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Abstract
As an important mathematical concept, fractals
commonly appear in nature and inspire the design
of many artistic works. Although we can gener-
ate various fractal images easily based on differ-
ent iterated function systems (IFSs), inferring an
IFS from a given fractal image is still a challeng-
ing inverse problem for both scientific research and
artistic design. In this study, we explore the poten-
tial of deep learning techniques for this problem,
learning a multi-head auto-encoding model to in-
fer typical IFSs (including Julia set and L-system)
from fractal images. In principle, the proposed
model encodes fractal images in a latent space and
decodes their corresponding IFSs based on the la-
tent representations. For the fractal images gener-
ated by heterogeneous IFSs, we let them share the
same encoder and apply two decoders to infer the
sequential and non-sequential parameters of their
IFSs, respectively. By introducing one more de-
coder to reconstruct fractal images, we can lever-
age large-scale unlabeled fractal images to learn
the model in a semi-supervised way, which sup-
presses the risk of over-fitting. Comprehensive ex-
periments demonstrate that our method provides
a promising solution to infer IFSs approximately
from fractal images. Code and supplementary file
are available at https://github.com/HaotianLiu123/
Inferring-IFSs-From-Fractal-Images.

1 Introduction
The study of fractal geometry can be traced back to the late
1960s when Benoit B. Mandelbrot systematically explored
complex structures with self-similarity and formally intro-
duced the term “fractal” [Mandelbrot and Mandelbrot, 1982].
As fascinating and important mathematical concepts, fractals
are widely exhibited in the natural world and serve as inspi-
ration for numerous artworks. In particular, with the continu-
ous advancement of computer technology, the digital creation
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methods of fractal art offer new avenues for artistic innova-
tion. Artists can utilize different iterated function systems
(IFSs) to create intricate and exquisite fractals [Lindenmayer,
1968; Barnsley, 1988], and the fractals’ distinctive geometric
shapes and self-similarity features provide artists with endless
inspiration, bestowing upon the uniqueness of their creations.

Besides creating fractals, the inverse problem of infer-
ring IFSs from given fractal images holds significance in
art design and even impacts scientific discovery. In par-
ticular, by inferring IFSs from the fractals, artists can ex-
plore self-similarity patterns hidden in natural scenes and cre-
ate new fractal-based artworks accordingly [Oppenheimer,
1986]. Additionally, the inferred IFSs help render natural
landscapes and lead to fractal-based image compression tech-
niques [Pentland, 1984]. Moreover, many natural phenom-
ena, e.g., the growth of filamentous organisms [Barry et al.,
2009; Lee, 2022] and the generation of crystal materials [Tsai
and Mecholsky, 1991; Zhao et al., 2018], can be described as
fractals. Inferring IFSs from their images is important for
building corresponding dynamic systems.

However, due to the uncertainty and complexity of frac-
tal images and the associated IFSs, the IFS of a fractal im-
age has a huge search space with an unknown intrinsic struc-
ture. As a result, it is always challenging to infer IFSs
from fractal images in practice without sufficient prior knowl-
edge. Moreover, there are many various IFSs generating frac-
tals, e.g., Julia set of complex functions [Julia, 1918], L-
systems [Lindenmayer, 1968], and so on. The heterogene-
ity of such IFSs further increases the difficulty of their in-
ference task. Currently, some attempts have been made to
infer IFSs automatically. The methods in [Jacquin, 1992;
Hoskins and Vagners, 1992; Kapoor et al., 2004] infer IFSs
through image compression, and the generic methods in [An-
geline, 1994] infer IFSs via heuristic searching. Focusing on
L-systems, approximate inference can be achieved by search
space shrinkage [Jürgensen and Lindenmayer, 1987] and se-
quential rule exploration [de la Higuera, 2005]. However,
these methods are designed for specific IFSs and exhibit high
computational complexity, whose performance is unsatisfac-
tory when inferring heterogeneous IFSs.

To overcome the above challenges, we explore the poten-
tial of deep learning techniques for the inference problem of
IFS, learning a multi-head autoencoder in a semi-supervised
way to infer various IFSs approximately from fractal images.
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Figure 1: An illustration of our method.

As illustrated in Figure 1, our model encodes fractal images
in a latent space and decodes the latent representations to
infer the parameters of the corresponding IFSs. The frac-
tal images can be generated by different IFSs, including Ju-
lia sets and L-systems. Because these IFSs have sequential
and non-sequential parameters, our model applies a multi-
head auto-encoding architecture, encoding the fractal images
by the same encoder and inferring the sequential and non-
sequential parameters by two different decoding heads, re-
spectively. Furthermore, to suppress the risk of over-fitting,
we further introduce an image decoding head to reconstruct
the fractal images from their latent representations. As a re-
sult, besides using the fractal images simulated by known
IFSs, we can leverage unlabeled fractal images (e.g., those
in FractalDB [Kataoka et al., 2022]) when training the model,
which leads to a semi-supervised learning paradigm. We con-
duct comprehensive experiments, learning different models
by different learning paradigms and comparing their quan-
titative and qualitative performance. Experimental results
demonstrate that our method provides a promising solution
to infer IFSs approximately from fractal images.

2 Related Work
2.1 Iterated Function System Inference
In general, fractals are geometrical objects that have self-
similar and detailed structures at arbitrarily small scales,
whose fractal dimension strictly exceeds their topological di-
mensions [Mandelbrot and Aizenman, 1979]. The fractals
are often generated by different iterated function systems,
like recursive compositions of complex functions (e.g., Ju-
lia sets [Barnsley, 1988]), chaos games [Barnsley and Vince,
2011], and recursive parallel rewriting systems based on spe-
cific formal grammars (i.e., L-systems [Lindenmayer, 1968]).

Some methods have been proposed to infer specific IFSs
from fractal images. In particular, given a fractal image,
the work in [Jacquin, 1992] first presents a partial IFS infer-
ence method to infer restricted IFSs for the local patches of
the image, which leads to the well-known fractal-based im-
age compression techniques. Following this strategy, some
variants [Hoskins and Vagners, 1992; Kapoor et al., 2004;
Menassel et al., 2020] are proposed to improve the efficiency
of the method. Among them, the method in [Rinaldo and Za-
khor, 1994] applies Wavelet transform to realize the extrac-

tion of IFS parameters, connecting IFS inference to multi-
scale analysis. However, these methods often have high com-
putational complexity and can only infer local and limited
IFSs based on specialized knowledge in related fields. Focus-
ing on L-systems, the methods in [Herman and Walker, 1972;
de la Higuera, 2005; Bernard and McQuillan, 2023] try to
estimate the grammar of L-systems based on a finite set of
strings, which fail to infer L-systems based on fractal images.
The genetic algorithm in [Angeline, 1994] applies a heuristic
strategy to achieve image-based L-system inference, whose
convergence and performance have no theoretical guarantees.
Moreover, the above methods are designed for a specific kind
of IFS. They do not provide a unified framework to infer het-
erogeneous IFSs and thus suffer from poor generalizability.

2.2 Neural Network-based Image Understanding
In the past ten years, deep learning has proven to be a
powerful tool for image understanding, which extracts in-
formative image representations via learning neural net-
works. Typically, convolutional neural networks (CNNs),
like AlexNet [Krizhevsky et al., 2012], VggNet [Simonyan
and Zisserman, 2015], ResNet [He et al., 2016], and their
variants [Howard et al., 2017; Huang et al., 2017], achieve
encouraging performance in large-scale image classification
tasks, which provide valuable backbones for image represen-
tation and understanding. Recently, Transformer [Vaswani et
al., 2017] has also been applied to vision tasks, leading to the
ViT model [Dosovitskiy et al., 2020]. These models repre-
sent images semantically in latent spaces, and the latent rep-
resentations can be used to support various downstream tasks,
e.g., conditional image generation [Van den Oord et al., 2016;
Kim et al., 2022; Li et al., 2023] and cross-modal genera-
tion [Li et al., 2021; Li et al., 2022]. For example, connecting
these models with sequential models [Radford et al., 2018;
Raffel et al., 2020] leads to an auto-encoding architec-
ture for conditional text generation [Ramesh et al., 2022;
Mai et al., 2020]. However, whether these models can en-
code fractal images well or not and how to train the models
to provide sufficient information to infer IFSs are open prob-
lems not investigated yet, which motivates this study.

3 Proposed Method
3.1 Multi-head Auto-encoding Architecture
As mentioned before, fractal images can be generated by het-
erogeneous IFSs. Take the Julia set [Julia, 1918] for quadratic
complex polynomials as an example. We can generate the
Julia set, a point set with a self-similarity structure defined
on the complex plane, by recursively applying the following
complex function:

zn+1 = z2n + c, n = 0, 1, 2, · · · , (1)

where the offset c ∈ C is a complex number. z0 is the initial
input, which is fixed as 0+0j in this study. Given c and an ini-
tial z0, a series of complex numbers can be generated, and the
Julia set is constructed by the points remaining bounded dur-
ing the recursive process. Applying the algorithm provided
in [Hussein et al., 1999], we can generate a Julia set by ap-
plying (1) N times given specific c and z0. In summary, each
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Symbol Definition
F Draw forwards
[, ] Push / pop state

+,− Rotate by +/- angle
! Negate angle
| Increment angle by 180◦

Table 1: The definitions of operation symbols in L-system.

fractal image of Julia set, denoted as I(J), is associated with
two parameters y = {Re(c), Im(c)}, where c ∈ C, Re(c) and
Im(c) are its real and imaginary parts.

While the fractal images of the Julia set are determined by
non-sequential parameters, the fractal images generated by L-
systems are associated with sequential parameters. In partic-
ular, an L-system [Lindenmayer, 1968] is a parallel rewriting
system and a type of formal grammar, which can plot fractal
images by recursively implementing a set of rules. Mathe-
matically, it can be defined as a tuple G = (V , ω,R). V is
an alphabet set, which encompasses symbols containing both
elements that can be replaced (variables) and those that can-
not be replaced (constants or terminals). Each symbol in V is
associated with a rule, so the cardinality of V determines the
number of rules. ω is the initiator, which is a string of sym-
bols from V defining the initial system state. R = {ri}|V|

i=1
is a set of rules determining how to replace the variables with
combinations of constants and other variables. Each rule r
is a sequence formulated as “p : s”. p ∈ V is called pre-
decessor, which corresponds to the variable to be replaced in
the next iteration. s ⊂ V ∪ A is a string determines the suc-
cessor used to replace p. Here, A = {F, [, ],+,−, !, |} is a
set of operations applying to the variables in V , whose defini-
tions are in Table 1. Accordingly, s means applying a series
of operations to some specific variables and replacing p with
the operations’ result. Obviously, for each fractal image gen-
erated by an L-system, denoted as I(L), the corresponding
rule set R = {ri}|V|

i=1 is its parameters. By concatenating the
rules, we can formulate the parameters as a symbol sequence,
denoted as s, whose vocabulary set is V ∪ A.

Figure 2 shows typical fractal images of Julia set and L-
system, respectively. According to the above analysis, we
can find that the parameters of Julia set are non-sequential,
while those of L-system are sequential. Additionally, we can
implement the fractal images with different iteration numbers
and further apply geometrical transformations (e.g., zoom-in,
zoom-out, and rotation) to increase their diversity. Both of
the IFSs can take the number of iterations N ∈ N, the scaling
coefficient τ ∈ (0,∞), and the rotation angle a ∈ [0◦, 360◦)
as additional model parameters. Therefore, we need to build a
model to predict the sequential and non-sequential parameters
jointly.

To achieve this aim, we design a model with multi-head
auto-encoding architecture. Specifically, the model consists
of one image encoder and three decoders. The encoder, de-
noted as f : I 7→ Z , maps fractal images to a d-dimensional
latent space Z ⊂ Rd, i.e., z = f(I). Based on the latent rep-
resentations of fractal images, the first decoder g1 predicts the
sequential rules of the L-system, incorporating both the num-

(a) Julia Set

(b) L-system

Figure 2: Typical fractal images of Julia set and L-system. For each
image, the corresponding parameters are provided.

ber of iterations and rotation angle parameters into the rules
for joint prediction. The second decoder g2 predicts the non-
sequential parameters of the Julia set. Additionally, the third
decoder g3 : Z 7→ I aims to reconstruct each input image
based on its latent representation. Typically, we can imple-
ment {f, g2, g3} by classic CNNs or Transformer encoders
and implement g1 by a sequential model like recurrent neural
networks (RNNs) or Transformer decoders.

The first two decoders work for inferring IFSs from latent
representations. Connecting f with g1 and g2 leads to the
target model in the testing phase. To suppress the risk of
over-fitting, we apply two mechanisms. Firstly, we let the
fractal images generated by different IFSs share the same en-
coder, mapping them to the same latent space. Secondly, the
third decoder works to construct a regularizer — by penaliz-
ing the reconstruction loss of input fractal images, we can en-
sure that the latent representations preserve sufficient seman-
tic information for the images. Note that the third decoder
and the associated reconstruction loss do not rely on the pa-
rameters of IFSs, so they are applicable for unlabeled fractal
images. As a result, the utilization of large-scale unlabeled
fractal images helps improve the generalization power of the
target model, which leads to the following semi-supervised
learning paradigm.

3.2 Semi-supervised Learning Paradigm
Denote the labeled fractal images of Julia set and L-system
as two sets, i.e., DJ = {I(J),y(J)} and DL = {I(L), s(L)},
where y(J) and are non-sequential parameters of the Julia Set
and s(L) represents the sequential parameters of L-system.
Additionally, we denote the unlabeled fractal images we col-
lected as DU = {I(U)}. Given such training data, we can
learn our multi-head autoencoder by considering the follow-
ing three losses.

Sequential Parameter Prediction
For the sequential parameters, we predict the element in each
sequence in an autoregressive manner, leading to the follow-
ing cross-entropy loss:

L1(f, g1) :=
∑

(I,s)∈DL

∑
si∈s

CE(si, g1(f(I), si)), (2)
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where si = {sj}i−1
j=1 is the historical elements before si.

Non-sequential Parameter Prediction
For the non-sequential parameters, we take the mean-square-
error (MSE) of their estimation as the loss function, i.e.,

L2(f, g2) :=
∑

(I,y)∈DJ

∥g2(f(I))− y∥22. (3)

Fractal Image Reconstruction
Finally, we consider the MSE of the reconstructed fractal im-
ages during training, i.e.,

L3(f, g3) :=
∑

I∈DJ∪DL∪DU

∥g3(f(I))− I∥2F , (4)

where ∥ · ∥F is the Frobenius norm of matrix.

Considering the above three loss functions jointly leads to
the proposed learning problem, i.e.,

min
f,g1,g2,g3

αL1(f, g1) + (1− α)L2(f, g2) + βL3(f, g3), (5)

where α ∈ [0, 1] achieves a trade-off between the sequential
and non-sequential prediction, and β > 0 controls the sig-
nificance of the regularization. We solve (5) efficiently by
stochastic gradient descent [Robbins and Monro, 1951].

4 Experiment
4.1 Implementation Details
Data Preparation
To demonstrate the feasibility of our inference method and
evaluate its performance, we construct a fractal image dataset,
which consists of the following three subsets.

• Labeled fractal images of Julia set. For Julia set, we
randomly generate 10,000 images. All of the parame-
ters are sampled randomly and uniformly from a specific
range, i.e., both the real and imaginary parts of c are in
the range [−1, 1], N ∈ [10, 30], the scaling coefficient
τ ∈ [0.5, 1.5].

• Labeled fractal images of L-system. For L-system,
we generate 10,065 fractal images based on 59 differ-
ent rules that are proven to generate reasonable fractals.
The rules are sequences generated with the same vocab-
ulary set V = {S,A,B,C,D,E}. We generate 59 fixed
categories of grammar. To make the dataset more di-
verse, we set a ∈ [0, 175◦] and choose 5 different itera-
tion numbers for each rule.

• Unlabeled fractal images. We apply the FractalDB60
dataset proposed in [Kataoka et al., 2022]. It contains 60
categories of fractal images, each with 1000 instances
generated based on the corresponding unknown IFSs.
To match the quantity of the data we generated, we ran-
domly selected 200 images from each category, resulting
in a total of 12,000 images.

For the labeled fractal images, we split them into training and
testing sets. All the unlabeled fractal images are used for
training. The algorithms generating the labeled fractal im-
ages are shown in the supplementary file.

Model Architectures
For the proposed multi-head autoencoder, we consider differ-
ent model architectures and analyze their impacts on learn-
ing results. Specifically, we implement the encoder f based
on four representative architectures, including VGG16 [Si-
monyan and Zisserman, 2015], Resnet50 [He et al., 2016],
DenseNet [Huang et al., 2017], and ViT [Dosovitskiy et al.,
2020]. For the three decoders, we implement g1 based on the
recurrent neural network (RNN) in [Xu et al., 2015], imple-
ment g2 based on the convolutional neural network (CNN)
within the encoder, and implement g3 based on the image
generator in [Goodfellow et al., 2014].

Hyperparameter Settings
We implement our method by PyTorch and conduct all exper-
iments on a single NVIDIA 3090 GPU. We train our models
by Adam [Kingma and Ba, 2014], and we set the batch size
to be 16, the epochs to be 150. The learning rate is set to be
10−4 for {f, g2, g3} and 4 × 10−4 for g1, respectively. The
clip gradient is set to be 5. As for the hyperparameters in (5),
we set β = 0.1 and α = 0.95 for the first 120 epochs, and
then solely update the model for predicting non-sequential
parameters in subsequent epochs.

Evaluation Metrics
For the non-sequential parameters, we utilize the Mean Ab-
solute Error (MAE) to evaluate their estimation results. For
the sequential rules of L-system, we evaluate the qual-
ity of machine-generated rules based on the commonly-
used BLEU [Papineni et al., 2002] and ROUGE (R@1 and
R@L) [Lin, 2004]. Additionally, based on the inferred IFSs,
we can simulate fractal images and compare them with those
generated by the ground truth IFSs. The objective image
quality assessment metrics, like SSIM (Structural Similarity
Index) [Wang et al., 2004] and LPIPS (Learned Perceptual
Image Patch Similarity) [Zhang et al., 2018], can be applied.
Specifically, SSIM measures the similarity based on the lumi-
nance, contrast, and structure factors, while LPIPS measures
the human perceptual similarity between images.

4.2 Quantitative and Qualitative Results
Comparisons for Learning Paradigms
Our quantitative results are shown in Table 2. We can find
that when separately training different IFSs, the model of one
IFS is not applicable for inferring other IFSs in general. For
example, we can’t apply the model trained for Julia set to in-
fer L-system, as the model parameters are not shared. Ad-
ditionally, the model trained for a single IFS suffers from
a high risk of over-fitting due to the insufficiency of train-
ing data. However, when training an inference model for
the two IFSs jointly (i.e., minimizing the L1 in (2) and the
L2 in (3) jointly), the model is not consistently better than
those trained separately on the proposed evaluation measure-
ments because the heterogeneity of the training data leads
to a much more difficult learning task. Our semi-supervised
learning paradigm overcomes the drawbacks of the above two
paradigms, which achieves the best performance in most sit-
uations. In particular, by introducing the reconstruction task
for both labeled and unlabeled fractal images (i.e., the L3
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Encoder L1 L2 L3

Julia Set L-System
MAE↓ Image Similarity MAE↓ Sequence Quality↑ Image Similarity

Re(c) Im(c) N τ SSIM↑ LPIPS↓ a N BLEU R@1 R@L SSIM↑ LPIPS↓

VGG16

× ✓ × 0.1840 0.2170 5.4311 0.1533 0.5045 0.4996 — — — — — — —
✓ × × — — — — — — 5.972 2.865 89.32 91.10 93.42 0.9122 0.1394
✓ ✓ × 0.2450 0.2274 1.7099 0.1964 0.5706 0.4486 5.085 2.610 88.90 93.22 92.43 0.9095 0.1481
✓ ✓ ✓ 0.0770 0.1153 1.2314 0.0849 0.7012 0.2948 3.670 2.454 94.84 95.52 95.37 0.9178 0.1312

Resnet50

× ✓ × 0.1610 0.1547 1.8569 0.1348 0.6358 0.3756 — — — — — — —
✓ × × — — — — — — 4.165 2.593 90.55 94.26 93.87 0.9108 0.1404
✓ ✓ × 0.1219 0.1414 1.4730 0.2816 0.5412 0.4127 9.700 2.770 87.89 92.96 92.52 0.9030 0.1530
✓ ✓ ✓ 0.0984 0.0822 1.4057 0.0567 0.7237 0.2733 4.133 2.497 91.40 93.34 93.33 0.9123 0.1393

DenseNet

× ✓ × 0.1223 0.2072 1.9311 0.0827 0.6430 0.3743 — — — — — — —
✓ × × — — — — — — 3.420 2.260 91.73 94.54 94.25 0.9154 0.1282
✓ ✓ × 0.0973 0.0853 1.5406 0.0531 0.7269 0.2728 4.194 2.505 90.21 94.29 93.92 0.9171 0.1364
✓ ✓ ✓ 0.0497 0.0543 1.3220 0.0348 0.7761 0.1905 3.290 2.426 93.34 94.29 94.28 0.9179 0.1139

ViT

× ✓ × 0.0915 0.2285 1.4751 0.0645 0.6638 0.3479 — — — — — — —
✓ × × — — — — — — 33.32 8.515 65.50 88.62 85.34 0.8997 0.2575
✓ ✓ × 0.1962 0.1966 1.4361 0.0641 0.6557 0.3610 34.42 8.575 65.03 88.48 85.21 0.8821 0.2407
✓ ✓ ✓ 0.0991 0.2108 1.5664 0.0653 0.6690 0.3129 32.58 8.505 65.86 88.16 85.19 0.9026 0.2394

Table 2: Quantitative experimental results for various model architectures and learning paradigms.

VGG16 Resnet50 Densenet ViTViT

(a) Input (b) Learning by minL2

(c) Learning by minL1 + L2

(d) Learning by minL1 + L2 + L3

Figure 3: Visual comparisons for different models and learning
paradigms given a Julia Set.

in (4)), our method mitigates the insufficiency of data and
thus suppresses the risk of over-fitting. The reconstruction
task penalizes the loss of information, ensuring the latent rep-
resentations of fractal images are semantically meaningful.

Besides the numerical results, we apply the inferred IFSs
to simulate fractal images and compare the generated images
with the input ones. Figures 3 and 4 show the fractal images
generated by different models under different paradigms.
These results further demonstrate the superiority of the pro-
posed semi-supervised learning paradigm. When learning the
models separately or without the reconstruction loss, they of-
ten infer the IFSs with low precision. As a result, their gen-
erated fractal images are significantly different from the in-
put ones, and some models even fail to generate fractals. In

VGG16 Resnet50 Densenet ViTViT

(a) Input (b) Learning by minL1

(c) Learning by minL1 + L2

(d) Learning by minL1 + L2 + L3

Figure 4: Visual comparisons for different models and learning
paradigms given an L-system fractal image.

contrast, applying the semi-supervised learning paradigm im-
proves the model performance consistently across different
model architectures, which helps the models infer IFSs with
higher precision and thus generate fractal images more simi-
lar to the input images.

The advantage of the proposed semi-supervised learning
paradigm can also be verified by the distribution of latent
representations. In particular, given the latent representa-
tions of fractal images, we employed t-SNE [Maaten and Hin-
ton, 2008] to visualize them in 2D space. As shown in Fig-
ure 5, without the help of unlabeled fractal images and the
reconstruction-based regularization, the t-SNE plot of Julia
set is separated from that of L-system. In other words, the la-
tent distribution of the fractal images has two separate modal-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Special Track on AI, the Arts and Creativity

7703



50 25 0 25 50

40

20

0

20

40

L-system Julia_Set

(a) minL1 + L2

50 0 50

50

25

0

25

50

FractalDB

(b) minL1 + L2 + L3

Figure 5: The t-SNE plots of the latent representations of fractal im-
ages. In this experiment, we apply the model with Densenet encoder
and randomly select 500 Julia Set images, 500 L-system fractal im-
ages, and 1,000 FractalDB images to compute the t-SNE plot.

ities and the latent representations between the two modalities
are unavailable. It implies that the model does not overcome
the heterogeneity of these two IFSs and suffers from a high
risk of over-fitting. In contrast, when applying the unlabeled
fractal images to train our model, i) the latent representations
of the unlabeled fractal images fill the blank spaces between
the modalities of the Julia set and L-system, ii) some latent
representations of Julia set are mixed with those of L-system,
and iii) the clustering structure within each dataset becomes
significant. For our model, these two phenomena imply an
improvement in generalizability.

Impact of Encoder Architecture
According to the above results, we can further analyze the
impacts of different model architectures. We can find that
among the four model architectures, Densenet achieves the
best performance in most situations, as shown in Table 2. In
particular, the learned Densenet can achieve encouraging nu-
merical results when inferring IFSs, and the inferred IFSs can
generate reasonable fractal images that are similar to those
generated by the ground truth IFSs, as shown in Figures 3
and 4. Therefore, we apply Densenet as the default architec-
ture of encoder. It should be noted that the commonly-used
ViT architecture does not perform well when inferring IFSs.
In our opinion, a potential reason for this phenomenon is that
the fractal structure is a global spatial pattern of each frac-
tal image. The convolution neural networks (i.e., VGG16,
Resnet50, and Densenet) do not change the spatial relations
among image pixels, while ViT tokenizes each fractal image
as a sequence of local patches. The local patches may be in-
sufficient to capture the fractal structure globally shown in the
image, and the sequential representation of the patches leads
to the loss of spatial information.

Impact of Decoder Architecture
Besides the encoder architecture, we also investigate the in-
fluence of the decoder architecture. In addition to RNN, we
conduct experiments using the Transformer in [Vaswani et
al., 2017] as our sequential parameter decoder g1. The re-
sults are presented in Table 3. It is observed that employing
the Transformer achieves comparable inference results. How-

Encoder Decoder Sequence Quality↑ Image Similarity
BLEU R@1 R@L SSIM↑ LPIPS↓

Resnet50 RNN 91.40 93.34 93.33 0.9123 0.1393
Trans. 89.76 93.26 93.01 0.9115 0.1418

Densenet RNN 93.34 94.29 94.28 0.9179 0.1139
Trans. 90.23 93.71 93.54 0.9144 0.1197

Table 3: Experimental results of sequential parameter estimation for
different decoder architectures.
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Figure 6: The curves of different evaluation metrics with respect to
the size of training set on the Julia Set.

ever, we still apply RNN as the default decoder architecture
because it consumes fewer computational resources.

Impact of Training Data Size
Additionally, we investigate the impact of training data size
on our inference results. Take the inference task of Julia set
as an example. We train our model with M training images,
where M ∈ [2000, 8000], and test it on 500 images. Figure 6
shows the model performance on different evaluation mea-
surements. As we expect, the performance of our method is
improved in general with the increase of training data size.
This result verifies the rationality of our model.

4.3 Experiments on Generalizability
Our method provides a data-driven solution to the inference
of IFS, and its generalizability is crucial for its practical ap-
plications. To analyze the generalization power of our model,
we apply it to infer IFSs from some fractal images unseen
during training, including natural fractal images and the L-
system fractal images generated by challenging unseen rules.
The results show the potential of our method in practice and
point out its current limitations and our future work.

Inferring IFSs from Natural Fractal Images
As shown in Figure 7, natural objects such as spiral
aloe, trees, whirlpools, and so on, exhibit multi-scale self-
similarity and can be modeled as fractals. Given such natural
fractal images, we first apply Laplacian operator to extract
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Figure 7: The result of applying our model to the natural fractal
objects and their corresponding IFSs and reconstructed images.

their edge images. Then, assuming the edge images to be L-
system fractal images, we pass them through our model and
approximate the parameters of the corresponding L-systems
accordingly. Based on the inferred L-systems, we can further
generate fractal images and check their visual effects. The
representative results in Figure 7 demonstrate the encourag-
ing generalizability of our model on natural fractal images
to some degree — the L-systems inferred by our model can
generate fractal images that are visually similar to the original
natural fractal images. These results also show the potential
of our work in art design. By inferring IFSs from natural
images, our model can generate artistic fractal images and
provide artists with creative inspirations and materials.

Limitations on Challenging Inference Tasks
Although our model shows encouraging performance on
some unseen natural fractal images, it still suffers from lim-
ited generalization power when inferring complicated IFSs.
In this experiment, we create 10,000 challenging fractal im-
ages based on the L-systems with complicated rules and test
our model on the dataset. Instead of considering 59 prede-
fined rules, the rules associated with these images are ran-
domly generated. Specifically, each image is generated by
an L-system with four rules, whose vocabulary set is V =
{S,A,B,C}. For each rule, its predecessors are selected
from V , and its successors are sequences with three to five

Encoder Learning Sequence Quality↑
Paradigm BLEU R@1 R@L

VGG16 SL 31.34 85.88 72.17
ZSL 24.68 86.34 74.94

Resnet50 SL 30.62 86.17 73.98
ZSL 24.41 84.88 73.97

DenseNet SL 32.33 84.79 72.61
ZSL 24.03 85.91 74.85

ViT SL 33.12 87.66 70.75
ZSL 25.60 87.96 74.61

Table 4: Testing results on the challenging L-system fractal images.

elements randomly sampled from V ∪ A.
Due to the randomness, inferring the L-systems from their

images is much more challenging. When training our model,
we consider two learning paradigms. The first is classic su-
pervised learning (SL), i.e., learning the model directly based
on the challenging dataset. The second is learning the model
based on the original (simple) dataset and testing the model
on the challenging dataset, leading to the zero-shot learning
(ZSL) paradigm. The results are shown in Table 4. Compared
to the results in Table 2, our model suffers from significant
performance degradation in this experiment. In particular,
both our training L-system images and the above natural frac-
tal images yield relatively-simple rules, while the rules ap-
plied to generate the challenging dataset are much more com-
plicated. As a result, our current model shows undesired ZSL
performance. Additionally, the results of supervised learn-
ing are not good enough either, which means that learning a
generalizable inference model for complicated IFSs requires
much more training data and new learning paradigms, e.g.,
large-scale pre-training, which is left as our future work.

5 Conclusion
In this work, we learn a multi-head auto-encoding model to
infer typical IFSs approximately based on fractal images. The
proposed model leverages two decoding heads to infer se-
quential and non-sequential parameters of different IFSs and
considers one more image decoding head to reconstruct in-
put fractal images. We design a semi-supervised learning
paradigm to learn the proposed model, making unlabeled
fractal images available during training. Our method pro-
vides a promising solution to infer Julia Set and L-system
approximately from fractal images. In the future, we plan to
further improve the generalizability of our model by i) con-
sidering more heterogeneous IFSs and their fractal images in
the training phase and ii) applying cutting-edge pre-training
techniques to train powerful large-scale models.
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