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Abstract
The realm of music composition with artificial in-
telligence stands as a pertinent and evolving field,
attracting increasing interest and exploration in
contemporary research and practice. This paper
presents a constraint-programming based approach
to generating four-voice diatonic chord progres-
sions according to established rules of tonal har-
mony. It uses the strength of constraint program-
ming as a formal logic to rigorously model musical
rules and to offer complete control over the set of
rules that are enforced. This allows composers to
iteratively interact with the model, adding and re-
moving constraints, allowing them to shape the so-
lutions according to their preferences. We define a
constraint model of basic tonal harmony, called Di-
atony. We show that our implementation using the
Gecode solver finds optimal solutions in reasonable
time and we show how it can be used by a composer
to aid in their composition process.

1 Introduction
Music composition and artificial intelligence have always
been seen as a promising combination. Attempts at using
artificial intelligence to compose music can be dated as far
back as the 1970’s [Smoliar, 1972; Meehan, 1979]. With
the development of increasingly more powerful AI tech-
niques, musical applications have sprouted in many differ-
ent areas, including music generation [Dong et al., 2018;
Mao et al., 2018], signal treatment [Purwins et al., 2019],
performance assisting tools [Wu et al., 2021] and many more
[Nam et al., 2018; Zhang, 2021]. The application of deep
learning to music generation has been studied [Briot et al.,
2020] and its strengths and weaknesses have been assessed
[Briot and Pachet, 2017; Casini et al., 2018].

Constraint programming applied to music generation has
also been studied [Pachet and Roy, 2001; Anders and Mi-
randa, 2011; Pachet and Roy, 2014], though literature is less
abundant on the subject. Machine learning is often preferred
because of its ability to absorb large amounts of data and
to produce musical material exhibiting common properties.
Constraint programming, on the other hand, has the advan-
tage of precisely respecting a set of given musical rules, and

the model can easily be modified without requiring a new
training phase. It does require more computation at run time,
but this is not prohibitive. It is therefore an appealing con-
cept for computer-aided composition as it gives full control
to composers. Recently, [Sprockeels et al., 2023] have com-
pletely formalized two-voice counterpoint in the style of Jo-
hann Fux. They also developed a simple interface giving
composers control over the rules applied, which gives an in-
dication of the potential that a constraint formalization can
provide to composers.

This paper explores the use of constraint programming for
a general computer-aided composition tool for composers. To
alleviate the time issue, music generation is divided into four
steps, starting from the overall structure, to general harmony,
voice movement, and finally to ornaments. This paper fo-
cuses on the generation of a four-voice diatonic harmonic
chord progression, taking as input chord names that can be
generated using [Pachet and Roy, 2014], machine learning or
coming directly from the composer, and develops them into
four voices respecting the general rules of tonal music. In
this way, it aims to provide an efficient working tool to gen-
erate tonal harmonic progressions, that can serve as a basis to
create complete musical pieces.

1.1 Musical (De)composition
When composing music, it is natural to decompose the pro-
cess in steps. Composers do not write a full musical piece
from left to right, they work in steps with each a finer grain.
It is hence natural that we follow a similar approach when
generating music with rules. This paper identifies four steps:

• Defining the global structure of the piece (Sonata, verse-
chorus, counterpoint, etc.). It defines the “shape” of the
musical piece.

• Defining the harmonic evolution of the piece. On a large
scale, this defines the tonality(ies) of the piece, and on
a smaller scale, the harmonic development and rhythm 1

and modulations.
• Defining the voicings of the chords as well as the move-

ment of the different voices. Once the harmonic devel-
opment is known, it is important to consider how each
chord is voiced and how voices move over time.

1The harmonic rhythm is different from the melodic rhythm, and
defines how the harmony evolves over time.
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• Adding ornaments. Once the harmonic development and
general voicing is known, composers add ornaments,
variations, and other stylistic elements to make the piece
complete.

This paper focuses on the third step, namely the voicing of
the chords and the evolution of voices over time. It thus as-
sumes that the structure and harmonic evolution of the piece
are known. Models exist to generate the harmonic evolution
of the piece, such as [Pachet and Roy, 2014] that generates
leadsheets and [Shukla and Banka, 2018] that generates mid-
ifiles. Of course, composers can also use their original ideas.

1.2 Contributions and Structure of the Paper
This paper has two main contributions. First, a formaliza-
tion of diatonic harmonic rules based on [Duha, 2016] and
[Gauldin, 2004], that defines how chords should be voiced in
the case of a four-voice composition. Second, a constraint-
based model implementing this formalization called Diatony,
allowing composers to generate chord progressions that re-
spect the rules of tonal music. It is designed to give as much
freedom to composers as possible. They can interact with
Diatony by controlling the costs and adding constraints. This
tool is intended to be one part of a creation process, where the
tool support for the whole process is still work in progress.

The paper is organized as follows:
• Section 2 compares constraint programming to deep

learning and justifies our use of constraint programming.
• Section 3 defines the model of basic tonal harmony.
• Section 4 explains the strategy used to search for the op-

timal solution.
• Section 5 gives concrete examples of how a composer

can use the model to write music.
• Section 6 summarizes our contributions and gives in-

sight on future work.
This paper assumes some knowledge of music theory. To aid
comprehension, we have added footnotes to explain the most
important musical concepts.

2 CP Versus ML
Much of the recent work on musical generation using arti-
ficial intelligence has used a learning based approach. This
section compares constraint programming (CP) to machine
learning (ML) and explains the differences (and complemen-
tarity) between the two approaches.

CP is a powerful approach to solve complex combinatorial
problems that is based on formal logic. Most CP systems use
first-order logic, which defines logical sentences using pred-
icates, quantifiers, and variables that range over a domain of
discourse, supported by a proof theory and a model theory.
Proof theory shows how to do formal inferencing and model
theory gives a mathematical structure in which the axioms
and their inferred consequences are true. For this paper, the
mathematical structure is a space of musical solutions that
satisfy musical rules. Constraint programming is comple-
mentary to current approaches for ML such as LLMs. CP has
been under intense development for more than 40 years and

is widely used in practice [Van Hentenryck, 1989; Nether-
cote et al., 2007; Verhaeghe et al., 2020; Kizilay et al., 2020;
Lam et al., 2022; Delecluse et al., 2022]. CP is based on
a search for solutions in a space defined by logical relations
(called ‘constraints’). This search is highly optimized with
sophisticated inferencing algorithms and heuristics. An im-
portant property of the search is that it is complete: it searches
the whole space for solutions. With respect to music com-
position, completeness gives CP a form of creativity, i.e., it
can find nonobvious solutions that are implied by the musical
ideas. It is not limited by a training dataset and can generate
all valid musical solutions to a problem. The price paid for
this power is that search can be computationally expensive.

ML differs from CP in that it relies on the mathematical
theory of statistics. The model is trained with a dataset, and
uses the gathered knowledge to solve new problems. ML
is widely used for text, music, and image generation and is
highly flexible in the outputs it can generate. The generated
content heavily depends on the training data.

ML and CP each in its own way requires a base of knowl-
edge to be practically useful. ML creates its base during
a training phase using prepared data. CP uses a base of
knowledge encoded in logical form. Music theorists have
long defined musical knowledge as rules that can be in-
corporated into a CP solver [Tagg, 1982; Gauldin, 2004;
Duha, 2016], and examples of constraint formalizations of
musical rules are numerous [Truchet and Codognet, 2004;
Anders and Miranda, 2011; Sandred, 2021; Sprockeels et
al., 2023]. There is also ongoing work to add logical rules
and inferencing to ML, combining the flexibility of ML with
the reasoning ability of CP [Hadjeres and Nielsen, 2020;
Cappart et al., 2021; Kotary et al., 2021; Ignatiev et al., 2022;
Tsouros et al., 2023]. This is an important direction for ML
research, but it is out of scope for the present paper.

3 Constraint Model of Tonal Harmony
This section defines a basic model of tonal harmony that we
use for composing tonal music. Our model, called Diatony,
defines a four-voice texture with diatonic triads and dominant
seventh chords including their inversions2. The model con-
tains harmonic and melodic rules as well as preferences to
create diatonic chord progressions. It contains rules for note
occurrence in chords, as well as rules for how voices move
between chords. The model is based on a selection of rules
from two treatises on music theory. Together they give a com-
plete and coherent model of basic harmony that holds for the
majority of tonal music. Future work will extend this model
to support modulations as well as non-diatonic chords. From
[Duha, 2016] we take the chapters on 3- and 4-note chords
and inversions (Accords de 3 et 4 sons). From [Gauldin,
2004], we take the chapters on four-voice texture, diatonic
harmony, dominant seventh, and inversions (chapters 5-11,
16, and 17).

2Four-voice texture is a common technique used to represent har-
mony. There are four distinct voices, namely the bass, tenor, alto and
soprano, from lowest to highest, that play chords. Diatonic chords
are chords formed with notes from the given tonality.
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3.1 Rules and Preferences of the Diatony Model
The Diatony model consists of two parts: strict rules, that
have to be followed at all times, and preferences, that may or
may not be followed. This section gives a complete list of the
musical rules of the Diatony model. Mathematical definitions
for a subset of the strict rules are given in section 3.3.3

Strict Rules
• Voices should be in their assigned range and chords

should have the right root, quality and state (H1, H2 and
H3).

• In fundamental state chords, the bass should be doubled
(H4).

• From a chord in fundamental state to another, common
notes should be kept in the same voice and other voices
should move to the closest note (P4, P5).

• If there are no common notes between two fundamen-
tal state chords of successive degrees, i.e. fourth degree
and fifth degree, upper voices should move in contrary
motion to the bass (M1).

• It is forbidden for the harmonic interval between two
voices to be a perfect fifth or a perfect octave in two
successive chords, unless the notes are the same (M2).

• When the tritone4 of the tonality is present in a chord, it
must be resolved in the next chord. The voice playing
the fourth degree of the scale should move down by step
to the third degree of the scale, and the voice playing the
leading tone should move up by step to the tonic (M3).

• In the case of an interrupted cadence, if the mode is mi-
nor or if the leading tone is in the soprano, the leading
tone must move up by step to the tonic and the other
voices should move down. The third of the chord must
be doubled for the sixth degree chord instead of the fun-
damental (M4, H6).

• For chords in first inversion, each note should be present
once and any tonal note5 can be doubled. If the bass is a
tonal note, it can also be doubled (H7).

• If the bass and the soprano move by step in contrary mo-
tion from a chord in fundamental state to a first inversion
chord to a fundamental state chord, the bass can be dou-
bled in the second chord even if it is not tonal (H9).

• For the seventh degree diminished chord in first inver-
sion, the fundamental should be doubled (H7).

• For chords in second inversion, the bass should be dou-
bled (H8).

• If a chord in second inversion is the appogiatura of the
fifth degree chord, the tonic should be approached by
contrary or oblique motion. The third degree and tonic
should move down by step (M5).

3The complete mathematical formalization of the rules can be
found here: http://hdl.handle.net/2078.1/287476.

4The tritone in a tonality is perhaps the most important notion
in tonal harmony. It is the interval between the fourth degree and
the leading tone, which is a half step below the tonic. It is highly
dissonant and demands to be resolved.

5Tonal notes are the first, fourth and fifth degree of the scale.

• If a diminished chord is in second inversion, the third of
the chord should be doubled (H10).

• In perfect cadences, one of the chords must be incom-
plete6. If the fifth degree chord is incomplete, its bass
should be doubled. If the first degree chord is incom-
plete, the bass should be tripled (H5).

• If a dominant seventh chord is in second inversion, the
tritone resolution can be altered so that the fourth of the
scale moves up by step instead of down by step (M3).

Preferences
We define the following preferences, in decreasing order of
importance. An explanation of their use is given in section
3.4.

• Chords should be complete (P1).

• Diminished chords in fundamental state should be used
with three voices instead of four (P2).

• Chords should have four different note values7 (P3).

• Melodic intervals should be small (P4).

• Common notes should be kept in the same voice (P5).

3.2 Variables
The main array of variables contains the notes for each voice
in each chord. It has the following definition, where i ∈
[0, n − 1] and v ∈ [0, 3]. The domain is the range of MIDI
values8. i is the index of a chord, v the index of a voice and n
the number of chords.

N[i][v] ∈ [0, 127] (1)

Additionally, arrays have been defined for the melodic inter-
vals in each voice and for harmonic intervals between each
pair of voices. For melodic intervals, i’ ∈ [0, n−1[ as melodic
intervals are defined with respect to the first of the two suc-
cessive chords. Harmonic intervals are defined for each pair
of different voices: v1, v2 ∈ [0, 3] where v1 < v2. They do
not have a direction.

M[i′][j] ∈ [−12, 12] (2)
H[i][0][v2] ∈ [0, 12× v2 + 7] (3)

v1 > 0 : H[i][v1][v2] ∈ [0, 12× (v2 − v1)] (4)

Additional variables have been defined to model prefer-
ences. For brevity reasons, they will not be listed here but
there is a variable for each cost detailed in section 3.4.

6A chord is complete if all the pitch classes that make the chord
are present at least once. If a note is not present, it should be the fifth
of the chord.

7Not to be confused with having four different notes. This pref-
erence states that one note can be present more than once, but it
should not be in the same octave.

8MIDI notation maps an integer to each note of a keyboard. Mid-
dle C (C4) has the value 60, and a semitone corresponds to a differ-
ence of 1.
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3.3 Constraint Formalization
This section shows the constraint formalization of four of the
rules defined in section 3.1. We consider two main types of
constraints: harmonic constraints, that regard the notes in a
given chord; and melodic constraints, that regard transitions
between consecutive chords as well as voice leading. Exam-
ples of each type of constraint are presented below. Our first
example is a harmonic rule chosen for its simplicity, to intro-
duce our mathematical notation. The second example formal-
izes a more complex harmonic rule that is an exception to the
first rule. The third example shows tritone resolution, which
is one of the most important melodic rules. The fourth ex-
ample is another important melodic rule that forbids parallel
fifths and octaves.

Harmonic Constraints
Harmonic constraints are constraints on simultaneous notes.
They typically dictate how many times each note of the chord
should be present. For example, for perfect chords in funda-
mental state, the general rule states that the fundamental of
the chord, i.e. the note it is based on, should be doubled. The
third should be present once, and the fifth should be present at
most once. This can be expressed mathematically as follows:

∀i ∈ [0, n− 1], ∀v ∈ [0, 3]

|{v | N [i][v] mod 12 = Cfund}| ≥ 1 (5)
|{v | N [i][v] mod 12 = Cthird}| = 1 (6)
|{v | N [i][v] mod 12 = Cfifth}| ≤ 1 (7)

Here i represents a chord’s position, N [i] represents the
notes of a chord, 12 represents an octave, Cfund, Cthird, and
Cfifth represent the fundamental, third and fifth of the chord
respectively. For example, if the chord is C major, then the
note C should be present at least once, the note E (a third
above) should be present once, and the note G (a fifth above
C) should be present at most once.

Another exception to this rule is that in the case of a perfect
cadence, if the fifth degree chord is a dominant seventh chord,
it is impossible to have all the different notes in both chords.
This is due to the constraint forbidding parallel fifths and the
constraint for tritone resolution. Hence, one of the chords has
to be incomplete. In that case, if the fifth degree chord is in-
complete, the fundamental should be present twice. On the
other hand, if the first degree chord is incomplete, the funda-
mental should be present three times and the third once. The
following constraints are added, where N [i′] is the dominant
seventh and N [i′ + 1] is the tonic chord (first degree).

∀i′, ∀v
|{v | N [i′][v] mod 12 = Cfund}| ≥ 1 (8)

|{v | N [i′][v] mod 12 = Cthird}| = 1 (9)

|{v | N [i′][v] mod 12 = Cfifth}| ≤ 1 (10)

|{v | N [i′][v] mod 12 = Cseventh}| ≤ 1 (11)

|{v | N [i′ + 1][v] mod 12 = Cfund}| ≤ 1 (12)

|{v | N [i′ + 1][v] mod 12 = Cthird}| = 1 (13)

|{v | N [i′ + 1][v] mod 12 = Cfifth}| ≤ 1 (14)

Figure 1: Tritone resolution in a perfect cadence in B major.

Figure 2: Examples of parallel fifths: allowed (left) and forbidden
(right) in C minor.

Melodic Constraints
Melodic constraints are constraints on successive notes. One
good example of melodic rules is that when the tritone of the
tonality is present in one chord, it should resolve in the next
chord. That means that the voice playing the fourth degree
of the scale should move down by step to the third, while
the voice playing the leading tone should move up by step to
the tonic. This situation typically happens when one chord is
the dominant seventh version of the fifth degree and the next
chord is the first degree. Figure 1 shows the tritone resolution
in a perfect cadence in B major. This rule can be expressed
mathematically as follows:

∀i′ ∈ [0, n− 1[, ∀v ∈ [0, 3]

N[i′][v] mod 12 = Tfourth =⇒ M[i′][v] ∈ {−1,−2} (15)

N[i′][v] mod 12 = Tleading-tone =⇒ M[i′][v] = 1 (16)

Here i represents a chord’s position, v represents a voice’s in-
dex, Tfourth is the fourth of the tonality, −1 and −2 represent a
descending minor and major second respectively, Tleading-tone
represents the leading tone, and 1 represents an ascending mi-
nor second. Melodic constraints are applied with respect to
the first chord.

Another example of a melodic constraint is that parallel
fifths and octaves are forbidden. That is, if the harmonic in-
terval between two voices in a chord is a perfect fifth or a per-
fect octave, then the harmonic interval between these voices
cannot be the same in the next chord. In other words, the
melodic intervals of the concerned voices between this chord
and the next cannot be equal. This is however allowed if both
voices play the same note in both chords. Figure 2 gives an
example of valid and invalid parallel fifths. This rule can be
mathematically expressed as follows:

∀v1, v2 ∈ [0, 3], v1 < v2 ∀i′ ∈ [0, n− 1[

(H[i′][v1][v2] mod 12 ∈ {7, 12})∧
(N[i′][v1] ̸= N[i′ + 1][v1] ∨ N[i′][v2] ̸= N[i′ + 1][v2])

=⇒ H[i′ + 1][v1][v2] ̸= H[i′][v1][v2] (17)
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3.4 Preferences
Preferences are guidelines that should generally be followed
unless another rule forbids it. Preferences can be seen as
levers that a composer can use to customize the model accord-
ing to their own ideas. This also means that if they want to
enforce a behaviour that goes against the default preferences,
solutions can still be found. In Diatony, the preferences have
a default behaviour that corresponds to the rules of tonal har-
mony, but they can easily be modified according to personal
choice. We represent preferences as costs that are minimized
in a lexicographic order. This means we have to rank them
in order of importance. Some costs have a harmonic nature,
and some have a melodic nature. The list of preferences in
decreasing order of importance is given in section 3.1.

The first three preferences are harmonic preferences. The
number of incomplete chords is minimized first as it is de-
termined by the input and does not depend on the values that
variables take. The second most important preference is that
chords should contain four different note values (i.e. they
can contain the same note twice, but not in the same octave).
There is an exception to this rule when the chord is dimin-
ished; that is why this preference is put first.

The last two preferences are melodic, and they depend on
the harmonic preferences. Since the harmonic preferences
are more important, they are minimized before the melodic
preferences. The first melodic preference states that smaller
melodic intervals should be preferred. This preference does
not take into account the quality of the intervals, i.e. a minor
second is as desirable as a major second. As a result, we
do not just sum the absolute value of intervals as that would
imply that minor intervals are preferred to major intervals.
Each interval is assigned a weight. By default, unisons have
a cost of 0; seconds have a cost of 1; thirds have a cost of 3;
fourths, tritones and fifths have a cost of 6; sixths have a cost
of 12; sevenths have a cost of 18; and octaves have a cost of 6.
These values are somewhat arbitrary, but are designed so that
bigger intervals have heavier weights. The only exception is
the octave. The final preference states that common notes
should be kept in the same voice when possible. It is after
the previous preference because it causes a great increase in
efficiency, and because it does not affect solution quality.

3.5 Implementation
Diatony is implemented as a constraint model using the
Gecode solver [Gecode Team, 2019] 9. Gecode was chosen
for its efficiency and extensive functionality that gives a lot
of versatility for modeling the problem. The constraint prob-
lem takes as input the set of chords with their quality and
state, and can produce output in various ways. It can print
to a file or command line the solutions it finds during search,
but it is more practical to use it to generate MIDI files con-
taining the solution. This allows for an easy integration to a
composers’ work environment, such as DAWs like LogicPro
[Apple Inc., 1993] or Ableton [1999] as well as sheet music
editing software like Sibelius [Avid Technology, Inc., 1993]
or MuseScore [2002].

9The full code can be found at https://github.com/sprockeelsd/
Diatony/tree/IJCAI2024

4 Search for Solutions
The search space grows rapidly in function of the length of
the musical piece because the Diatony model gives only the
piece’s basic musical structure. The intention is that the com-
poser adds musical ideas to this structure to restrict the search
space and converge quickly to a desired musical result. This
both gives freedom to the composer and makes the search ef-
ficient. Formally, musical ideas are added to the model by
managing preferences and adding custom constraints. For
the search algorithm, we have chosen to use a restart-based
approach over a branch-and-bound solver when exploring the
search tree. The branch-and-bound solver allows to find op-
timal solutions by adding a constraint every time a solution
is found, and the restart-based approach allows to reduce the
space of the search at every restart. The efficiency of our ap-
proach is sufficient to make the model usable for composers.

4.1 Branching Heuristics
Since all the rules are small scale, their variables tend to be
similarly constrained. This means that approaches based on
accumulated failure counts, domain size, or degree do not
work well for this problem. The approach we have chosen is
similar to how a composer would approach the problem: start
at the end and work on each chord successively. The solver
has an advantage that composers do not have, namely propa-
gation, which means that as the notes of a chord are decided,
the possible values for the yet unbound notes are updated. We
have chosen to work from the end, because starting from the
beginning is not as efficient. Starting from the end allows the
solver to know where it has to go, whereas starting from the
beginning may lead to a situation where resolution is not pos-
sible and the solver has to backtrack significantly. For value
selection, the approach we have chosen is to randomly se-
lect a value from the domain. Smarter value selection would
be possible, such as branching on the melodic intervals and
choosing the smallest in absolute value, or choosing values
based on how many times a note should occur in a chord,
but these are computationally expensive and random value
selection is efficient enough for problems of reasonable size
(typically a musical phrase).

4.2 Restart-Based Search
Exploring the whole search tree to ensure optimality tends to
be very computationally expensive for problems of moderate
size. To improve performance, we decided to use a restart-
based approach. In particular, the solver uses a cutoff genera-
tor to restart the search after a number of failures. For restart
to be useful, the solver deduces no-goods, that is combina-
tions of variable assignations that lead to no solutions, before
restarting. This allows the solver to learn more about the spe-
cific instance of the problem over time. For the cutoff gener-
ation, we have decided to use a hybrid of two approaches: a
linear generator with scale factor 2n, and a geometric gener-
ator with base 2 and scale factor 16n2, where n is the num-
ber of chords. These values have been shown empirically to
give good results. For the two cutoff sequences l0, l1, l2, ...
and g0, g1, g2, ..., the combined cutoff sequence used by the
solver is l0, g0, l1, g1, .... This approach gives significantly
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Figure 3: Comparison of the time taken for the search to prove op-
timality with and without restart. Test cases exceeding 60 seconds
have been cropped for better readability, but test cases 33 and 34
reached the time out of 450s while test case 27 took 315s and test
case 28 took 206s.

better results than each of them separately. For the no-good
generation, we have to specify a maximal depth of the tree at
which the no-goods can be generated. The bigger the depth,
the more no-goods can be deducted but they will also likely
be less generic, and it will require more memory. We have
empirically shown that the value 4n is a good compromise for
our problem. Smaller values resulted in worse performance,
while higher values did not provide significant improvement.

Figure 3 compares the time taken to prove optimality for a
set of test cases10 between the approach using restarts and the
approach exploring the search tree without restarting for each
test case. The test cases have been chosen to have variable
sizes, contain different chords and different tonalities. As we
can see, using restarts with no-goods significantly reduces the
amount of time necessary to prove optimality for harder in-
stances. This is due to the fact that the search space becomes
smaller each time the solver is restarted. On easier problems,
this approach tends to take slightly more time than exploring
the search tree without restarting, but the difference is mini-
mal.

4.3 Convergence of Solution Quality
Figure 4 shows the evolution of the cost for melodic inter-
vals over time for a variety of test cases. This cost is shown
instead of others as it is the one that varies the most and is
the bottleneck of the search. The jumps indicate that a lower
value for one of the more important costs has been found (see
section 3.1 for a list of the preferences in order). It is clear
that this cost tends towards optimum very fast for most cases,
and optimality is proven for all test cases. Once additional
constraints are added, the time required to prove optimality
drastically decreases. Three test cases behave very differ-
ently from the others. They occur with the chord progres-
sion I5-V6-VI5-V5-IV5-I6-II5-V5-I5-V6-VI5-V5-IV5-V7+-
I511 in B♭, C and C♯ minor. This does not seem to be linked to
the fact that the tonalities are minor, as it does not happen for

10The test cases can be found in the technical appendix.
11The Roman numeral gives the degree of the scale the chord is

based on, and the decimal numeral refers to the state of the chord. 5
means it is in fundamental state, 6 means it is in first inversion and

Figure 4: Evolution of the melodic cost of solutions over time.

other chord progressions. It does not seem to be linked to the
size of the problem either, as there are bigger problems in the
same tonalities and the search is completed long before. It is
still unclear why this happens on these particular instances.

5 How a Composer Can Use Diatony
This section illustrates how composers can use Diatony in
their composition process. Though Diatony is not intended
to be a standalone tool for composers but rather a part of a
more complete tool, it can still be useful to get an idea of the
harmonic development of a musical piece. Composers can in-
teract with the initial solution by identifying parts they want
to keep or change, and run the solver in an iterative process to
shape the original solution into their musical idea. They can
also add or remove constraints dynamically. The first exam-
ple is chosen to illustrate how a composer would start with a
musical idea, run the solver to get a first suggestion, and then
iteratively add constraints until the result is satisfactory. The
second example is a more ambitious example of composition,
where the composer wants to create an accompaniment for a
pop song, for a singer to then improvise on.

5.1 First Example: Descending Bass Line
The first example is based on a descending bass line, like
in the iconic “Piano Man” by Billy Joel. One of the pos-
sible chord progressions that can fit onto that bass line is
the following: I5-V6-VI5-V5-IV5-I6-II5-V5-I5-V6-VI5-V5-
IV5-V7+-I5. If we run the solver for this chord progression,
and choose the tonality of the piece to be E major, the four-
voice solution generated by the solver is depicted in figure 5.
This is (one of) the optimal solutions for the problem.

In this example, the bass has the most interesting melodic
line. It was our intention, and we designed the chord progres-
sion to allow that to happen. Nonetheless, the solver came up
with that bass line on its own, the only input provided was
the chords and their states. The soprano’s melodic line is not
ideal, as it lacks intent. This is because it is the composer’s
job to add constraints, Diatony just ensures that the rules of
tonal music are followed. To remedy that, we add the con-
straints that the soprano’s melody should start and end on a
G♯. Indeed, it is fairly common that the first degree chord in

7+ means it is a dominant seventh chord in fundamental state.
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Figure 5: First solution generated by the solver for the chord pro-
gression I5-V6-VI5-V5-IV5-I6-II5-V5-I5-V6-VI5-V5-IV5-V7+-I5
in E major. It can be listened to here: https://on.soundcloud.com/
4tpXL

Figure 6: Solution generated by the solver after additional con-
straints have been posted (starting and ending the soprano melody on
a G♯). It can be listened to here: https://on.soundcloud.com/4uTFF

fundamental state has the third of this chord in the soprano,
and this will also allow for the tritone resolution in the per-
fect cadence at the end of the chord progression to be heard
more clearly. The solution generated by the solver with those
additional constraints is shown in figure 6.

5.2 Second Example: Composing a Pop Song
For the second example, we will start from the basics again,
i.e., the constraints we added for the first example are re-
moved. We now want to write a pop song, so we will first
write an accompaniment for the verses and then for the cho-
rus. We will not write a melody here, as this composition is
intended to be improvised on by a singer.

For the verses, we will use the following chord progres-
sion: I5-V5-VI5-I5-III5-VI5-II5-I5-V5 in A♭ major. We will
change the harmonic rhythm, so some chords will play for
longer than others. The last chord of the progression is the
fifth degree to create tension leading into the chorus. The first
solution generated by the solver for this chord progression is
shown in figure 7.

We are happy with this solution, so we will keep it and use
it for the first verse. We will also create a variation for the sec-
ond verse by making the rhythm more complex. We will add
an alternating rhythm between the two inner voices to create
a sense of motion, and passing notes linking the different sec-
tions of the verses. The result for the second verse is shown
in figure 8.

Now that we are satisfied with the accompaniment for our
verses, we will work on the chorus. The chord progression
we will use is a variation of the famous I-V-VI-IV chord pro-
gression as a loop, starting on the fourth degree and ending
on the sixth degree for a darker feel. We want the notes to
be fairly low to emphasize the darker feel as well. To make
the loop feel more natural, we will add a passing V6 chord
between the VI and the IV chords. We want the melody at
the soprano to go down by step between the VI5, V6 and IV5
chords so we add a constraint accordingly. With all these
additional constraints, the solution returned by the solver is
shown in figure 9. The combination of the verses and chorus
can be listened to here: https://on.soundcloud.com/gQ6v9.

Figure 7: First solution returned by the solver for the verses’ accom-
paniment. The rhythm is different because the harmonic rhythm we
gave to our problem is different, it is not generated by the solver. It
can be listened to here: https://on.soundcloud.com/Ga1VP

Figure 8: Variation of the first verse with a more intricate rhythmic
pattern. It can be listened to here: https://on.soundcloud.com/aPZir

6 Conclusion

This work provides two contributions. On the one hand, it
provides a formalization of diatonic tonal harmonic rules that
defines how chords should be voiced in four-voice composi-
tion. On the other hand, it provides a constraint model im-
plementing this formalization that can be used by composers
to generate chord progressions. It has the advantages of be-
ing highly controllable and highly permissive, allowing com-
posers to build their ideas iteratively.

The model and implementation can be enlarged to include
four-note chords other than dominant seventh chords, mod-
ulations, and the use of non-diatonic notes and chords as
well as rhythmical aspects of composition. The implemen-
tation has been designed in a way that makes it easy to add
new constraints. Additionally, as presented in section 1.1, we
have decomposed the composition problem in different steps
in the way a composer could do it. This paper only tackles
one of these steps, and we believe constraint models for the
other steps could greatly benefit composers. Finally, having
a user-friendly interface allowing composers to interact with
the model from a high level of abstraction would also be ben-
eficial.

Figure 9: Chord loop generated by the solver for the chorus, with
a passing chord at the end. It can be listened to here: https://on.
soundcloud.com/QJEZz
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