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Abstract
Current lyric-to-melody generation methods strug-
gle with the lack of paired lyric-melody data to
train, and the lack of adherence to composition
guidelines, resulting in melodies that do not sound
human-composed. To address these issues, we pro-
pose a novel paradigm called Re-creation of Cre-
ations (ROC) that combines the strengths of both
rule-based and neural-based methods. ROC con-
sists of a two-stage generation-retrieval pipeline:
the creation and re-creation stages. In the creation
stage, we train a melody language model using
melody data to generate high-quality music frag-
ments, which are stored in a database indexed by
key features. In the re-creation stage, users provide
lyrics and a preferred chord progression, and ROC
infers melody features for each lyric sentence. By
querying the database, we obtain relevant melody
fragments that satisfy composition guidelines, and
these candidates are filtered, re-ranked, and con-
catenated based on the guidelines and the melody
language model scores. ROC offers two main ad-
vantages: it does not require paired lyric-melody
data, and it incorporates commonly used composi-
tion guidelines, resulting in music that sounds more
human-composed with better controllability. Both
objective and subjective evaluation results on En-
glish and Chinese lyrics show the efficacy of ROC.

1 Introduction
In recent years, deep learning has led to significant advances
in automatic songwriting, including lyric generation [Malmi
et al., 2016; Xue et al., 2021], melody generation [Wu et
al., 2020; Zhu et al., 2018], lyric-to-melody generation [Bao
et al., 2018; Yu et al., 2021; Sheng et al., 2020; Ju et
al., 2021], and melody-to-lyric generation [Ma et al., 2021;
Xue et al., 2021; Li et al., 2020]. This paper focuses on one
of the fundamental tasks, lyric-to-melody generation, specif-
ically in the pop music genre. While existing methods gener-
ate decent melodies, they are limited by two major issues.

∗Corresponding authors: Xu Tan (xuta@microsoft.com) and Rui
Yan (ruiyan@ruc.edu.cn).

First, the mapping from lyric to melody is challenging to
learn due to weak correlation between the lyric content and
the melody (e.g., a melody can be accompanied by different
lyrics as long as the lyric syllables align with notes). A large
amount of aligned training data is required, which is rare.
Second, the melodies generated by learned mapping patterns
do not sound human-composed because most neural-based
methods overlook commonly used composition guidelines.

To overcome these issues, we propose a new paradigm
for lyric-to-melody generation called Re-creation of Cre-
ations (ROC), which combines the merits of both rule-based
and neural-based methods. ROC has a generation-retrieval
pipeline consisting of two stages: creation and re-creation. In
the creation stage, we train a melody language model using
melody data to generate high-quality music fragments. We
store these fragments in a database indexed by extracted key
features, such as tonality, chord, and structure (i.e., whether
the melody fragment in a chorus or a verse), which are used
for retrieval in the next stage. In the re-creation stage, users
provide lyrcis and a preferred chord progression to ROC.
Then, ROC infer the melody features associated with each
lyric sentence. By querying the database using these melody
features, we obtain relevant melody fragments which sat-
isfy the composition guidelines. These candidates are then
filtered, re-ranked, and concatenated by guidelines, user-
provided chord progression, and the melody language model
scores. Concatenating the melody for each lyric ultimately
forms a complete song.

ROC has two major advantages. Firstly, ROC does not
necessitate paired lyric-melody data, as it relies solely on
training a melody language model. Secondly, ROC inte-
grates commonly used composition guidelines, which not
only make the generated songs sound more like they were
composed by humans but also offer enhanced controllability.
In summary, our main contributions are as follows:

(1) We introduce ROC, a novel paradigm for lyric-to-
melody generation comprising a creation stage and a re-
creation stage. ROC does not require paired lyric-melody
data for training and can generate music that sounds more
human-composed, guided by composition guidelines.

(2) We develop a series of designs to ensure ROC’s effec-
tiveness, including a lyric structure recognition algorithm that
segments lyrics into choruses and verses for feature extrac-
tion, a short melody fragment generation procedure for im-
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proved generation quality, and a novel composition pipeline
based on retrieval and re-ranking that incorporates composi-
tion guidelines, etc.

(3) ROC surpasses strong baselines in terms of both objec-
tive and subjective metrics.

2 Related Works: Lyric-to-Melody
Generation

In the early days, statistical and rule-based methods were em-
ployed for lyric-to-melody generation. [Long et al., 2013]
focused on lyric-note correlation and proposed a probabil-
ity model, but overlooked musical knowledge. Another
study [Fukayama et al., 2010] studied Japanese prosody and
its role in composition, proposing a probability model for
generating melodies. Although incorporating more musical
patterns, the model still ignored structural features, leading to
a lack of repeating segments in the generated songs, making
them sound less human-composed. These traditional methods
required labor and expertise in music or linguistics, which led
to a shift in focus towards neural-based methods.

The advent of neural networks has led to significant break-
throughs in lyric-to-melody generation. Many methods [Bao
et al., 2018; Yu et al., 2021; Sheng et al., 2020; Ju et al.,
2021] approach lyric-to-melody generation as a sequence-to-
sequence task, learning a mapping from lyric sentences to
melody phrases. These end-to-end models require a large
amount of paired lyric and melody data; however, the lack
of aligned data hinders research. SongMASS [Sheng et al.,
2020] trains lyric-to-lyric and melody-to-melody models sep-
arately, then conducts interaction between models to circum-
vent the need for paired data. However, as an end-to-end
method, it suffers from low controllability, and its black-
box nature does not guarantee that the learned musical pat-
terns resemble human-composed music. TeleMelody [Ju et
al., 2021] divides the end-to-end generation pipeline into two
stages: lyric-to-template and template-to-melody. Templates
bridge the gap between lyrics and melodies, making the gen-
eration more controllable and reducing the need for paired
data. However, since both stages in TeleMelody are neural-
based, it is challenging to introduce composition guidelines,
and error accumulation negatively affects generation quality.

We propose ROC to address these weaknesses. ROC does
not require paired data, as only melodies are involved in train-
ing. In the re-creation stage, the retrieval process enables
ROC to explicitly incorporate composition guidelines, mak-
ing the generated songs sound more human-composed.

3 Background: Pop Music Composition
Creating pop music usually adheres to empirical composi-
tion guidelines that ensure good patterns in melody and lyric-
melody feature alignment. We introduce a few guidelines that
ROC takes advantage of:

• Structure alignment: Pop music usually adopts a verse-
chorus form1, where verses and choruses alternate and

1In music, form refers to the structure of a musical composition
or performance.

repeat. Choruses often contrast with verses in melody,
rhythm, harmony, and dynamics, and are typically more
instrumentally rich [Doll, 2011]. Consequently, pop mu-
sic aligns lyric and melody structures, e.g., chorus lyrics
with more melodic and harmonic chorus melodies.

• Melody Sharing: Most chorus sections are lyric-
similar and contain the primary lyrical material of the
song [Gotham et al., 2023]. Thus, the same lyrics typi-
cally share a similar or even the same melody.

• Proper tonality: Tonality is the organization of all the
tones and harmonies of a piece of music in relation to
a tonic. Tonality impacts the emotional atmosphere of
a song. For example, major tonality sounds enthusias-
tic, gorgeous, bright and cheerful while minor tonality
sounds cold, melancholy, and magical. A proper tonality
according to lyric sentiments helps expressing emotions.

• Pitch range consideration: A song should start with
moderate pitches, allowing room for elevation in the
chorus. Pitches usually do not fluctuate excessively
within a verse or chorus.

• Chord progression guidance: “Chord” refers to multiple
musical tones sounded simultaneously. The chord pro-
gression refers to the order in which chords are played
in a song/piece of music. It wield a substantial influence
over the mood, emotional impact, and overall trajectory
of the music. For example, the chord progression “C -
Am - G - F” typically elicits an energetic and emotion-
ally satisfying response.2 Typically, the chord progres-
sion returns to the tonic chord to create a sense of stable
and smooth ending.

4 Methodology
The ROC pipeline is depicted in Figure 1 and comprises two
stages: creation and re-creation. During the creation stage,
we generate and store non-infringing music fragments in a
database indexed by key features, which will be utilized in
the re-creation stage. In the re-creation stage, users provide
the lyrics and a desired chord progression. We then infer
the melody features associated with each lyric sentence. By
querying the database using these melody features, we obtain
relevant melody fragments which satisfy the structure align-
ment guideline in Section 3. These candidates are then fil-
tered, re-ranked, and concatenated by other guidelines and the
melody language model scores. Concatenated melody frag-
ments form a complete song. Further details about each stage
are explained in this section.

4.1 Creation Stage
Melody Language Model. To ensure originality and avoid
infringement, we train an auto-regressive melody language
model based on the transformer architecture using melody
data to generate new fragments. We represent music in the

2Letters such as C and Am are commonly used as as chord
names in music. “Take Me Home, Country Roads” is a famous
song using this chord progression:https://www.youtube.com/watch?
v=1vrEljMfXYo
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……
……
……
…… Composed 

Songs

(b) Re-creation Stage

Figure 1: The pipeline of ROC. In creation stage, melody language model generates melody fragments which are stored in the database along
with key features. In re-creation stage, we infer the features of each lyric in a song, which are used as the query to retrieve melody fragments.
Retrieved fragments are re-ranked by both composition guidelines and the melody language model scores. After concatenating these melody
fragments, ROC generates the final song.

style of OctupleMIDI encoding [Zeng et al., 2021]. Octu-
pleMIDI symbolically represents a music sequence as a series
of MIDI event tokens U = {u1, u2, . . . , un}. The melody
language model is trained by minimizing the negative log-
likelihood of predicting the next MIDI event token:

L = −
n∑
i

logP (ui|u<i,Θ), (1)

This model is also utilized for re-ranking fragments in the re-
creation stage, as discussed in 4.2. However, the neural model
struggles to generate high-quality long sequences, so we im-
plement a short melody fragment generation process, where
the model predicts the next two bars given the previous two
bars. We choose a two-bar prediction interval based on trials;
longer intervals yield low-quality fragments and less flexibil-
ity in re-creation, while shorter intervals complicate the sub-
sequent concatenation and polishing processes. We discard
predicted fragments identical to their ground truth, resulting
in a collection of high-quality, original melody fragments.
Melody Feature Extraction and Storage. We identify
four key features in a melody fragment for storage: “Length”,
“Structure”, “Chords”, and “Tonality”. These features also
facilitate the incorporation of the guidelines outlined in 3 dur-
ing the re-creation stage by allowing targeted querying of the
database.

• Length. The number of notes in a fragment, used for
basic alignment between lyrics and melodies. Generally,
we determine the length of retrieved fragments based on
the number of syllables in a lyric and align one sylla-
ble with one note. Sometimes, we allow one syllable to
align with multiple notes, as detailed in 4.2.

• Structure. It indicates whether a fragment belongs to a
chorus or verse. “Structure” of a melody piece is in-
ferred using an algorithm based on the self-similarity
matrix [Jayaram, 2018].

• Chords. The corresponding chords of a melody frag-
ment, inferred based on note pitch distribution using the
Viterbi algorithm [Magenta, 2020].

• Tonality. The tonality of a melody fragment, inferred by
[Liang et al., 2020].

A generated two-bar fragment is stored as two one-bar
fragments and one two-bar fragment. We ignore the bar in-
dex and focus on melodic notes and key features. Also, we
de-duplicate melody fragments.

Figure 2 demonstrates the feature extraction and storage
process for a pop music. The music is divided into two-bar
fragments, with the melody language model predicting the
next two bars based on previous context. For example, the
model predicts bars #3 and #4 using bars #1 and #2. If
bars #3 and #4 are part of a verse in the original melody, the
predicted bars are treated as verse components. The predicted
notes and their key features are stored as a record.

4.2 Re-creation Stage
In this stage, users provide lyrcis a preferred chord progres-
sion to ROC. Then, ROC infer the melody features (e.g.,
length, structure, and tonality, etc.) associated with each
lyric sentence. By querying the database using these melody
features, we obtain relevant melody fragments which satisfy
the structure alignment guideline. These candidates are then
filtered, re-ranked, and concatenated by guidelines and the
melody language model scores. Concatenate melody frag-
ments form a complete song. In this section, we first intro-
duce how to extract features in lyrics as queries for retrieval.
Then, we discuss retrieval and re-ranking details.
Lyric Feature Extraction. As mentioned in Structure
Alignment, Section 3, lyric-melody feature alignment is es-
sential in pop music composition. Therefore, ROC infers
the melody features associated with each lyric sentence for
retrieving relevant melody fragments. Among the features
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A Pop Music File (Divided into two-bar fragments)

Recognize
melody structure

1 2

3 4 ······

Predict 
next two bars

Record #
Notes: C5 A4 D5 C5 A4 C5 E4 C5
Length: 8
Structure: Verse
Chords: C
Tonality: Major

Bar #3 and #4 in a verse 
in the original melody

Recognize
Chords 

Recognize 
Tonality 

······

‘C’‘Major’

Storage

Feature Extraction

Figure 2: A case showing the feature extraction and storage of a
melody fragment in the creation stage.

Algorithm 1 Lyric Structure Recognition with (K,L)
Repeat Algorithm.

1: Input:
The string S abstracted from lyrics;
The segmentation granularity g.

2: Initialize:
Set all elements in struct array as 0.

3: while True do
4: Find R[L,K] with the largest L from S.
5: if L >g and K >1 then
6: Assign the struct value of each element in R[L,K]i

as the index in S of each element in R[L,K]1,
where i ∈ [2,K].

7: Remove elements with non-zero struct value from
S.

8: else
9: break

10: end if
11: end while

mentioned in 4.1, “Chords” are inferred based on the user-
provided chord progression. “Length” is determined by the
number of syllables in a lyric. “Tonality” is automatically set
to major or minor, depending on the positive or negative sen-
timent of the lyrics. We use third-party libraries for Chinese
[Deng, 2020] and English [Loria, 2020] sentiment analysis.
To infer “Structure”, we design a heuristic algorithm that rec-
ognizes structures (choruses and verses) in lyrics and consid-
ers the melody sharing guideline from Section 3 to determine
which lyrics should share melodies with other lyrics. Details
are provided below.

First, we define some preliminaries. Assume a song con-
tains n sentences, each represented by the number of syllables

Initialization:
S:  [ 4, 4, 7, 9, 5, 5, 9, 4, 5, 7, 9, 5, 5, 9, 5, 5, 9]
struct:           [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Iteration 1:  L= 5,𝐾 = 2
S:  [ 4, 4, 7, 9, 5, 5, 9, 4, 5, 7, 9, 5, 5, 9, 5, 5, 9]
struct:           [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 5, 6, 7, 0, 0, 0]

Iteration 2: L= 3,𝐾 = 2
S:  [ 4, 4, 7, 9, 5, 5, 9, 4, 5, 7, 9, 5, 5, 9, 5, 5, 9]
struct:           [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 4, 5, 6, 7, 5, 6, 7]

Syllables Lyrics 
4 I've paid my dues
4 Time af ter time
7 We are the cham pions my friends
9 And we'll keep on fight ing till the end
5 We are the cham pions
5 No time for los ers
9 'Cause we are the cham pions of the world
4 I've taken my bows
5 And my cur tain calls
7 We are the cham pions my friends
9 And we'll keep on fight ing till the end
5 We are the cham pions
5 No time for los ers
9 'Cause we are the cham pions of the world
5 We are the cham pions
5 No time for los ers
9 'Cause we are the cham pions of the world

loop

chorus

Figure 3: A case illustrating Algorithm 1. The original lyrics are
simplified. We use red to highlight the operation in each step and
grey to indicate these elements are currently skipped in S.

in it. The lyrics of a song can be abstracted into a number
string S. A substring in S is called a (K,L) Repeat if it is of
length L and repeats K times non-overlappingly in S. We de-
note the collection of these repetitive substrings as R[L,K].
R[L,K]i denotes the i-th repeat in R[L,K], where i ∈ [1,K].

In most songs, the chorus is often the longest repeating
segment, and segments with invariant lyrics have the same
syllables and should share the melody (as described in Sec-
tion 3). Consequently, the problem becomes searching for all
R[L,K] in S where L > g, with g being a searching granular-
ity to control the minimum length of repetitive segments. In
ROC, we set g as 2 by default. The R[L,K] with the globally
longest L indicates chorus parts, while the remaining parts are
considered verses. Moreover, segments within the R[L,K]
for any L share the same melody with others.

To record the melody sharing relationship, we use an aux-
iliary array called struct of length n. If the X-th lyric should
share a melody with the Y -th lyric, the X-th element in
struct is assigned as Y . Initially, all elements in struct are
“0”, indicating no sharing relationship. The algorithm details
are shown in Algorithm 1 and Figure 3 provides an intuitive
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illustration of the algorithm, using We Are the Champions3 by
Queen as an example. In the first iteration, the algorithm rec-
ognizes the chorus from “We are the champions, my friends”
to “Cause we are the champions of the world.” In the second
iteration, the previously recognized chorus is skipped due to
a non-zero struct value. The loop stops as there are no more
repetitive segments longer than g, which is 2 here. Lyrics cor-
responding to zero struct values will independently retrieve
melodies during the retrieval and re-ranking process, whereas
those with non-zero struct values will share melodies from
the lyrics indicated by their respective non-zero values.

Retrieval and Re-ranking. With the extracted features,
ROC performs the following operations to assign the best
matching melody to each lyric sentence:

(1) If the struct value of a lyric is “0”, we use both fea-
tures extracted from lyrics and user-provided chords to re-
trieve melody candidates from the database. Taking into ac-
count the pitch range consideration guideline from Section 3,
retrieved candidates are filtered as:

• The first note should be in the range of G3 to F4. This
avoids an overly pitched verse followed by an even
higher pitched chorus, making suitable candidates rare.

• The first pitch in a melody fragment must be less than
8 semitones apart from the last pitch of the determined
melody. This ensures ease of singing.

After filtering, we concatenate each candidate with the de-
termined melody and use the melody language model to score
them. The score is the normalized joint probability of a
melody fragment (in the form of MIDI-event sequence):

s = (

n∏
i

P (ui|u<i,Θ))
1
n , (2)

(2) If the struct value of a lyric is non-zero, we use the
struct value as the index to determine whose melody the cur-
rent lyric should share with. For example, in Figure 1, when
composing the second chorus, we directly reuse the melodies
of the first chorus.

(3) Special cases. Since melody fragments have a maxi-
mum length of two bars, some long lyrics may retrieve no
candidates. In this case, we split the lyrics into smaller pieces,
retrieve melodies for each piece, and then concatenate them.
Additionally, ROC supports one syllable aligning with multi-
ple notes, which occurs with a certain probability. When this
happens, ROC retrieves fragments with more notes than the
number of syllables in the lyric and randomly decides which
notes to connect.

Finally, we concatenate the retrieved fragments to form the
final composition result.

5 Experimental Settings
5.1 Dataset
We use LMD-matched MIDI dataset [Raffel, 2016], which
contains 45,129 MIDI data. First, we separate tracks [Guo et
al., 2020] and extract melodies. Tonalities are normalized to

3https://www.youtube.com/watch?v=04854XqcfCY

“C major” or “A minor”. Ten percent of the data constitutes
the validation set for training the melody language model. All
data are used for constructing the database through the short
melody fragment generation procedure, and there are 139,678
records in the database. As the test set, we select 20 English
and Chinese songs.

5.2 Model Details and Baselines
The melody language model in ROC is a 4-layer decoder-only
transformer [Vaswani et al., 2017]. Each layer has 4 attention
heads, and 256 input/output dimension. We use Adam opti-
mizer [Kingma and Ba, 2015] with β=(0.9, 0.98). The initial
learning rate is 0.0001. We apply early stop scheme with 20
epochs patience and select the best checkpoint by perplexity
on the valid set. The model applies top-5 decoding scheme.

We choose SongMASS [Sheng et al., 2020] and
TeleMelody [Ju et al., 2021] as the representative of end-to-
end baselines and non end-to-end baselines, respectively. Be-
cause the original SongMASS is trained with English lyrics,
we follow [Ju et al., 2021] to obtain a Chinese version. To
evaluate the effectiveness of our lyric structure recognition al-
gorithm, we also compare our algorithm with self-similarity
matrix based methods [Fell et al., 2018; Watanabe et al.,
2016] with pretrained embeddings GloVe [Pennington et al.,
2014] for English and CA8 [Li et al., 2018] for Chinese.

5.3 Evaluation Metrics
We carry out objective and subjective evaluations of the gen-
erated songs. A notable issue in the melody generation field
is the lack of universal metrics. In previous works, such as
TeleMelody [Ju et al., 2021], researchers often measure the
differences between generated songs and ground truth. How-
ever, we argue that focusing on similarity to the ground truth
does not effectively evaluate a model’s creativity. In this pa-
per, we primarily rely on human evaluation (subjective met-
rics) and employ objective metrics only to qualitatively reflect
the generation quality.
Objective Metrics. (1) Diversity (Dist-n) [Li et al., 2016]:
this metric is widely used in NLP fields to measure the diver-
sity of generation, i.e., how many unique n-grams in gener-
ated songs. This metric can measure the quality of music to
a certain extent because a song having few unique n-grams is
very monotonous. (2) Entropy (Ent-n) [Zhang et al., 2018]:
Dist-n neglects the frequency difference of n-grams. As a
complement, we also compute Entropy which reflects how
evenly the n-gram distribution is for a given melody:

Ent =
1∑

w F (w)

∑
w∈V

F (w) log
F (w)∑
w F (w)

, (3)

where V is the set of all n-grams, F (w) represents the fre-
quency of n-gram w.
Subjective Metrics. Objective metrics can only qualita-
tively reflect the generation quality and subjective metrics
evaluate the quality better. Therefore, we recruit 10 evalu-
ators having basic music knowledge to evaluate the perfor-
mance of lyric-to-melody system from the following five as-
pects: (I) Structure (Struc): how well the the melody struc-
ture matches lyric structure? Specifically, whether lyrics with

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Special Track on AI, the Arts and Creativity

7712

https://www.youtube.com/watch?v=04854XqcfCY


Models Objective Subjective
Dist-1 Dist-2 Ent-1 Ent-2 Struc Rhy LMC CLC Melo HL

SongMASS (EN) 0.62 4.32 2.18 3.83 2.80 2.80 2.60 3.00 3.30 2.40
TeleMelody (EN) 0.81 4.61 2.30 3.88 3.20 3.30 2.90 3.80 3.80 3.10
ROC (EN) 0.97 6.81 2.58 4.40 4.50 4.00 4.20 4.00 4.00 3.60
SongMASS (ZH) 0.45 3.97 2.05 3.75 2.30 2.60 2.50 3.00 2.90 2.50
TeleMelody (ZH) 0.75 4.54 2.32 3.85 3.20 3.50 2.90 3.80 3.70 3.00
ROC (ZH) 0.91 6.60 2.57 4.41 4.50 4.10 4.20 4.00 4.10 3.40

Table 1: Objective and subjective evaluation results on Chinese and English lyric-to-melody test set.

similar rhythm patterns have similar melodies? (II) Rhyth-
mic (Rhy): is the rhythm of a song flexible? (III) Lyrics and
melodies compatibility (LMC): is lyric-melody feature align-
ment significant, e.g., when the lyrics enter the chorus, does
the melody have a pitch lift or emotional intensity? Do sim-
ilar lyrics share similar melodies? (IV) Cadence and lyric
ending compatibility (CLC): whether cadences in the song
sounds harmonic and whether there is an appropriate pause at
the end of a lyric? (V) Melodic (Melo): is the melody beau-
tiful and attractive? (VI) Human-composed Likelihood (HL):
To what extent do the generated songs sound like human cre-
ations? In each aspect, evaluators can score from “1” for bad
to “5” for good.

Evaluators listen to all songs generated in experiments in
a random order. To eliminate familiarity bias that may arise
from evaluators having previously heard the original songs,
we display pseudo-lyrics (e.g., using spaces to represent syl-
lable locations). After scoring, evaluators are informed of the
actual lyrics, allowing them to focus on the structure when
assessing relevant aspects.

6 Experimental Results
6.1 Main Results
Table 1 shows results of objective and subjective judgement.
In objective experiments, ROC outperforms baselines in each
language. The comprehensive gains on all metrics demon-
strate the effectiveness of our new paradigm for lyric-to-
melody generation: (1) Higher diversity scores of ROC im-
ply that there are more melodic motions, which prevents the
melody being unattractive. More diverse melodies are more
likely to promote the emotion expression. (2) Higher entropy
scores indicate that diverse notes are distributed more evenly
than those of baselines, that is, the attractiveness and the abil-
ity of better emotion expression are more likely to maintain
from the start to the end.

The above conclusions are confirmed in the subjective ex-
periments, where ROC also outperforms baselines by a large
margin in two languages: (I) ROC achieves significant gains
in Struc thanks to lyric structure recognition and melody shar-
ing scheme. In baselines, perhaps an implicit structural fea-
ture is captured during training, there are some weak struc-
tural patterns, but they are not as evident and neat as those in
ROC. Also thanks to explicit structure features, we can distin-
guish chorus and verse which is an explicit activation for pitch
range change or emotion expression promotion. (II) ROC

has an improvement in Rhy because of more flexible notes,
e.g., durations vary much more often than those in baselines.
This is because in ROC, fragments are short whereas base-
lines suffer from modeling longer-term dependency. (III) Due
to the feature match between melody fragments and lyrics,
we also beat baselines on LMC by a large margin. (IV) Be-
cause the pipeline of ROC includes pause and cadence pol-
ish, CLC is ensured. (V) ROC generates more melodic songs
(highest Melo). Better Struc, Rhy, LMC and CLC are also
factors making songs more beautiful, improving Melo. (VI)
ROC produces songs that resemble human compositions by
incorporating commonly used composition guidelines, im-
buing the generated music with patterns typically found in
human-composed works. Overall, both the objective and sub-
jective evaluation results demonstrate that the new paradigm
ROC outperforms conventional generation paradigm.

6.2 Method Analyses

To better study the effect of each component in ROC and ex-
plore properties of ROC more thoroughly, we analyze the im-
pact of the structure recognition algorithm, model scores and
composition guidelines in retrieval and re-ranking, and the
size of database. Because of the slight performance differ-
ence in different languages, we report the average scores of
two languages in below.

Study on Structure Recognition. We disable the lyric
structure recognition and report results in Table 2. Because
CLC is guaranteed by polish operations in ROC, it is stable
in this study and thus is omitted. Evaluators reflect that if we
do not distinguish chorus and verse, the model will continue
the song without an emotion activation or an explicit change
of style so that melodies will be flat and less emotional, re-
sulting in a smaller pitch range (lower Dist-1). Because lyric
structure recognition is the foundation of the melody sharing
scheme in ROC, without melody sharing, each sentence has
its own unique melody, and thus Dist-2 increases. Overall,
(w/o. recog.) impairs the generation quality by a large margin
according to subjective evaluation because the rhythm is hurt
and songs do not sound human-composed due to the lack of
alignment between lyrics and melodies. Because the melody
language model and guidelines ensure the basic quality and
stability, the entropy scores maintain. This study reveals that
aligning the structure of melodies to that of the lyrics is indis-
pensable to high-quality lyric-to-melody generation.
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Models Objective Subjective
Dist-1 Dist-2 Ent-1 Ent-2 Struc Rhy LMC Melo

ROC 0.94 6.71 2.58 4.41 4.50 4.10 4.20 4.10
ROC w/o. recog. 0.84 7.80 2.58 4.41 2.20 3.90 2.10 3.60

Table 2: Study on lyric structure recognition.

Models Objective Subjective
Dist-1 Dist-2 Ent-1 Ent-2 Rhy Melo

ROC 0.94 6.71 2.58 4.41 4.10 4.10
ROC w/o. model 0.69 3.57 2.41 3.62 3.80 3.70
ROC w/o. guidelines 0.91 9.07 2.76 4.79 4.20 3.60

Table 3: Study on re-ranking schemes.

Database Size Objective Subjective
Dist-1 Dist-2 Ent-1 Ent-2 Rhy Melo

20% 0.93 6.54 2.49 4.28 3.80 3.90
50% 0.94 6.67 2.57 4.34 3.80 4.00
80% 0.96 6.60 2.56 4.35 4.00 4.10

100% 0.94 6.71 2.58 4.41 4.10 4.10

Table 4: Study on database size.

Study on Model Scores and Composition Guidelines. We
study the impact of model scores and composition guidelines
in retrieval and re-ranking on the performance of ROC. We re-
move the melody language model and composition guidelines
respectively. Table 3 shows experimental results. Because
Struc, CLC and LMC are unrelated to this study, their scores
hardly change and thus are omitted. With only composition
guidelines, too many candidates remain, and thus there is a
lot of randomness in the final determination. The melodies
are so diverse that Rhy increases a little. But too much di-
versity also decreases Melo. When composition guidelines
are removed, there are also too many candidates remaining
for the melody language model to score, and thus the running
speed is 70 times slower than that of ROC with only compo-
sition guidelines. Lower diversity and entropy indicate that
the melody is monotonous, which can be confirmed by sub-
jective metrics Rhy and Melo. Overall, when composition
guidelines are removed, songs sound dull and the melody pro-
gression is not harmonic as before whereas when the melody
language model scores are removed, the quality of different
parts of a song varies because of randomness. This study re-
veals that the melody language model scores and composition
guidelines complement each other in retrieval and re-ranking,
which are both crucial to the quality and efficiency of ROC.

Study on the Size of Database. Performance of ROC de-
pends on the size of database. For example, if there is no
melody that satisfies both the length requirements and chord
progressions, ROC has to compromise, e.g., using the tonic
chord as an alternative. Therefore, we study the effect of the

size of database. We prune the database to 20%, 50%, and
80% of the full size, respectively. Results are listed in Table 4.
First, as we expect, the running time and the database size are
positively correlated. The running time increases from 3.99
seconds per song to 10.17 seconds per song when the size
increases from 20% to 100 %. Second, because we remove
data from the database randomly, the average quality and dis-
tribution of music fragments do not change, so Dist and Ent
basically maintain. Because Struc, LMC, CLC is not deter-
mined by the database size and these metrics do not change,
they are omitted. To our surprise, we find that as long as the
average quality of melody fragments is satisfying, the gen-
eration quality is stable even though only 20% data remain.
However, in practice, when we use 20%-size database, some-
times there are no candidates with matching features.

7 Conclusion

To address the two main issues in current lyric-to-melody
generation methods—the lack of paired lyric-melody data
for training and insufficient adherence to composition guide-
lines, resulting in melodies that do not sound human-
composed—we propose ROC, a novel paradigm for lyric-to-
melody generation. ROC divides the process into two stages:
creation and re-creation. ROC does not require paired lyric-
melody data for training and better aligns features between
lyrics and melodies. Both objective and subjective experi-
mental results demonstrate ROC’s effectiveness.
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