tech-
niques remains modest, and further improvements are needed
from a practical point of view.

System level approaches. Here we highlight those meth-
ods which improve the complementary infrastructure and
runtime architecture of LLMs.

Paged Attention [Kwon et al., 2023] - inspired by the clas-
sical virtual memory and paging techniques in operating sys-
tems, it allows storage of continuous keys and values cached
in non-contiguous memory.

Tensor Parallelism - entails dividing a tensor into shards
distributed across various GPUs, processing each shard inde-
pendently and in parallel, and subsequently synchronizing the
results at the end of the step.

Pipeline Parallelism - allows a model to be vertically split
across multiple GPUs at the layer level, where each GPU han-
dles one or several layers, enabling parallel processing of dis-
tinct stages in the pipeline.

CPU/GPU Offloading [Song et al., 2023]- involves trans-

ferring specific weight layers to GPU devices for matrix mul-
tiplication, subsequently transmitting the computed results
back to the secondary device (RAM), thus optimizing parallel
processing capabilities while allowing the secondary device
to handle the remaining memory intensive computations.

Flash Attention(/v2) [Dao et al., 2022; Dao, 2023] -
optimizes attention computation by employing incremen-
tal softmax reduction through input block tiling, avoid-
ing the need for whole-input access, and expedites the
backward pass by storing the softmax normalization fac-
tor from the forward pass, eliminating the requirement to
read the large attention matrix from high bandwidth memory
(HBM). FlashAttention-2 minimizes non-matrix multiplica-
tion FLOPs, optimizing the online softmax technique, intro-
ducing parallelism over sequence length, and refining work-
load partitioning among warps within each thread block to
reduce synchronization.

Fused Operations - involves consolidating multiple com-
putational tasks, such as combining existing kernels or creat-
ing new ones, to minimize the overhead associated with mul-
tiple kernel API invocations.

Speculative Decoding [Leviathan et al., 2023]- efficiently
generates multiple future tokens from a chosen smaller model
and verifies them in parallel using the larger model, enabling
the simultaneous decoding of multiple tokens per step.

Notable implementations in this category include
vLLM3[Kwon et al., 2023], Llama.cpp4, ExLlama(/v2),
TensorRT-LLM5, MLC-LLM6, PowerInfer7 [Song et al.,
2023], among others. vLLM employs paged attention
through a KV-Cache manager that separates logical and
physical KV blocks, enabling dynamic growth of the KV
cache. ExLlama(/v2) implements fused kernels to minimize
launch overheads and API invocation overheads when
operating on discontinuous blocks. Llama.cpp is a low-level
C/C++ implementation of the LLaMA architecture with
support for multiple BLAS backends for fast processing. It
operates on the GGUF quantization scheme with CPU and
GPU offloading. MLC-LLM focuses on compiler accel-
erations and runtime optimizations for native deployment
across platforms. It encapsulates model execution logic in a
container - Intermediate Representation Module (IRModule)
which captures the hierarchical structure of computations
for optimization and code generation. It employs Paged
Attention, Fused Operators, and automatic generation of
optimized kernel code for multiple hardware platforms.
TensorRT-LLM implements masked multi-head attention
with on-the-fly pre-processing of QKV elements. It supports
Paged Attention, INT8/FP8 caches, in-flight batching, and
tensor/pipeline parallelism for speedups. An additional
improvement is attained due to fused in-flight batching with
operation fusion. PowerInfer adopts a GPU-CPU hybrid
approach, by pre-loading consistently activated hot neurons
onto the GPU for fast access, computing variable cold

3https://github.com/vllm-project/vllm
4https://github.com/ggerganov/llama.cpp
5https://github.com/NVIDIA/TensorRT-LLM
6https://github.com/mlc-ai/mlc-llm
7https://github.com/SJTU-IPADS/PowerInfer
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neurons on the CPU, and integrating adaptive predictors and
neuron-aware sparse operators to optimize efficiency.

Overall, these methods work complementary to model
compression methods and improve the runtime efficiency of
large language models. These engines demonstrate the feasi-
bility and benefits of optimizing the software architecture and
infrastructure complementary to model compression.

3 Experimental Analysis
As discussed above, there exist several approaches for model
compression, and there is no clear consensus on which
method to use when or which method is superior over the
others. Thus, we present here an experimental analysis of the
different LLM compression methods and present important
insights. For all the experiments, we provide practical infer-
ence metrics including model weight memory (WM), runtime
memory consumption (RM), inference token rate and Wiki-
Text2 perplexity computed on a Nvidia A100 40GB GPU.

Method Sparsity RM (GB) WM (GB) Tokens/s Perplexity
Baseline - 26.16 12.55 30.90 12.62
Wanda-SP 20% - - - 22.12

50% - - - 366.43
LLM-Pruner 20% 10.38 10.09 32.57 19.77

50% 6.54 6.23 40.95 112.44
LLM-Pruner* 20% 10.38 10.09 32.57 17.37

50% 6.54 6.23 40.95 38.12
FLaP 20% 9.72 9.44 33.90 14.62

50% 6.26 6.07 42.88 31.80

Table 1: Performance measures for various compressed variants of
LLaMA-7B model obtained using the following structured pruning
methods: Wanda-SP, LLM-pruner and FLaP. Here, ∗ refers to a fine-
tuned variant of LLM-pruner.

Pruning of LLaMA-7B. In this analysis, we examine the
structured pruning of the LLaMA-7B model using three re-
cent Large Language Model (LLM) pruning methods. Ta-
ble 1 showcases the performance scores for these methods at
sparsity levels of 20% and 50%. Notably, all compression
methods exhibit effective performance in terms of perplex-
ity at lower sparsity levels.Wanda-SP denotes Wanda adapted
to structured pruning as reported in [An et al., 2023]. Notice-
ably, Wanda-SP and LLM-Pruner impacts the model’s perfor-
mance and have suboptimal results at 50% sparsity. On the
other hand, both FLaP and the fine-tuned variant of LLM-
pruner perform well at this level. Comparing RM, WM,
and Perplexity, these two methods demonstrate similar per-
formance, with FLaP slightly outperforming the fine-tuning-
based LLM-pruner. It is important to note that beyond supe-
rior performance, FLaP is also training-free, which makes it
a preferred choice for LLM pruning.

Quantized LLaMA2-7B. Table 2 presents a comparative
study demonstrating the efficacy of different quantization
methods for improving LLM inference. For each quantiza-
tion method choice, we default to Pytorch as the default in-
ference engine and use propriety engines when Pytorch sup-
port is not available. As can be seen, the perplexity of all
the models is mostly intact with only marginal degradation.
As expected, lower precision leads to lower working and run-
ning memory consumption. Importantly, we see that at 4-bit,

OmniQuant can maintain performance the most. However,
GPTQ and AWQ have a wider support on different engines.
Another interesting observation is that even though sub 4-bit
quantizations lead to a drop in model performance, the resul-
tant models are still better than those obtained from pruning
at similar compression levels.

System-level optimizations for LLaMA2-7B. We also con-
sider system-level optimization methods and improve LLM
inference by employing various inference engines proposed
in the existing literature. Related results are presented in Ta-
ble 3. As can be seen, different methods have advantages
across different performance metrics. TensorRT-LLM stands
out with impressive performance across all metrics, partic-
ularly on NVIDIA GPUs. It provides the best token rate
with GPTQ 4-bit quantization, however, efficient 4-bit sup-
port is only available for new hardware8. It can also be con-
sistently seen that GPTQ is faster than AWQ at the same pre-
cision, however, the perplexity is slightly worse. MLC-LLM
seems to demonstrate slightly lower performance compared
to TensorRT-LLM, however, its compatibility with a range of
hardware positions it as a favourable choice in specific sce-
narios.

4 Challenges and Way Forward
Large-scale pruning/distillation is computationally inten-
sive. The strategies of architecture pruning and knowledge
distillation have gained widespread popularity for compress-
ing deep learning models. However, these techniques re-
quire several fine-tuning steps, the computational demands
of which can rival or even surpass the intensity of the ini-
tial training steps. In the context of LLMs, this renders them
impractical, given their already substantial computational re-
quirements. While some efforts have been made to address
this challenge, they often result in significant accuracy drops
even for marginal compression gains. Possible ways to cir-
cumvent the issue could include:

• Revisiting the training-free pruning methods to explore
their potential in the context of LLMs. For example,
knowledge-preserving pruning, which focuses on reduc-
ing the unwanted knowledge context in a network rather
than eliminating weights, can be improved and adapted
for LLMs. Since such methods are mostly training-free,
they could offer efficient LLMs at only a small addi-
tional computational budget.

• Exploring layerwise pruning of LLMs. A straightfor-
ward implementation of layerwise pruning would re-
quire defining localized loss functions in terms of regres-
sion loss and compressing the sub-network while ensur-
ing that the local output is reproduced. However, in such
an approach, even small errors in the early layers could
easily propagate to the later layers leading to poor per-
formance of the compressed network.

• Localized distillation of LLMs. A potential solution to
overcome the issue of distillation could be to develop lo-
calized distillation methods. Instead of condensing the
entire teacher LLM information into a smaller student,

8Ampere and newer series of GPUs support 4bit runtime
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Method Inference Engine WM (GB) RM (GB) Tokens/s Perplexity
Baseline FP16 PyTorch 12.55 26.16 30.90 5.85
GPTQ 2bit PyTorch 2.11 2.98 20.91 NaN
GPTQ 3bit PyTorch 2.87 3.86 21.24 7.36
GPTQ 4bit PyTorch 3.63 4.65 21.63 6.08
GPTQ 8bit PyTorch 6.67 7.62 21.36 5.86
AWQ 4bit GEMM PyTorch 3.68 4.64 28.51 6.02
AWQ 4bit GEMV PyTorch 3.68 4.64 31.81 6.02
QLoRA (NF4) PyTorch 3.56 4.84 19.70 6.02
LLM.int8() PyTorch 6.58 7.71 5.24 5.89
K-Quants 4bit Llama.cpp 3.80 7.38 104.45 5.96
OmniQuant 3bit MLC-LLM 3.20 5.10 83.4 6.65
OmniQuant 4bit MLC-LLM 3.80 5.70 134.2 5.97

Table 2: Performance comparison of different quantization methods for the compression of LLaMA2-7B. Here, WM and RM refer to weight
memory and running memory consumption, respectively.

this approach involves learning localized parts of the
teacher network in smaller-scale student sub-networks.
A strategy can then be devised to combine these sub-
networks into a fully compressed student LLM. This ap-
proach holds promise as a potential solution to the com-
putational challenges associated with LLM distillation.

• Growing smaller LLMs to reach the desired perfor-
mance. The primary obstacle in compressing Large Lan-
guage Models (LLMs) lies in the computational chal-
lenges during fine-tuning, attributed to the models’ sub-
stantial size. An alternative and ambitious research
direction involves growing smaller language models
(SLMs) into LLMs using well-defined neural network
growing strategies. This approach avoids the need to
train a full-scale LLM, and the maximum computational
burden is determined by the final compressed LLM ob-
tained through the growth of the SLM.

• Using PEFT methods to fine-tune when pruning effi-
ciency. To address the challenge of full-scale fine-tuning
during pruning, an alternative approach is to employ
PEFT methods. Unlike traditional methods, PEFT does
not require updating the model weights; only the added
masks and PEFT parameters are updated [Zhang et al.,
2023]. This significantly reduces the computational in-
tensity of the fine-tuning process. However, PEFT meth-
ods currently face limitations in achieving large-scale
compression of LLMs, indicating a need for further re-
search to develop PEFT methods tailored specifically for
compressing LLMs.

On-the-fly Quant-Dequant makes the inference slow. The
utilization of lower-precision floating-point formats such as
FP4 poses a dual challenge regarding memory efficiency and
computational speed during inference. While contemporary
hardware typically supports formats like FP16 and INT8,
which enable substantial memory reduction, the lower pre-
cision conversions typically needs the Quantization (Quant)
and Dequantization (Dequant) operations. These operations
can induce computational overhead, contributing to a slow-
down in the inference process compared to using higher-
precision formats like FP16. Therefore, while the adoption of

lower-precision formats can offer memory efficiency gains,
they adversely affect the inference speed and a right balance
between the two needs to be struck. A potential solution in-
volves the development of streamlined Quant-Dequant oper-
ations, aiming to alleviate the observed overhead in inference
speed. Another strategy is to tailor the choice of precision
formats according to the specifications of the hardware in
use. Concurrently, advancements on the hardware front are
essential, necessitating support of lower precision formats to
a broader range of popular hardwares.
Rank selection in the layerwise low rank approximation is
hard. While low-rank approximation exhibits enormous po-
tential for LLM compression, this approach is accompanied
by a set of challenges, particularly in the determination of
hyperparameters governing the rank reduction process. De-
ciding on a low-rank approximation strategy lacks a clear
consensus for generalizing the method across different mod-
els. Moreover, the computational infeasibility of solving a
system-level decomposition system adds a layer of complex-
ity, making it challenging to achieve an optimal reduction in
model size while preserving performance.

It is crucial to recognize that determining the optimal rank
to retain across various layers is not easily addressed through
a hyperparameter search problem. Many of these approaches
are computationally expensive, particularly in the context of
Large Language Models (LLMs). There is a necessity to ex-
plore and develop an effective strategy for searching for the
right rank when employing low-rank approximations.
Existing evaluation metrics may not comply well. Com-
pressing LLMs while preserving their ability to handle ex-
tensive contextual information is a challenge, and appropriate
evaluation metrics need to be developed to tackle this issue.
Another factor is the loss of fidelity. Aggressive compression
may lead to a significant loss of model fidelity, impacting the
language model’s ability to generate accurate and contextu-
ally relevant outputs. Several such characteristics of LLMs
need to be captured in their compressed variants, and this can
only be identified by the right choice of metrics.
Python - an interpreted language leads to slower execution
times. The Global Interpreter Lock (GIL) in CPython, the
default Python interpreter, further restricts the concurrent ex-
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Method Hardware Support Quantization Type WM (GB) RM (GB) Tokens/sec Perplexity
Llama.cpp NVIDIA GPU GGUF K-Quant 2bit 2.36 3.69 102.15 6.96

AMD GPU GGUF 4bit 3.56 4.88 128.97 5.96
Apple Silicon GGUF AWQ 4bit 3.56 4.88 129.25 5.91
CPU GGUF K-Quant 4bit 3.59 4.90 109.72 5.87

GGUF 8bit 6.67 7.78 93.39 5.79
GGUF FP16 12.55 13.22 66.81 5.79

ExLlama NVIDIA GPU GPTQ 4bit 3.63 5.35 77.10 6.08
AMD GPU

ExLlamav2 NVIDIA GPU EXL2 2bit 2.01 5.21 153.75 20.21
AMD GPU EXL2 4bit 3.36 6.61 131.68 6.12

GPTQ 4bit 3.63 6.93 151.30 6.03
EXL2 8bit 6.37 9.47 115.81 5.76
FP16 12.55 15.09 67.70 5.73

vLLM NVIDIA GPU AWQ GEMM 4bit 3.62 34.55 114.43 6.02
AMD GPU GPTQ 4bit 3.63 36.51 172.88 6.08

FP16 12.55 35.92 79.74 5.85
TensorRT-LLM NVIDIA GPU AWQ GEMM 4bit 3.42 5.69 194.86 6.02

GPTQ 4bit 3.60 5.88 202.16 6.08
INT8 6.53 8.55 143.57 5.89
FP16 12.55 14.61 83.43 5.85

TGI AMD GPU AWQ GEMV 4bit 3.62 36.67 106.84 6.02
NVIDIA GPU GPTQ 4bit 3.69 37.85 163.22 6.08
Intel GPU FP4 12.55 37.21 36.91 6.15
AWS Inferentia2 NF4 12.55 37.21 36.32 6.02

FP16 12.55 38.03 74.19 5.85
MLC-LLM NVIDIA GPU OmniQuant 3bit 3.2 5.1 83.4 6.65

AMD GPU, OmniQuant 4bit 3.8 5.7 134.2 5.97
CPU, WebGPU, AWQ GEMM 4bit 3.62 6.50 23.62 6.02
Apple Silicon, Q4F16 3.53 6.50 189.07 -
Intel GPU, Q3F16 2.84 5.98 185.47 -
WASM, Adreno Mali FP16 12.55 15.38 87.37 5.85

Table 3: Performance comparison of compressed variants of LLaMA2-7B using various inference engines, quantized for different predictions
and across different hardwares. Here, WM and RM denote weight memory and running memory consumption respectively.

ecution of multiple threads, limiting the language’s ability to
fully exploit the potential of multi-core processors. This high-
lights the need to seek alternative solutions to improve the
speed of deep learning workflows.

Some of these issues have been overcome with the devel-
opment of optimized libraries and frameworks, such as Ten-
sorFlow and PyTorch, which incorporate high-performance
kernels implemented in lower-level languages like C++ or
CUDA. However, there are several other ends where Python
restricts the model performance. An illustrative example is
LLama.cpp, where the transition to a C++ implementation,
LLaMA-7B, resulted in significantly improved speed. This
shift exemplifies the impact of choosing a language opti-
mized for performance in the context of deep learning mod-
els. Moreover, the emergence of Rust-based models has at-
tracted attention for their superior speed. Rust, with its em-
phasis on both memory safety and performance, has demon-
strated effectiveness in accelerating computations, particu-
larly in scenarios where speed is of paramount importance.
Thus, for optimizing the inference speed, moving away from
Python to C++, Rust or other similar languages might be a
future direction to pursue.
Ethical and bias considerations not necessarily maintained.

LLMs are initially trained on extensive datasets, ensuring that
the model remains statistically unbiased towards any specific
case. However, during the process of model compression, a
specific dataset is typically employed. As the LLM may lose
some generic characteristics irrelevant to the target dataset,
there is a potential to introduce unnoticed bias through stan-
dard evaluation practices. Consequently, there is a need to de-
velop innovative evaluation strategies to guarantee that ethical
concerns and biases are minimized in the compressed LLMs.

5 Conclusions
In conclusion, our survey extensively explores LLM com-
pression, covering both model-level and system-level ef-
ficiency enhancements. We discuss various compression
methodologies and provide practical insights from experi-
ments conducted on LLaMA(/2)-7B, offering valuable infor-
mation for optimizing LLMs. Analysis of the survey and ex-
perimental results highlights the existing bottlenecks in en-
hancing LLM inference, indicating the necessity for further
developments to achieve efficiency. We envision this survey
as a stepping stone towards advancing the field and achieving
the goal of efficient LLM inference.
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