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Abstract
Exploring the narratives conveyed by fine-art paint-
ings is a challenge in image captioning, where the
goal is to generate descriptions that not only pre-
cisely represent the visual content but also offer
a in-depth interpretation of the artwork’s mean-
ing. The task is particularly complex for art-
work images due to their diverse interpretations
and varied aesthetic principles across different
artistic schools and styles. In response to this,
we present KALE (Knowledge-Augmented vision-
Language model for artwork Elaborations), a novel
approach that enhances existing vision-language
models by integrating artwork metadata as addi-
tional knowledge. KALE incorporates the meta-
data in two ways: firstly as direct textual input,
and secondly through a multimodal heterogeneous
knowledge graph. To optimize the learning of
graph representations, we introduce a new cross-
modal alignment loss that maximizes the similar-
ity between the image and its corresponding meta-
data. Experimental results demonstrate that KALE
achieves strong performance (when evaluated with
CIDEr, in particular) over existing state-of-the-art
work across several artwork datasets. Source code
of the project is available at https://github.com/
Yanbei-Jiang/Artwork-Interpretation.

1 Introduction
Recently, research in the field of Artificial Intelligence (AI)
has shown a growing interest in exploring the intersection be-
tween AI and Art. In the last few years, numerous initia-
tives have aimed to leverage AI technologies to make the do-
main of art more accessible and interpretable [Ma et al., 2017;
Gonthier et al., 2018; Wynen et al., 2018]. One such appli-
cation is the generation of descriptions for visual arts, which
is a case of image captioning. This task aims to automat-
ically produce a short meaningful text given an input im-
age. Beyond simple object and scene recognition, effective
image captioning requires machines to understand the con-
text and relationships among the elements within the image.
Through appropriate analysis and extraction of high-level fea-
tures from artwork images, generated descriptions could po-

Figure 1: Artwork metadata are integrated through two ways, 1:
Textual input 2: Knowledge graph input.

tentially convey implicit meanings that artists want to express
and make artworks more accessible.

Generating captions for artwork images is a challenging
task for several reasons. Firstly, unlike natural images, art-
work images may lack clear entities, such as in the case of
abstract art, making it difficult for models to extract useful
information from just the images. Another significant chal-
lenge is dealing with the ambiguity and subjectivity inherent
in the image. Artwork images often have multiple levels of
interpretation, and captions may vary significantly depend-
ing on the observer’s cultural background and artistic taste.
A descriptive caption generator might say “some people un-
der a tree in a park”, but a better captioning system designed
for artworks might say “a serene gathering in the shade that
illustrates 19th-century pastoral life”.

Recent studies, such as those by [Lu et al., 2022],
[Achlioptas et al., 2021] and [Wu, 2022], employed
Transformer-based encoder-decoder architectures. However,
these models often lack extensive pre-training, limiting their
diversity and effectiveness due to training on relatively small
datasets. [Cetinic, 2021] utilizes a pre-trained model CLIP,
which marks a significant advancement, but it struggles with
captions that require an understanding of broader knowledge
of art history. To address this, recent studies began to inte-
grate external knowledge during training. [Bai et al., 2021]
proposed a framework that utilizes external knowledge from
Wikipedia, where the model detects objects in artwork im-
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ages and retrieves relevant information. However, this ap-
proach has its limitations, as artwork images do not always
present salient objects for detection. [Sheng and Moens,
2019] take a different approach by incorporating artwork
types into a CNN-LSTM model, but their model is con-
strained by its reliance on a single external data source.

To handle the above limitations, our solution is to incor-
porate supplementary data that provides broader knowledge
beyond the image. The SemArt artwork dataset [Garcia and
Vogiatzis, 2018] offers a valuable resource as it enriches each
image with additional metadata. As shown in Figure 1, each
image is associated with six metadata, which provide use-
ful background information about the artworks. For example,
the “School” metadata could be used to infer the artist’s style,
while “Type” tells us about the format of the artwork. To in-
corporate these supplementary data into an image captioning
system, our first approach concatenates these metadata into a
word sequence and feed them as additional input. Our sec-
ond approach constructs a heterogeneous knowledge graph
that integrates artwork metadata with the images to build con-
tinuous representations for the metadata. These continuous
representations can then be injected as additional input. In
summary, our main contributions are listed as follows:

• We propose KALE, an artwork image captioning sys-
tem that extends the existing pre-trained vision-language
model to the art domain. Through empirical evaluations,
we have demonstrated that KALE largely outperforms
existing artwork image captioning models across several
artwork datasets.

• We design two ways to incorporate artwork metadata
into our system. Firstly, by including all of them as ad-
ditional textual inputs, and secondly, through the con-
struction of a heterogeneous knowledge graph by treat-
ing each image and its associated metadata as distinct
node types. This methodology leverages the strengths of
heterogeneous graph structures and bridges the gap be-
tween visual and textual data in artwork analysis. The
results suggest that the model can foster a better under-
standing of the narratives behind fine art pieces.

• KALE is trained with two objectives that maximize the
likelihood of generating the ground-truth caption and
the similarity between the image and its corresponding
metadata in the knowledge graph.

2 Related Work
Pre-trained Vision-Language Model. Motivated by the
success of pre-trained language models like BERT [Devlin et
al., 2019] in natural language processing, pre-trained vision-
language models have attracted significant attention in the
multi-modal domain and they have shown remarkable per-
formance for image captioning task [Radford et al., 2021;
Wang et al., 2021; Wang et al., 2022; Li et al., 2022;
Li et al., 2020]. Pre-training on large-scale datasets such
as COCO [Lin et al., 2014], Visual Genome [Krishna et al.,
2017], and Conceptual Captions [Sharma et al., 2018] allows
transferring knowledge to downstream tasks with limited data
and enables the models to recognize and understand a broader

range of objects and contexts. Typically, these models are
composed of four main components: a vision backbone used
to extract features from an input image, a language backbone
to process an input text, a fusion encoder that captures the
intricate interactions between visual and linguistic elements,
and a language decoder to generate captions.

Knowledge Graph. In recent years, the concept of knowl-
edge graphs has gained increasing attention in the field of ar-
tificial intelligence, as they can be used to represent a wide
range of information, from simple facts and relationships to
complex entities and events. Recent studies on incorporat-
ing knowledge graphs into image captioning systems demon-
strate a significant enhancement. One approach involves us-
ing scene graphs to represent structural relationships in im-
ages [Yang et al., 2019]. Other methods, like the one pro-
posed by [Zhao and Wu, 2023], construct multi-modal knowl-
edge graphs that associate visual objects with named entities
to generate more informative and accurate captions. In the
field of artwork analysis, [Garcia et al., 2020] created an art-
specific graph that connects paintings with their related at-
tributes and incorporated it into cross-model retrieval task.

Heterogeneous Knowledge Graph. Unlike traditional
graphs which focus on homogeneous nodes and edges, Het-
erogeneous Knowledge Graph (HKG) includes a variety of
node and edge types, allowing for the representation of mul-
tifaceted data from different domains. For instance, in the
context of artworks, nodes could represent images, artists,
artwork types, schools, or historical periods. Edges, mean-
while, could denote relationships such as “created by”, “be-
longs to” or “influenced by”. This rich structuring could
represent the art world and capture some complex historical,
cultural, and stylistic factors. Heterogeneous Attention Net-
works (HANs) are a recent innovation leveraging the rich-
ness of HKGs [Wang et al., 2019]. HANs apply the atten-
tion mechanism selectively across different types of nodes
and relationships in an HKG. The output for HAN is a set
of graph embeddings. These embeddings are crucial as they
translate the entities and relations present in the graph into a
low-dimensional, dense, and continuous vector space, which
could be trained in an end-to-end manner. One of the key
concepts in HKGs is the “meta-path”, which is a sequence
of relations defining a composite relationship among mul-
tiple types of entities. They enable the extraction of com-
plex, higher-order relationships by traversing different types
of nodes and edges in a sequence and capture a specific kind
of interaction or relationship within the graph.

3 Proposed Methods
3.1 Heterogeneous Graph Construction
The construction of our heterogeneous graph commences
with the definition of nodes and edges. In this graph, the
diversity of node types is a key feature. We aim to create
a multidimensional representation of the artwork and have
a deeper analysis and interpretation through the graph. The
nodes include:

• Artwork Image: Includes all the images in the training
set, and represents the visual component of the artwork
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and providing a link to each metadata node.

• Author: Represents the creators of the artwork, such as
Vermeer and Van Gogh. Authors are key to understand-
ing the stylistic and historical context of a piece.

• Title N-grams: To capture the essence of each artwork
title, we include a range of N-grams as nodes – specif-
ically 1-gram, 2-gram, and 3-gram, and select the most
common ones, which represent the crucial keywords or
phrases that characterize each artwork.

• Title Cluster: We further enrich the textual dimension
by incorporating Title Clusters. We first use Sentence-
Bert [Reimers and Gurevych, 2019] to process the titles
and use k-means with cosine similarity to create these
clusters.

• Technique: Describes the methods and materials used
in creating the artwork, such as oil on canvas, which are
crucial for understanding the artwork’s texture and style.
This metadata also include specific details about an art-
work’s dimensions, such as 167×124cm. However, they
often do not contribute meaningful insights into the art-
work’s style, so we use regular expressions to filter out
these dimension data.

• Type: Represents the genre or category of the artwork,
such as portrait and still-life.

• School: Denotes the group the artwork is associated
with, such as French and Spanish, offering cultural and
historical relevance.

• Timeframe: Describes the era or period in which the
artwork was created, such as 1650-1700, aiding in his-
torical contextualization.

We decide to exclude the metadata Date as it typically pro-
vides very specific year information and so has limited utility
in the context of caption generation.

As depicted in Figure 2, our approach results in a multi-
layered graph structure, where the artwork images act as the
central nodes and form the innermost layer of the graph.
Branching outward from this core are the various types of
metadata, each constituting its own layer, which could be di-
rectly linked to the central artwork nodes. Edges in this graph
are designed to connect across different layers. Each artwork
image node is connected to all its associated metadata (shown
as coloured line) and edges are also established between dif-
ferent types of metadata if they belong to the same artwork
(shown as dot-dash line). Note that there are no direct edges
within layers but connections could be established through
meta-paths. The meta-path enables indirect connections be-
tween one type of nodes, providing a means to uncover deeper
insights and relationships in the graph. Here are some exam-
ple meta-paths we defined in the graph:

• Artwork-Author-Artwork: This meta-path connects
artworks through their authors. It can be used to ex-
plore the range and diversity within an individual au-
thor’s body of work.

• Type-Ngrams-Type: This meta-path links art types
through common themes found in artwork titles, sug-

Figure 2: An example sub-graph of our multi-layer heterogeneous
graph; only artwork, author (yellow), n-gram (blue) and school
(green) nodes are included. For each type of nodes, it forms a layer.
Solid colored lines denote image-metadata relationships, while dot-
dashed lines represent inter-metadata linkages.

gesting shared or overlapping concepts between two
types.

• Artwork-Timeframe-Artwork: This path connects
different artworks based on the time period in which they
were created, allowing for analysis of historical trends or
evolution in art.

The last step is to create initial embeddings for nodes. We
use ResNet50 [He et al., 2016] to extract embeddings for im-
ages. For textual data such as Author, Title N-grams, and
Technique, we use pre-trained FastText model [Joulin et al.,
2016]. For the Title Cluster nodes, we derive the embeddings
by using the centroids of each cluster. For categorical data
like Type, School, and Timeframe, we use one-hot encod-
ing. The choice of pre-trained node embeddings is flexible in
our architecture, and in future work it would be interesting to
explore other pre-trained embeddings. In total, the resulting
graph presents 28,796 nodes and 405,384 edges, with 20,310
images, 3,227 authors, 4,500 n-gram keywords, 100 clusters,
601 techniques, 26 schools, 22 timeframes and 10 types.

3.2 The KALE Model
At its core, KALE extends the existing pre-trained vision-
language model and incorporates artwork metadata into the
model through two ways: 1) as textual input, 2) through the
inclusion of knowledge graph embeddings. Figure 3 depicts
the general architecture for our KALE model, which has five
main components: 1) Vision Encoder, 2) Text Encoder, 3)
Graph Encoder, 4) Fusion Encoder, 5) Text Decoder. The
general pipeline functions as follows:

Our input includes an image, artwork metadata, and a con-
structed heterogeneous graph with initial node embeddings.
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The process begins with the image passing through the vi-
sion encoder, which yields the image embedding vI . Con-
currently, the text encoder processes the artwork metadata to
obtain the text embedding vtext. Additionally, the graph is fed
into the graph encoder, from which we extract the graph em-
bedding for related nodes, denoted as vgraph. These embed-
dings are then concatenated and input into the fusion encoder,
which integrates the information from these three modalities
into a fused embedding. Finally, the text decoder takes this
fused embedding as input to generate captions. In the next
few paragraphs, we introduce each of these components in
detail.
Text Encoder. The text encoder is used to process and en-
code the metadata associated with each artwork as a textual
input. Our approach involves concatenating various metadata
elements into a single string, with each element separated by
specially designed tokens. For instance, an author’s name is
preceded by an <AUTHOR> token, the title of an artwork
by a <TITLE> token, and so on. Once concatenated, this
string is then fed into a pre-trained language model, BERT
[Devlin et al., 2019]. This step results in the generation of
text embeddings, which are vector representations capturing
the semantic meaning of the metadata. Finally, we extract
embeddings for only each of the special tokens and merge
them to get the final textual representation. Formally,

vtext = [e<AUTHOR>; e<TITLE>; e<TECHNIQUE>; . . .] (1)
where e<...> indicates the embedding obtained from BERT,
and [; ] indicates concatenation.
Graph Encoder. The graph encoder is responsible for
learning the embeddings for the nodes in the heterogeneous
graph. The graph includes nodes representing different types
of metadata, each with varying embedding sizes. To achieve
uniformity in dimensionality, we first apply a linear layer fol-
lowed by layer normalization to each node type in the graph.
This step projects all node embeddings into a common di-
mension, referred to “Type-wise Feed Forward” in Figure 3.
Mathematically, for a node of type t with initial embedding
v
(t)
init from the graph, the transformation via a linear layer can

be represented as:

v
(t)
proj = FFNt(v

(t)
init) (2)

Next, we use two Heterogeneous Attention Network (HAN)
layers to process the graph. Initially, HAN focuses on node-
level attention. This process involves computing attention
coefficients for each node, taking into account its neighbors,
highlighting the most significant connections based on node
and edge types. Mathematically,

αP
ij = softmax

(
σ
(
a⊺P · [WPvproji∥WPvprojj ]

))
(3)

where WP is the weight matrix under meta-path P , a is the
attention mechanism’s learnable weight vector, and ∥ denotes
concatenation. The attention coefficients αP

ij determine the
importance of node j’s features to node i. The node-level
embeddings under a meta-path P , vP

i , are computed by ag-
gregating these weighted features:

vP
i = ∥Kk=1σ

 ∑
j∈N (i)

αP
ij(WPvprojj )

 (4)

where N (i) denotes the neighborhood of node i, σ repre-
sents an activation function and K is the number of heads
in multi-head attention. HAN then extends this mechanism
to a meta-path level, where it aggregates the node-level em-
beddings across different meta-paths or “relations” as differ-
ent relations have their own parameters. Meta-path attention
is similar to the node-level attention, the final graph embed-
dings, vall, are computed as:

ep = softmax

(
1

|S|
∑
i∈S

(
q⊺ · tanh(W · vP

i + b)
))

(5)

vall =
∑
P

eP · vP (6)

where q, W and b are learnable parameters shared over all
paths, S represents all the nodes in the graph and ep repre-
sents the importance of meta-path P .

In the final stage, we extract the corresponding nodes in the
graph based on the current input metadata and concatenate
them to get the final graph embedding.

vgraph = [vnode1 ;vnode2 ; . . .],where vnodei ∈ vall (7)

Note that during the test phase, sometimes the metadata may
not be present in the training graph. To address this, for un-
seen Author, Title N-grams, Technique, we use FastText fol-
lowed by the “Type-wise Feed Forward” layer in graph en-
coder to transform such metadata into embeddings. For Type,
School, and Timeframe, we initialize to zero vectors.

Vision Encoder, Fusion Encoder, Text Decoder. In KALE
the vision encoder, fusion encoder, and text decoder com-
ponents are based on the architecture and weights of the
pre-trained vision-language model, mPLUG, which achieved
state-of-the-art performance in standard image captioning
tasks [Li et al., 2022]. As we are adapting vision-language
models to to a new domain (i.e. from natural images to art-
work images), we chose mPLUG given it was pretrainede on
a rich set of image-text pairs which is likely to align well with
our domain. Moreover, it uses a Vision Transformer (ViT)
[Dosovitskiy et al., 2021] which processes the input image
by dividing it into a grid of regular patches, which is a more
sensible approach for artwork images which often lack clear
entities.

Multi-Task Training. We use multi-task learning to fine-
tune our model. The first task utilizes the cross-entropy loss
function, which is a standard approach in image captioning
problems. Mathematically, this can be expressed as:

LCE = −
N∑
i=1

yi log(ŷi) (8)

The second task introduces a cross-modal alignment loss.
This loss function is designed to maximize the cosine simi-
larity between the image embedding and all its corresponding
metadata graph embeddings during training.

For the metadata graph embeddings vgraph, which are ob-
tained from the graph encoder, we pass them through a linear
layer to project into the same space as the image. For the
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Figure 3: The architecture of our KALE model. There are five main components: (1) vision encoder; (2) text encoder; (3) graph encoder; (4)
fusion encoder; and (5) text decoder. “Add&Norm” refers to residual connection [He et al., 2016] and layer normalization [Ba et al., 2016].

image embedding vI from the vision encoder, we use a max
pooling operation, which helps to reduce the dimensionality
of the embeddings while preserving the most salient features.
Formally,

vM = FFN(vgraph) (9)
vIMP

= MaxPooling(vI) (10)
The loss function for this task can be represented as:

LCMA = 1− vIMP
· vM

∥vIMP
∥∥vM∥

(11)

To combine the two loss functions, we introduce a balancing
parameter β. The combined loss function can be expressed
as:

Ltotal = (1− β)× LCE + β × LCMA (12)

4 Experiments and Results
4.1 Experiment Setup
Datasets and Competitors. Four artwork datasets are con-
sidered as benchmarks in this work, they are Artpedia, Se-
mArt v1.0, SemArt v2.0 and ArtCap. Artpedia comprises a
collection of 2,930 paintings from the 13th to the 21st century,
each of which is associated with some textual descriptions
and a corresponding title [Stefanini et al., 2019]. SemArt
dataset was first proposed by [Garcia and Vogiatzis, 2018]
for cross-modal retrieval tasks, and contains European fine-
art reproductions from the Web Gallery of Art. However, the
descriptions of artworks are lengthy paragraphs, which do not
align well with the image captioning task. To solve this, one
recent study [Wu, 2022] separates each paragraph into single
sentences, and labels them as visual and contextual sentences.
The former describes the simple visual appearance of the art-
work and the latter provides information about the painting’s
historical background. We call this as SemArt v1.0. [Bai et
al., 2021] proposed another more fine-grained way of cate-
gorising these sentences, based on their Form, Content and

Context. Form deals with the visual composition, Content
addresses the underlying meaning or subject matter, and Con-
text provides the background of the artwork. We call this as
SemArt v2.0 dataset. The last dataset ArtCap, contains 3605
paintings from WikiArt and the captions were manually col-
lected by crowd-sourcing [Lu et al., 2022].

We consider three previous state-of-the-art models as our
baselines. [Wu, 2022] applies the Meshed-Memory trans-
former [Cornia et al., 2020] to the artwork domain. We re-
fer to this work as Wu2022. [Bai et al., 2021] proposed
a framework incorporating external knowledge by leverag-
ing a knowledge retriever from Wikipedia and training a
knowledge-filling module as a “fill in the blank” task to incor-
porate art information relevant to each painting. We refer to
this work as Bai2021. For the last baseline, [Lu et al., 2022]
proposed a virtual-real semantic alignment training process
through generating a virtual painting dataset via style trans-
fer and training a painting feature extractor using the virtual
dataset with a semantic alignment loss. We refer to this work
as Lu2022.

Implementation details. For the vision encoder, fusion en-
coder and text decoder, we follow by default settings of
mPLUGlarge model given in the open source code.1

For the heteregeneous graph construction, the cluster num-
ber of title embedding is set to 100, 1-gram of title is set to
2000, 2-gram is 1500 and 3-gram is 1000. For the optimizer,
after parameter tuning on validation set, we use AdamW
[Loshchilov and Hutter, 2018] optimizer with a weight de-
cay of 0.02. The learning rate is first warmed up to 5e-5 for
vision encoder, 1e-2 for graph encoder, and 1e-4 for other lay-
ers in the first 1000 iterations and decayed to 1e-5 following
a cosine schedule. We use beam search decoding with beam
width 5 and β is set to 0.2 to balance two loss functions.

1https://github.com/alibaba/AliceMind/tree/main/mPLUG
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Evaluation Metrics
Dataset Models C B-1 B-2 B-3 B-4 M S R

Artpedia
Wu2022 3.94 24.7 - - 3.06 6.58 - 22.4

KALE (w/o metadata) 11.7 29.9 15.0 7.95 4.77 8.02 5.49 22.4
KALE (w/ metadata) 23.4 32.6 17.7 10.9 7.48 9.33 7.68 23.7

ArtCaps Lu2022 15.21 52.89 33.11 20.42 12.57 15.38 8.39 36.15
KALE (w/o metadata) 36.51 59.78 41.24 28.56 20.14 19.39 12.06 42.22

SemArt v1.0
(Visual)

Wu2022 6.93 19.20 - - 3.24 6.28 - 21.90
KALE (w/o metadata) 21.34 29.58 15.60 9.69 7.17 8.83 7.23 22.50
KALE (w/ metadata) 29.96 28.68 15.81 10.42 7.96 9.08 8.22 22.58

SemArt v1.0
(Contextual)

Wu2022 - - - - - - - -
KALE (w/o metadata) 13.01 30.37 15.38 9.61 7.27 8.07 5.26 20.36
KALE (w/ metadata) 21.76 35.35 20.33 14.15 11.27 10.16 7.25 23.41

SemArt v2.0
Bai2021 8.80 - - - 9.10 11.4 - 23.1

KALE (w/o metadata) 13.60 25.85 13.75 8.78 6.70 7.48 5.97 19.86
KALE (w/ metadata) 20.7 27.7 15.7 10.8 8.57 9.51 7.31 21.9

Table 1: Evaluation results on datasets Artpedia, ArtCaps, SemArt v1.0 and SemArt v2.0 over baselines. Bold representes the highest score.
As we directly use the reported results for the competitors, some of the metrics are missing, we use “-” to indicate missing values.

4.2 Results and Analysis
Table 1 outlines the performance results on the four
datasets Artpedia, ArtCaps, SemArt v1.0 and SemArt v2.0.
We compare our model against three baseline models,
Wu2022, Lu2022 and Bai2021. All models use the same
train/validation/test split. Baseline numbers are values from
the original publications.

Note that for SemArt v1.0 dataset, the author only conducts
their experiments on visual sentences, so we break it into
visual and contextual separately in the table. These models
are evaluated over eight evaluation metrics, including CIDEr
(C) [Vedantam et al., 2015], BLEU-1 (B-1), BLEU-2 (B-2),
BLEU-3 (B-3), BLEU-4 (B-4) [Papineni et al., 2002], ME-
TEOR (M) [Banerjee and Lavie, 2005], SPICE (S) [Anderson
et al., 2016] and ROUGE-L (R) [Lin, 2004].

We use “KALE (w/o metadata)” to denote the model with-
out any metadata input, where the text and graph encoders
are removed. In this case, it’s an off-the-shelf pre-trained
mPLUG fine-tuned on an artwork’s dataset using standard
generation cross-entropy objective.

On the other hand, “KALE (w/ metadata)” represents the
model with both textual and graph representations. One ex-
ception is that for Artpedia dataset, the only metadata we have
is artwork title, so we treat the artwork title as textual input
and remove the graph encoder. As ArtCaps dataset lacks any
metadata, we only use KALE without metadata approach for
fine-tuning.

When we pre-process the SemArt v1.0 and v2.0 datasets,
we notice some identical or highly similar image captions
present in both the training set and validation/test set. Such
duplication poses a risk of model overfitting, where the model
might “memorize” the captions they have seen during train-
ing. Therefore, we remove such overlapping instances from
the training dataset. Note that Wu2022 and Bai2021 did not
do this, and so their reported performance may be an overes-
timate.

As evidenced by Table 1, our methodologies exhibit su-
periority over existing baselines. Overall, most of the best
metric scores are achieved by our KALE model. By look-
ing at the detailed scores for each metric, we find that CIDEr
increases the most compared to baselines. For instance, our
model achieves 23.4 CIDEr score on Artpedia dataset, which
is over 5 times that of the competitor. On SemArt v2.0, our
model also outperforms over 2 times than competitor, but for
metrics like BlEU-4, METEOR and ROUGE, our model per-
forms slightly worse than the competitor. Note that CIDEr
offers insights into caption diversity, and this result shows
that our model could generate more diverse captions. Later
in our qualitative analysis, we will further verify this with
some concrete examples. Looking at the performance of our
KALE model without metadata, it still surpasses the Wu2022
model for Artpedia and SemArt v1.0 across all metrics. Such
improvements demonstrate the effectiveness of pre-trained
vision-language models in the art domain. The most impor-
tant finding perhaps is the improvement of KALE leveraging
metadata, which yields superior results against KALE with-
out metadata across all metrics. This performance shows that
metadata is a critical component for understanding artworks.

5 Discussion
5.1 Qualitative Analysis
Figure 4 depicts several random examples from the test set of
our four benchmark datasets. In terms of content correctness,
KALE is able to align its captions with the visual aspects of
the images in most cases. For example, in image (d), KALE
recognizes there is also a woman in the image. And inter-
estingly, sometimes it can even recognize some elements that
are not immediately present in the image. For instance, in im-
age (g), KALE identifies the setting as a “French restaurant”
(which is correct, based on the ground truth caption (GT).
In terms of creativity, KALE’s captions appear to be richer
and more detailed than those of competitors. As illustrated
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Figure 4: Some examples of generated captions by KALE, along with GT (ground truth) captions and competitor-generated captions.

Evaluation Metrics

Dataset Model Variant C B-1 B-4 M

SemArt v1.0
(Visual)

KALE (w/o) 21.34 29.58 7.17 8.83
KALE (T) 27.46 29.27 7.74 8.98

KALE (T & G) 29.96 28.68 7.96 9.08

SemArt v1.0
(Contextual)

KALE (w/o) 13.01 30.37 7.27 8.07
KALE (T) 20.35 34.50 10.78 9.86

KALE (T & G) 21.76 35.35 11.27 10.16

SemArt v2.0
KALE (w/o) 13.60 25.85 6.70 7.48
KALE (T) 12.35 28.01 6.03 7.89

KALE (T & G) 20.7 27.7 8.57 9.51

Table 2: Performance impact of text and graph on KALE across
SemArt v1.0 and v2.0 datasets. KALE (w/o) refers to the version
without any metadata. KALE (T) refers to the version with only
textual data input. KALE (T & G) refers to the version with both
text and graph input.

in example (a), KALE portrays the scene as a “virago and
stripped to the waist, surrounded by a crowd of people.” In
contrast, Wu2022 only describes it as a “group of people”,
which lacks substance and depth. However, the captions pro-
duced by KALE occasionally present inaccurate details about
the artwork. For instance in example (c), KALE suggests that
Pieter De Hooch is the artist of the painting rather than Ver-
meer. Overall, the integration of metadata appears to help
generate higher quality captions, especially for images that
have more background context. That said, compared to the
ground truth captions there is arguably still quite a bit of gap,
and so there is plenty of room for improvement and artwork
interpretation is by no means a solved task.

5.2 Ablation Study
Impact of Text and Graph. This experiment assesses the
comparative impact of using metadata as only textual input
versus a combination of textual and graph inputs. As pre-
sented in Table 2, the text-only approach demonstrates a sub-
stantial improvement in performance over most of metrics
compared to the version without metadata. This indicates the
significant impact that textual metadata alone can make the
model generate accurate and diverse captions. Further, when
KALE was augmented with both textual and graph inputs,
there was an additional enhancement in its performance, es-
pecially on metrics like CIDEr, BLEU-4 and METEOR, in-
dicating the effectiveness of the knowledge graph. Interest-
ingly, the knowledge graph integration showed more effec-
tiveness on datasets like SemArt v1.0 Contextual and SemArt
v2.0. These datasets are characterized by many contextual
sentences that demand a deeper understanding of art, a re-
quirement that the external knowledge provided by the graph
is particularly well-suited to address.

6 Conclusion
In this work, we develop a novel artwork-specific image
captioning system, KALE, that integrates external knowl-
edge into the system through both text and heterogeneous
graph. KALE is novel in that it captures the heterogene-
ity among images and several artwork attributes in the con-
structed graph. Results, both quantitative and qualitative,
showed our method provides a better understanding of the
narratives behind works of fine art.
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