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Abstract
Singing Accompaniment Generation (SAG), which
generates instrumental music to accompany in-
put vocals, is crucial to developing human-AI
symbiotic art creation systems. The state-of-the-
art method, SingSong, utilizes a multi-stage au-
toregressive (AR) model for SAG, however, this
method is extremely slow as it generates semantic
and acoustic tokens recursively, and this makes it
impossible for real-time applications. In this pa-
per, we aim to develop a Fast SAG method that
can create high-quality and coherent accompani-
ments. A non-AR diffusion-based framework is
developed, which by carefully designing the con-
ditions inferred from the vocal signals, generates
the Mel spectrogram of the target accompaniment
directly. With diffusion and Mel spectrogram mod-
eling, the proposed method significantly simpli-
fies the AR token-based SingSong framework, and
largely accelerates the generation. We also design
semantic projection, prior projection blocks as well
as a set of loss functions, to ensure the generated ac-
companiment has semantic and rhythm coherence
with the vocal signal. By intensive experimental
studies, we demonstrate that the proposed method
can generate better samples than SingSong, and ac-
celerate the generation by at least 30 times. Audio
samples and code are available at this link.

1 Introduction
Singing Accompaniment Generation (SAG) aims to create
instrumental audio tracks that harmonize with vocal perfor-
mances. This technique empowers individuals to compose
complete songs by merely recording their singing. Since the
human voice is often regarded as the most intuitive musical
instrument, SAG allows people to express their musicality
without the need for additional instrumental skills.

Early approaches for SAG are based on retrieval, for in-
stance, the Microsoft Songsmith [Simon et al., 2008]. The
Songsmith extracts pitches of input vocals, then predicts the
symbolic chord label sequences that complement the melody,
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and finally retrieves suitable symbolic instrumental accompa-
niments from datasets given chord label sequences. An intrin-
sic limitation of retrieval-based methods is that they actually
could not generate new music pieces creatively, therefore, the
resulting pieces are not optimal for the vocal inputs.

Learning-driven approaches are also developed, which
generally perform Audio2Audio generation. As a related
work, in [Wu et al., 2022], the Jukedrummer is proposed to
generate a drum audio track based on drumless audio tracks,
however, this method cannot perform SAG directly. In [Don-
ahue et al., 2023], the learning-driven SAG is for the first time
developed, which, similar to MusicLM [Agostinelli et al.,
2023] and AudioLM [Borsos et al., 2023], is basically based
on autoregressive (AR) language models (LMs) to learn the
token associations between the vocals and accompaniments.
Multiple LMs are involved in the AR generation, which in-
cludes a) semantic LM b) coarse acoustic LM c) fine acoustic
LM. The resulting tokens are finally decoded to the audios
through the Soundstream [Zeghidour et al., 2021] decoder.
The main drawback of SingSong is the extremely slow gen-
eration speed. Since many AR-based LMs are adopted, the
whole generation pipeline becomes complicated and in prac-
tice, one second of accompaniment needs dozens of seconds
for generation on the Nvidia A100 GPU.

In this paper, we propose FastSAG, a diffusion-based
method for fast, coherent, and high-quality SAG. Rather than
using AR-based LMs, we design a non-AR diffusion model
that directly creates the Mel spectrogram of the accompa-
niment given specially designed input conditions. In this
way, the generation pipeline is substantially simplified and
the generation is largely accelerated. To ensure the semantic
and rhythm coherence between vocals and accompaniments,
when generating the conditions for diffusion, we propose a
semantic projection block for semantic alignment, and a prior
projection block to enhance the frame-level alignment and
control. A set of loss functions are also designed to further
improve the semantic and rhythm alignment. Experimental
results show that the proposed FastSAG could produce better
accompaniments than the SingSong, while accelerating the
generation speed by more than 30 times, making the genera-
tion to the level of real-time factor smaller than 1. The key
contributions are briefly summarized as:

• We design a diffusion-based non-AR framework for SAG,
which largely simplifies the SAG pipeline as compared
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with SingSong;

• We propose semantic projection block, prior projection
block, and a set of loss functions to ensure the rhythmic
coherence between vocals and generated accompaniments;

• The experimental results demonstrate that the proposed
FastSAG significantly accelerates the generation and pro-
duces better samples as compared with the baseline.

2 Related Works
Besides the SAG which we have reviewed in the introduction,
here, we further discuss the accompaniment generation given
instrumental inputs, and the audio generation methods, which
would facilitate the discussions in subsequent sections.

2.1 Accompaniment Generation Given
Instrumental Inputs

For symbolic music, the melody track and the remained ac-
companiment tracks could be separated easily, and there are
some works for symbolic accompaniment generation that
take the melody track as input. PopMAG [Ren et al., 2020] is
proposed to generate the accompaniment track which consists
of drum, piano, string, guitar, and bass track based on Mu-
MIDI representation, by using Transformer-XL [Dai et al.,
2019] as the backbone. MuseFlow [Ding and Cui, 2023] uses
the flow model to generate accompaniment based on the re-
vised piano-roll representation. In [Wang et al., 2022], the
SongDriver is proposed for real-time accompaniment gener-
ation, which consists of two phases: arrangement phase and
prediction phase. The above methods generally aim to gen-
erate symbolic music. In [Mariani et al., 2023], by still rely-
ing on the symbolic MIDI dataset, the multi-track accompa-
niment generation is performed in the audio domain based on
the rendered multi-track audio waveforms.

2.2 Audio Generation
SAG is a type of audio generation task. Significant progress
has been made in generating general audio, music, and speech
with the advancement of generative models. Now we discuss
the methods in terms of representations used: a) raw audio
waveform, b) hand-crafted representation, and c) neural rep-
resentation.

The raw audio waveform captures the fine-grained details
of audio and serves as the direct representation of audio data.
Wavenet [Oord et al., 2016] employs dilated convolutions to
capture long-range dependencies in audio signals, enabling
the generation of high-quality and realistic audio. WaveG-
low [Prenger et al., 2019] achieves high-quality audio syn-
thesis using a flow-based approach, which allows for efficient
sampling and parallel processing. Working directly with raw
waveforms can be challenging due to their high dimensional-
ity and complex temporal dependencies.

The most common hand-crafted representation for audio
generation is the Mel spectrogram. The audio is generally
produced by first relying on an acoustic model to produce the
Mel spectrogram given input controls (e.g., text for speech
synthesis, and prompts for general audio and music gener-
ation), and then a vocoder to convert the Mel spectrogram

to the audio domain. For speech synthesis, typical acous-
tic models include FastSpeech [Ren et al., 2019], GradTTS
[Popov et al., 2021], and CoMoSpeech [Ye et al., 2023], and
for general audio and music generation, acoustic models such
as Riffusion1, Mousai [Schneider et al., 2023], Noise2Music
[Huang et al., 2023a], Make-An-Audio [Huang et al., 2023b],
and AudioLDM [Liu et al., 2023] are developed. HiFi-GAN
[Kong et al., 2020], BigvGAN [Lee et al., 2023], VOCOS
[Siuzdak, 2023] are popular vocoders to recover audio wave-
form.

Another type of representation is the neural tokens (such as
SoundStream [Zeghidour et al., 2021], Encodec [Défossez et
al., 2022], DAC [Kumar et al., 2023]), which learn a discrete
representation from the audio waveform. Further, AR model
and LMs could be used to model the evolutions of these dis-
crete tokens in chain rule, which leads to a series of token-
based audio generation methods, including unconditional au-
dio generation (audioLM [Borsos et al., 2023]), text-to-music
generation (MusicLM [Agostinelli et al., 2023], MusicGen
[Copet et al., 2023]), text-to-audio (AudioGen [Kreuk et al.,
2022]), accompaniment generation (SingSong [Donahue et
al., 2023]), text-to-speech TTS ([Wang et al., 2023]). In addi-
tion, the continuous representation from residual VQ (RVQ)
codebooks could also be modeled using the diffusion model,
for instance, in NaturalSpeech2 [Shen et al., 2023].

3 EDM Formulation
In this section, we introduce the EDM diffusion model [Kar-
ras et al., 2022], which will be used as a conditional proba-
bility model illustrated in Figure 1 (c).

Supposing the data distribution is pdata(x) and considering
the family of mollified distributions p(x; δ) which is obtained
by adding Gaussian noise N(0, δI) to the data, the idea of
EDM diffusion model is to randomly sample a noisy sample
x0 ∼ N(0, δmaxI), and further sequentially denoise it into
sample xi ∼ N(0, δiI) with noise levels δ0 = δmax > δ1 >
... > δN = 0. The number of sampling steps is denoted
as N , and the final outcome of this process, xN , exhibits a
distribution that aligns with the original data. This diffusion
process belongs to the variance exploding family [Song et al.,
2020].

The stochastic differential equation (SDE) of diffusion is
expressed as [Song et al., 2020]:

dx = f(x, t)dt+ g(t)dw, (1)

where f(x, t) and g(t) mean drift and diffusion coefficients
respectively, and w is the standard Wiener process.

The above process corresponds to a probability flow or-
dinary differential equation (ODE), and in EDM [Karras et
al., 2022], a schedule of δ(t) is chosen to specify the desired
noise level at time t. Then the ODE is expressed as

dx = −δ̇(t)δ(t)∇xlogp(x; δ(t))dt, (2)

which defines the process evolving a sample xi ∼
p(xi; δ(ti)) from time ti to tj yields a sample xj ∼
p(xj ; δ(tj)), and ti to tj can be either forward or reverse in

1https://github.com/riffusion/riffusion
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Figure 1: Overview of FastSAG. (a) indicates how training data is constructed using a source separation algorithm to acquire
vocal-accompaniment pairs. (b) illustrates how to compute conditions based on vocal input. It mainly contains two blocks:
semantic projection block and prior projection block. The semantic block is for high-level semantic control and the prior block
is for frame-level control. (c) is the stochastic differential equation (SDE) solver, which will take prior computed in (b) as a
condition. In the inference process, the generated Mel spectrogram will be converted to an audio waveform through BigvGAN.

time. The δ̇() denotes a time derivative, and ∇xlogp(x; δ(t))
is the score function [Song et al., 2020]. As long as the score
function is known, the probability flow ODE in (2) can be
used for sampling.

One natural way for δ(t) scheduling is δ(t) ∝
√
t, which

corresponds to the constant-speed heat diffusion. However,
[Karras et al., 2022] shows that it is not convenient practi-
cally. EDM adopts another schedule, which uses

In(δ) ∼ N(Pmean, P
2
std) (3)

for training, and

δi<N = (δmax
1
ρ +

i

N − 1
(δmin

1
ρ − δmax

1
ρ ))ρ (4)

for sampling. In our setting of EDM, Pmean = −1.2, Pstd =
1.2, δmin = 0.002, δmax = 80, and ρ = 7 which controls
how much the steps near δmin are shortened at the expense of
longer steps near δmax.

Supposing D(x; δ) is the denoising function that mini-
mizes the expected L2 denoising error for samples drawn
from pdata separately for every δ, i.e.,

Ey∼pdata
En∼N(0,δ(t)2I)||D(y + n; δ(t))− y||22, (5)

the score function can be written as,

∇xlogp(x; δ(t)) =
D(x; δ(t))− x

δ(t)2
, (6)

where y if the training sample and n is the noise.

In the diffusion model, the denoiser D(x; δ(t)) can be im-
plemented as a neural network Dθ(xt) and Dθ(xt, cond) for
unconditional and conditional diffusion respectively, where
cond is the condition. Similar to the EDM setting,

Dθ(xt, cond) = cskip(t)xt + coutFθ(xt, t, cond), (7)
where Fθ can be any well-designed neural network, for exam-
ple, Wavenet [Oord et al., 2016] is used in [Liu et al., 2022]
and U-net [Ronneberger et al., 2015] is used in [Popov et al.,
2021]. cskip and cout are used to control the skip connect and
the magnitudes of Fθ, respectively. The cskip and cout can be
expressed as

cskip(t) =
δ2data

(t− ϵ)2 + δ2data
, cout(t) =

δdata(t− ϵ)√
δ2data + t2

, (8)

where δdata = 0.5 and ϵ = 0.002 denoting the smallest time
interval during sampling.

4 Proposed FastSAG
In this section, we introduce our proposed method FastSAG
for singing accompaniment generation. As shown in Fig-
ure. 1, it contains three main parts: source separation for data
processing, condition block for computing condition of the
diffusion model, and EDM-based SDE solver for generating
the Mel spectrogram of accompaniment.

4.1 Overview
Most public songs on the internet are audio mixes of vocals
and accompaniments, and we denote the mixture signal as
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Figure 2: The Prior Projection Block. It contains one resam-
pling module and one encoder module. The resampling mod-
ule is for reshaping the feature shape, mapping from semantic
feature shape to Mel. And encoder module is further for prior
generation.

Amixed, the vocal as Av , and the accompaniment as Anv re-
spectively. To obtain the paired vocal and accompaniment
data, source separation, such as Demucs [Défossez et al.,
2019], is applied to the mixture signals, and resulting pseudo
vocal-accompaniment pairs (Av, Anv) are acquired. Simi-
lar to SingSong [Donahue et al., 2023], slight white Gaussian
noise Noise is added to the vocal input to mitigate source sep-
aration artifacts. The core of SAG is building the conditional
probabilistic model P (Anv|Av +Noise).

Different from SingSong which uses the LM for discrete
audio tokens and is time-consuming, we design a diffusion-
based non-AR framework here. In the continuous Mel spec-
trogram space, the EDM introduced in Section 3 takes the
conditions containing the semantic and rhythmic information
to generate the Mel spectrogram of the accompaniment, de-
noted as Mel′nv . The resulting Mel spectrogram is trans-
formed to the audio domain by using Bigvgan [Lee et al.,
2023] as a vocoder.

4.2 Condition Block
The condition block takes the vocal signal as input, and in-
corporates two cascading blocks: a) the Semantic Projection
Block, which is responsible for mapping high-level semantic
features, and b) the Prior Projection Block, which generates
frame-level aligned conditions. The rationale behind this cas-
cading design is that directly modeling the frame-level acous-
tic relationship is challenging, while modeling the high-level
relationship is comparatively easier. Hence, by first capturing
the high-level semantic features and then generating frame-
level conditions based on them, we can effectively address
the complexity of modeling the frame-level acoustic relation-
ship.

Semantic Projection Block
Denoting the input vocal audio signal as Av ∈ RT×1 with
T as the number of frames in waveform format, the high-
level semantic feature Sv ∈ RL1×d1 is extracted using MERT
[Li et al., 2023], where L1 is the frame number of MERT
feature and d1 is the dimension. The Semantic Projection
Block consists of a neural network (for example, Wavenet

[Oord et al., 2016]) to obtain the predicted semantic feature
of the accompaniment S′

nv = Wavenet(Sv) ∈ RL1×d1 .

Prior Projection Block
A high-level semantic feature is utilized for generating frame-
level roughly aligned prior through the Prior Projection Block
further. Inspired by Grad-TTS [Popov et al., 2021], they used
the frame-aligned prior as the condition to diffusion model by
using an aligner to transform phoneme-level feature to frame-
level prior. Illustrated as Figure 2, our Prior Projection Block
consists of a resampling module and an encoder module.

Considering that the shape (time resolution and feature di-
mension) of the semantic feature may differ from that of the
desired frame-level prior, we design two kinds of resampling
modules. The first one is using bi-linear interpolation di-
rectly. The second one is that we utilize Perceiver-IO [Jaegle
et al., 2022] as the resampling module to obtain the resam-
pled semantic feature R′

nv = PerceiverIO(S′
nv + Sv) ∈

RL2×d2 , where we mixed the vocal semantic feature Sv and
predicted accompaniment semantic S′

nv by just adding to ac-
quire better performance. L2 and d2 denote the length and
number bin of Mel spectrogram, respectively.

The computation of PerceiverIO is described as fol-
lows. The input of Perceiver-IO x = S′

nv + Sv ∈
RL1×d1 is then encoded into a latent space by cross atten-
tion, yielding z1 = crossAttn(x, l) ∈ RN×D, where
l ∈ RN×D is a learnable variable. Multiple self-attention
layers further convert z1 to another hidden embedding z2 =
multiSelfAttn(z1) ∈ RN×D, and then z2 is decoded to
output array z3 = crossAttn(o, z2) ∈ RL2×d2 with cross
attention, where o ∈ RL2×d2 is a learnable output query. The
output array z3 is the desired resampled semantic feature Rnv

introduced. In our experiments, we set N = 32, D = 256.
Further, the resampled semantic feature Rnv is pro-

cessed to obtain a Mel spectrogram-like prior Prior =
Wavenet(R′

nv) ∈ RL2×d2 through encoder module, which
serves as the condition for diffusion model latter. We use
Wavenet [Oord et al., 2016] as the encoder module again.

4.3 Conditional Denoiser
Similar to Grad-TTS [Popov et al., 2021], we use Unet2d
[Ronneberger et al., 2015] as denoiser, but with a slight
modification. As introduced in Section 3, different level of
noise is sampled from ln(δ) ∼ N(Pmean, P

2
std), we have

no explicit timesteps t controlling noise level. Therefore,
we replace t with ln(δ) and take it as one of the inputs to
denoiser DnoisedMelnv = Dθ(NoisedMelnv, ln(δ), Prior),
where NoisedMelnv ∈ RL2×d2 is the noised Mel spectro-
gram of accompaniment, R′

nv is the condition computed in
last subsection, and DnoisedMelnv ∈ RL2×d2 is the denoised
output.

4.4 Loss Function
To make the model generate coherent and harmonious accom-
paniments, by taking the separated accompaniment Anv ∈
RT×1 as ground truths, we design three different loss func-
tions, including the semantic loss, prior loss, and diffusion
loss. We extract semantic ground truths Snv ∈ RL1×d1 and
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Mel spectrogram ground truths Melnv ∈ RL2×d2 of accom-
paniment music through MERT [Li et al., 2023] and Bigvgan
[Lee et al., 2023], respectively, the loss functions are com-
puted as below.

Semantic Loss. The goal of the semantic loss is to es-
tablish a high-level semantic relationship between the vocal
and accompaniment tracks. We believe it is much easier than
constructing the acoustic mapping directly, and it is defined
as:

Lsemantic = ||S′
nv − Snv||22. (9)

Prior Loss. The purpose of the prior loss is to establish a
rough frame-level alignment between the Mel spectrogram of
the accompaniment track. It is defined as,

Lprior = ||Prior −Melnv||22. (10)

Diffusion Loss. While the condition block alone can generate
a rough accompaniment, the diffusion model is employed to
produce a refined accompaniment by conditioning it on the
prior. The diffusion loss is defined as,

Ldiffusion = ||DnoisedMelnv −Melnv||22. (11)

The final loss function is a combination of semantic loss,
prior loss, and diffusion loss, as

L = Lsemantic × λs + Lprior × λp + Ldiffusion × λd,
(12)

where λs, λp and λd are the weights of corresponding loss
terms. In our experiments, we set λs = 1.0, λp = 1.0 and
λd = 1.0.

5 Experiments
5.1 Dataset
Here, we discuss the data collection and processing, as well
as the composition of the training and evaluation datasets.

Data Collection and Processing. We collected over 300k
songs from public sources on the internet, most of which are
Chinese and English songs. By using Demucs [Défossez et
al., 2019], we obtain mono vocal-accompaniment pairs with
a sampling rate of 44.1 kHz. Then, filtering is applied to keep
sample pairs with clear vocals and accompaniments, which is
done by first obtaining 10-second paired clips and then keep-
ing pairs where both the vocal and accompaniment have a
peak RMS amplitude over -25dB. As a result, we obtain a
collection of over 1.2 million pairs of 10-second clips, total-
ing more than 3000 hours.

Training Dataset. We divide the 1.2 million pairs of
10-second clips into training and (in-domain) evaluation
datasets, with 2,000 samples for in-domain evaluation. To
ensure that the evaluation samples are not seen during train-
ing, samples of each song are exclusively allocated to either
the training dataset or the evaluation dataset.

Evaluation Dataset. We construct two kinds of evaluation
datasets: the in-domain evaluation dataset, which has been in-
troduced, and the zero-shot evaluation dataset. Although the
in-domain evaluation dataset is not used for training, they fol-
low a similar distribution. An out-of-domain zero-shot evalu-
ation dataset is additionally built from the MUSDB18 dataset

[Rafii et al., 2017], which is also the evaluation dataset of
SingSong [Donahue et al., 2023]. Following the same pro-
cedures for training data processing on the MUSDB18 test
dataset, we obtain 348 paired clips. The MUSDB18 training
dataset is not used for training so the MUSDB18 test dataset
is zero-shot.

5.2 Baselines and Implementation Details
We use two baseline methods, SingSong and RandSong, for
comparison. As we could not find source codes for baselines,
we provided implementation details for SingSong, Rand-
Song, and the proposed FastSAG. Both SingSong and Fast-
SAG are trained on the same dataset to ensure a fair compar-
ison.

SingSong. We implemented SingSong based on the code-
base of open-musiclm 2. Same with open-musiclm, we utilize
Encodec [Défossez et al., 2022] as a replacement for Sound-
Stream [Zeghidour et al., 2021], and MERT [Li et al., 2023]
as a replacement for w2v-BERT [Chung et al., 2021]. The
main reason for replacement is that we can not find open
source code and pre-trained model of SoundStream and w2v-
BERT when we re-implement SingSong. We trained the
models of the semantic stage, coarse acoustic stage, and fine
acoustic stage separately for 240k, 130k, and 240k steps re-
spectively on a single NVIDIA A100 GPU with 80GB mem-
ory. The batch size and grad accumulation steps are (24, 1)
for the semantic stage model, (12, 4) for the coarse acoustic
model, and (4, 4) for the fine acoustic model. The Encodec
[Défossez et al., 2022] employs an RVQ scheme that gener-
ates 8-dimensional acoustic codes at a rate of 75 Hz. The first
3 dimensions correspond to the coarse acoustic codes, while
the remaining 5 dimensions represent the fine acoustic codes.

RandSong. The RandSong is a weak baseline to examine
the importance and sensitiveness of harmony and coherence
between vocal voice and instrumental accompaniment audio.
Firstly, we construct a big candidate set of instrumental ac-
companiment audio (20,000 pieces) from human-composed
music separated by Demucs [Défossez et al., 2019]. Then for
a given vocal voice, we randomly choose one accompaniment
from the candidate set. The samples from RandSong are only
used for subjective evaluation.

FastSAG. We trained our FastSAG on a single NVIDIA
A100 GPU with 80GB memory for 0.5M steps using Adam
optimizer with a constant learning rate of 0.0001 and batch
size of 28. For the vocoder, we utilize Bigvgan [Lee et al.,
2023], which operates at a sampling rate of 24kHz. The
Mel spectrogram used by Bigvgan consists of 100 bins and
is computed at a rate of 93.75Hz. We normalize the logarith-
mic Mel spectrogram to -1 to 1, instead of using the original
one, because the original logarithmic Mel spectrogram ranges
from -12 to 2, which is more difficult to model. The normal-
ization and de-normalization are described as:

Xnor =
(X −Xmin)

Xmax −Xmin
× 2− 1 (13)

Xden =
(Xnor + 1)

2
× (Xmax −Xmin) +Xmin (14)

2https://github.com/zhvng/open-musiclm.git
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Methods FADVGGish(↓) FADMERT(↓) FADMERT4 (↓) FADMERT7 (↓) FADMERT11 (↓) FADCLAP-MUSIC(↓) RTF(↓)

SingSongs+c 0.8632 3.1589 1.7528 1.5793 1.6917 0.0878 10.4936
SingSongs+c+f 1.5578 3.7985 2.3694 2.0688 2.1319 0.1363 47.7660
FastSAG(w/o norm) 3.6784 1.7695 1.7142 1.5849 1.2951 0.1115 0.3239
FastSAG(seman+mel) 1.5947 1.9795 1.5769 1.8818 1.5152 0.1054 0.3240
FastSAG(mel) 1.4424 2.0861 1.6532 1.8578 1.5370 0.1151 0.3214
FastSAG(interpolate) 0.7595 1.5059 1.0806 1.3566 1.0629 0.0648 0.3231
FastSAG 0.8917 1.3043 0.9675 1.1364 0.8227 0.0701 0.3247

Table 1: FAD on zero-shot MUSDB18 test dataset. SingSongs+c means only using semantic model and coarse acoustic model.
SingSongs+c+f means using the semantic model, coarse acoustic model, and fine acoustic model. FastSAG(w/o norm) means
using the original logarithmic Mel spectrogram instead of the normalized one. FastSAG(seman+mel) means using the semantic
feature and Mel spectrogram of vocal audio as a condition. FastSAG(mel) means only using the Mel spectrogram of vocal
audio as a condition. FastSAG(interpolate) means using the interpolate operator as a re-sampling module in the prior projection
block instead of Perceiver-IO. And FastSAG is the method introduced in the previous section which only uses the semantic
feature of vocal audio as a condition.

Methods FADVGGish(↓) FADMERT(↓) FADMERT4
(↓) FADMERT7

(↓) FADMERT11
(↓) FADCLAP-MUSIC(↓)

SingSongs+c 0.5093 1.2798 0.7691 0.8144 0.7832 0.0406
FastSAG(interpolate) 1.3266 0.6450 0.5101 0.6267 0.4676 0.0361
FastSAG 1.2180 0.6639 0.4295 0.4966 0.4164 0.0330

Table 2: FAD on in-domain test dataset.

where X , Xnor and Xden denote the original spectrogram,
normalized spectrogram and de-normalized spectrogram, re-
spectively, Xmax = 2, Xmin = −12 are constants. During
the inference process, we employ a first-order ODE solver
with a total of 50 sampling steps.

5.3 Evaluation Metrics
We examine the proposed model and baselines through ob-
jective evaluation and subjective evaluations.

Objective evaluation. SingSong employed FAD-vggish
as an objective evaluation metric, utilizing embeddings from
the VGGish audio classifier [Hershey et al., 2017]. However,
relying solely on FAD-vggish may not accurately reflect the
true quality of the generated music.

To address this, we utilize the FADTK [Gui et al., 2023],
an extended FAD toolkit that includes various embedding ex-
tractors specifically designed for evaluating generative mu-
sic. We incorporate three types of embedding extractors:
VGGish [Hershey et al., 2017], MERT [Li et al., 2023],
and clap-laion-music [Wu et al., 2023]. The latter two
are trained on large music datasets, resulting in the evalua-
tion metrics FADVGGish, FADMERT, and FADCLAP-MUSIC. For
MERT embeddings, we conduct experiments using different
layers, specifically the 4th, 7th, and 11th layers, denoted as
FADMERT-4, FADMERT-7, and FADMERT-11, respectively.

When calculating FADs, ground truth mixtures may be de-
graded using the corresponding vocoder or codec, to elimi-
nate the impact of sampling rate, vocoders, and codecs on the
data distribution.

In addition to evaluating the quality of the generated mu-
sic, we also assess the speed of the music generation process
using the real-time factor (RTF), which is calculated as the
ratio between the total time taken for audio generation and
the duration of the generated audio.

Methods MOS(↑)

Human-composed 4.15
SingSongs+c 2.36
RandSong 1.48
FastSAGinterpolate 2.78
FastSAG 3.13

Table 3: Human subjective evaluation on harmony and coher-
ence. Testing samples are chosen from the in-domain test
dataset and zero-shot MUSDB18 test dataset with a ratio 2:1.

Subjective evaluation. To assess the quality of the gener-
ated music, we employ Mean Opinion Score (MOS) through
human evaluation. We invited professional 15 listeners to rate
the harmony and coherence of the testing samples on a scale
ranging from 1 to 5. The testing samples include mixtures
composed by humans, mixtures generated by SingSong, mix-
tures with randomly selected accompaniments (referred to as
RandSong), and mixtures generated by FastSAG.

5.4 Experiment Results
Objective Evaluation
Table 1 shows the objective evaluation results on the zero-
shot MUSDB18 test dataset, including comparison with base-
line SingSong and some ablation studies.

Zero-shot Evaluation. For baseline SingSong, we ana-
lyze two-stage (semantic + coarse acoustic) and three-stage
(semantic + coarse acoustic + fine acoustic) inference re-
sults. We find two-stage results are better than three-stage
ones both in FAD and RTF metrics in our re-implementation,
and the best FADVGGish 0.8632 is better than the original pa-
per reported (0.96). Our method FastSAG with bi-linear in-
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terpolation as a resampling module achieves better results
both in all FAD metrics and over 30 times faster than two-
stage SingSong and over 140 times faster than three-stage
SingSong. Our method FastSAG with bi-linear interpolation
as the resampling module results in improved performance
across all FAD metrics. Additionally, it achieves a significant
acceleration, being over 30 times faster than the two-stage
SingSong method and over 140 times faster than the three-
stage SingSong method.

Ablation Study. We also conduct several ablation studies
to check the function of different settings, consisting of three
aspects:
• Normalization is important. Using a normalized Mel spec-

trogram achieves better performance than an unnormalized
one in all FAD metrics.

• Semantic as the condition is better. We conduct experi-
ments with different condition types: only semantic fea-
ture, only Mel spectrogram feature, and mixed feature of
semantic and Mel spectrogram feature. We can see using
only the semantic feature as the condition achieves better
performance in all FAD metrics, which is consistent with
the findings of SingSong.

• Discussion of resampling module. Our findings indi-
cate that the utilization of bi-linear interpolation leads to
improved FAD scores in FADVGGish and FADCLAP-MUSIC.
However, the FAD scores are comparatively lower when
using MERT as the feature extractor. To further assess their
performance, we will conduct subjective evaluations.
In-Domain Evaluation. We additionally assess the per-

formance of the in-domain test dataset. As shown in Ta-
ble 2, SingSong achieves the highest FADVGGish score, but
it performs relatively worse in terms of FAD score when
using other feature extractors. While our method utilizing
interpolation as the resampling module achieves improved
FADVGGish and FADCLAP-MUSIC compared to the approach
employing Perveiver-IO as the resampling module, it exhibits
poorer performance on the in-domain test dataset.

Subjective Evaluation
Table 3 presents the subjective evaluation results. For this
evaluation, 100 testing samples were randomly chosen from
both the in-domain test dataset and the zero-shot MUSDB18
test dataset, maintaining a 2:1 ratio respectively. We engaged
15 participants in the evaluation process, with each individ-
ual assessing 20 samples randomly picked from the 100 se-
lected samples. The results indicate that RandSong received
the lowest MOS score, highlighting the importance of har-
mony and coherence in human music perception. Further-
more, our FastSAG method, whether employing interpola-
tion or the Perceiver-IO as the resampling module, consis-
tently outperforms the baseline SingSong. However, using
the Perceiver-IO as the resampling module results in the clos-
est approximation to human-composed music.

Discussion on Prior Loss and Diffusion Loss
Figure 3 (a) and (b) display the Mel spectrograms of the
singing voice and corresponding accompaniment, respec-
tively. There is a significant gap between their Mel spectro-
grams. (c) represents the predicted prior, which is a first step

(a) Singing Voice

(b) Human-composed 
Accompaniment (gt)

(c) Prior from Condition Block

(d) Generated with Diffusion

Figure 3: Illustration of Mel spectrogram. (a) is Mel of the
singing voice. (b) is human-composed accompaniment serv-
ing as our growth-truth. (c) is predicted prior. (d) is the gen-
erated Mel from the diffusion model.

towards being closely aligned with the accompaniment. As
seen in the figure, it is roughly aligned. (d) is generated by the
diffusion model, conditioned on (c), and presents a more de-
tailed approximation of the accompaniment. In summary, our
framework consists of two stages. The first stage involves a
single encoder-decoder, which is not sufficient for generating
accompaniment. The second stage refines the output using a
diffusion model. The complete framework serves as a condi-
tional probabilistic model for the complex mapping between
singing voice and accompaniment.

6 Conclusion and Future Work

In this paper, we introduce FastSAG, a diffusion-based non-
autoregressive method for singing accompaniment genera-
tion. This approach not only achieves higher generation
speeds but also maintains more harmonious and coherent ac-
companiments, as demonstrated by both objective and sub-
jective evaluations.

There are, however, areas for improvement. First, the gen-
erated audio quality could be better. The low audio quality
may be due to several factors: a) the low sampling rate of
the training data; b) the degradation of audio quality caused
by source separation; and c) the potential for vocoders to de-
grade audio quality. Second, the generated accompaniment
consists of numerous instrumental components, so it may be
beneficial to generate each track with more fine-grained con-
trol. Lastly, both SingSong and our FastSAG are offline algo-
rithms, meaning that the accompaniment is generated for an
entire piece of singing voice. In the future, we could explore
designing a framework for online accompaniment generation
that adapts as the singing voice progresses.
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