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João Libório Cardoso1 , Francesco Banterle2 , Paolo Cignoni2 and Michael Wimmer1
1TU Wien, Austria
2CNR-ISTI, Italy

{jaliborc, wimmer}@cg.tuwien.ac.at, {francesco.banterle, paolo.cignoni}@isti.cnr.it

Abstract
We introduce context-aware translation, a novel
method that combines the benefits of inpainting and
image-to-image translation, respecting simultane-
ously the original input and contextual relevance
– where existing methods fall short. By doing so,
our method opens new avenues for the controllable
use of AI within artistic creation, from animation to
digital art.
As an use case, we apply our method to redraw
any hand-drawn animated character eyes based on
any design specifications – eyes serve as a focal
point that captures viewer attention and conveys a
range of emotions; however, the labor-intensive na-
ture of traditional animation often leads to compro-
mises in the complexity and consistency of eye de-
sign. Furthermore, we remove the need for produc-
tion data for training and introduce a new charac-
ter recognition method that surpasses existing work
by not requiring fine-tuning to specific productions.
This proposed use case could help maintain consis-
tency throughout production and unlock bolder and
more detailed design choices without the produc-
tion cost drawbacks. A user study shows context-
aware translation is preferred over existing work
95.16% of the time.

1 Introduction
Alfred Yarbus’s influential work [Yarbus, 1967] quantified a
long-standing intuition: using an eye tracker, he noted that
observers spend a surprisingly large fraction of time fixated
on the eyes in a picture. The eyes of others are important
to humans because they convey subtle information about a
person’s mental state (e.g., attention, intention, emotion) and
physical state (e.g., age, health, fatigue). This significance
has translated into the realm of hand-drawn animation, where
the eye designs have often become increasingly complex and
expressive to capture these nuances. However, this com-
plexity comes at a cost. Despite its massive resurgence in
the last decade [Masuda et al., 2019], traditional animation
has struggled to benefit from advances in computer graph-
ics: techniques used in production remain largely the same,

with productions relying on repetitive manual labor from a
large workforce. As a result, the eyes, being the most time-
consuming and intricate to draw, are often the first elements
to be simplified, leading to compromises in both expression
and artistic consistency. Our aim is to introduce a compu-
tational method that can alleviate some of these challenges
without sacrificing the artistic integrity of the medium.

We further conducted a survey among 17 professional an-
imators, of which 29% work at established studios, and the
rest either freelanced or worked for smaller studios. We asked
them multiple optional questions about time consumption, of
which the full breakdown is shown in the author version1

(AV). Character faces were reported to be the most complex
part of animation, with 50% reporting it as the element they
spend the most time on. Of the remaining animators, 75%
voted for either anatomy or hair. Drawing was estimated to
constitute the vast majority of the work (85%), and doing it
at the highest level of detail was estimated to take 1.7 times
the amount of work than on average, for a total of 66m of
additional human effort per key frame from 1st key through
coloring. Sadly, the fact that 53% still use paper drawings in
their studios, despite 100% preferring to draw digitally, indi-
cates that using computational tools during the early drawing
stages might not be possible yet in practical terms.

1.1 Problem and Contributions
Existing deep learning methods present significant limitations
within artistic applications. Inpainting, while capable of gen-
erating detailed art that fits within existing content, offers
little control over the generated content, making it unsuit-
able for most precise artistic endeavors [Akita et al., 2020].
Image-to-image translation, while being able to take artistic
input, is constrained by only being applicable to entire im-
ages, as it does not take into account the context surrounding
target regions.

We propose context-aware translation as the solution to
these limitations. We then apply it in a novel pipeline that
automates increasing consistency and amount of detail in the
eyes of hand-drawn animation characters. It effectively mim-
ics the work of cleanup animators, who redraw frames to fix
mistakes and better match the character color guides – de-
spite the misleading name, color guides, also known as model

1AV: https://jaliborc.github.io/re-draw
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Figure 1: Teaser. As shown, the proposed context-aware translation is capable of automatically redrawing parts of images according to any
provided design, without the need for fine-tuning. Unlike image-to-image translation [Liu et al., 2019], which neglects surrounding context,
our approach considers the entire frame. Unlike inpainting [LahIntheFutureland, 2023], which lacks artistic control by ignoring the original
content, our method honors the artist’s input. This facilitates the production of more consistent artwork and allows for more complex design
choices.

sheets, depict all the information an artist would need to draw
a character while remaining true to its intended design and the
art style of the production (see AV for an example). We also
tackle an additional problem this use-case raises: the lack of
training datasets of anime production, which we address by
proposing methods to negate the need for production data en-
tirely, including a novel character recognition method.

In summary, our key contributions are: 1) Context-aware
translation, a novel general deep-learning method that avoids
the limitations of both inpainting and image-to-image trans-
lation – this includes 1.a) a dual discriminator structure
and novel adversarial losses that enforce simultaneous re-
spect for input content, translation requirements, and context
constraints; and 1.b) a triple-reconstruction loss that yields
greater generation capabilities than traditional loss. 2) A
character design recognition network that outperforms exist-
ing work by using a production-style-aware latent space. 3)
A novel pipeline that takes advantage of the aforementioned
contributions to automatically increase the consistency and
amount of detail in the eye region of characters, and without
the need of production data during training.

Furthermore, we present an ablation study in Section 4 that
scrutinizes the benefits of each of our novel components, con-
tribution of each loss used, compares both our context-aware
translation and style-aware clustering against existing work,
and assesses the robustness and temporal coherence of our
method. We also present a user study with 63 participants in
Section 5 that tests three key properties: the absence of de-
tectable artifacts, the enhancement of artwork detail, and the
overall aesthetic preference when compared to existing meth-
ods, all of which our pipeline successfully validated.

2 Related Work
In this Section we describe the minimum animation produc-
tion background necessary to frame our use-case, and analyze
relevant deep-learning existing work.

Anime Production Background Limited animation pro-
duction involves a precisely defined pipeline comprising of
drawing, finishing, and compositing steps [Furansujin Con-
nection, 2016], each performed by different artists. The pro-
cess starts with frame planning and drawing, where paper is

prevalent, followed by digital cleaning and coloring, and con-
cludes with compositing. For computational methods to be
effective in this domain, they must integrate seamlessly into
the existing pipeline, not expect extensive per-frame manual
intervention, and allow for artistic control.

Editing Content with Style The seminal work by Gatys
et al. [2016] introduced style transfer using deep learning,
sparking extensive research in image editing through style
variation [Huang and Belongie, 2017; Karras et al., 2019;
Karras et al., 2020; Karras et al., 2021a; Karras et al., 2021b].
Liu et al. [2019] introduced FUNIT, an unsupervised network
capable of image-to-image translation from unseen domains.
Subsequent works [Kim et al., 2020; Saito et al., 2020;
Nizan and Tal, 2020; Li et al., 2021] have built on this founda-
tion, but invariably modify entire images and unintentionally
compromise the consistency of character poses, expressions,
and other elements. A crucial aspect of our work is to lo-
cally modify art, but only the design should be varied on the
targeted elements; e.g., the eyes.

Artistic Methods In comics and illustration editing, most
literature focuses on colorization (of illustrations or shaded
manga drawings) and line extraction. Early efforts by Simo-
Serra et al. [2016] and Li et al. [2017] demonstrated tech-
niques for extracting main lines and patterns. These meth-
ods have seen enhancements through user interaction and ad-
versarial training [Simo-Serra et al., 2018b; Simo-Serra et
al., 2018a; Lee et al., 2019]. Colorization techniques have
evolved from user-assisted GAN-based methods [Ci et al.,
2018; Zhang et al., 2018] to more sophisticated approaches
that allow high-quality outputs with minimal training data
[Silva et al., 2019; Shimizu et al., 2021]. Recent studies have
also explored colorization using text tags and user inputs for
specific parts, although these methods often sacrifice artistic
control [Akita et al., 2020; Kim et al., 2019]. The training il-
lustration dataset by Branwen et al. [2022] is a staple of many
methods. Maejima et al. [2021] tackle animation colorization
using a few-shot strategy and an ad-hoc sampling method for
patches.

Recent work has also brought segmentation [Zhang et al.,
2020] and clustering [Nir et al., 2022] to cartoon and illustra-
tion art. Nir et al. [2022] developed a self-supervised tech-
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nique for style-specific analysis in animation, yet it requires
separate training per production and is more suited for track-
ing characters and not their designs. In our work, we intro-
duce a more flexible semantic clustering that decouples the
style of the anime from the content, allowing it to generalize
to unseen productions.

3 Method
Our approach for enhancing animated eyes takes as input the
animation frames to be improved and a character color guide;
see Fig. 2. We use an unsupervised convolutional network
trained alongside classification networks, capable of telling
designs apart, as its adversaries. Using such a model re-
quires artists to manually associate regions to redraw and
color guides manually, which is not practical. Even more
problematic, to train this type of adversarial structure, one
normally uses pairs of these images, labeled into different
classes (character designs). In particular, to ensure our model
is capable of generalizing to new designs, we need to train on
a large enough variety of them. Yet, art direction is not easily
available and generally not created in high enough quantities
that would be needed for a robust training. Moreover, manu-
ally tagging and cropping this data would be extremely labor
intensive and hard to replicate. To address these issues we
propose a novel character design clustering method, and use it
to automatically infer training data from random frames, thus
solving the association problem. As such, Re:Draw does not
require internal production data for training, instead it only
only requires a set of random sampled frames from different
productions; see Fig. 4.

Image in-painting has shown to be capable of completing
missing regions, yet predictions based only on the surround-
ing of the area to be redrawn do not allow artists to finely con-
trol the output results using art or style direction examples.
Image-to-image translation and style transfer are capable of
using both of these inputs, yet existing work is incapable of
generating art that fits and correctly matches within the ac-
tual context of the drawing: they can be very unreliable in
preserving the artwork pose. For these reasons, we introduce
context-aware translation. We make use of two adversarial
discriminators built using partial convolutions, allowing them
to weight images differently and independently, and a novel
triple reconstruction loss based on the concept of the genera-
tion of image triplets.

3.1 Dataset Generation
We will now describe how we avoid the need for production
data, by automatically clustering art by character design and
then further splitting it into low- and high-levels of detail.
This categorized dataset is required during the training phase
of our context-aware translation model, which involves solv-
ing multiple adversarial classification tasks simultaneously.

Object Detection We first train an object-detection net-
work – we use the well-established Faster R-CNN network
[Ren et al., 2015] – to identify character faces and details
in them (such as eyes) and run it on the randomly sampled
frames. This results in a dataset of character faces in a variety
of poses, split by the sources they were sampled from.

Style-Aware Clustering Although re-identification of hu-
man faces is a long studied topic [Balaban, 2015], we found
existing work to be ineffective at automatically identifying
animated characters not seen during training. We attribute
this to the fact that, while human faces have a consistent and
predictable structure, animated characters are not restrained
by the laws of reality and thus present a much higher vari-
ance: in a given production, characters might have a very
similar look and feel, while in another production they might
vary widely in structure and shape (see AV).

To address this issue, we improve upon the state of the
art of character recognition by combining ideas from facial
recognition and image-to-image translation. We propose a
supervised network that, unlike existing work, maps charac-
ter portraits to an art-style normalized Euclidean space, where
distances between these portraits correspond to a measure of
character design similarity within its production. It takes as
input character portraits to be mapped and a collection of ran-
dom portraits from the same production for normalization es-
timation.

As shown in Fig. 3, latent representations of both inputs
are estimated: we compute the content representation using
a ResNet [He et al., 2016] encoder – which is well estab-
lished for object recognition – and the production represen-
tation using a convolutional encoder. The latter is done us-
ing only the lightness in lαβ color space [Reinhard et al.,
2001], as we found that the normalization input works better
if it only contains the main shape information, so we use a
color space to decorrelate it from color variation. This style-
latent representation is then used to compute a set of affine
transformations, with the goal of mapping the encoding from
an absolute Euclidean-space representation of portraits to the
style-normalized one. This mapping is done using Adap-
tive Instance normalization [Huang and Belongie, 2017] on
the content-input latent representation. This finally results in
32 parameters per portrait thanks to the linear layers, which
are then clustered using traditional hierarchical clustering,
with unweighted pair group method, arithmetic mean and Eu-
clidean distance. These methods and parameters were chosen
by testing the rate of correct clustering across a validation
dataset.

To train this network E and ensure the content-encoding
output respects the desired intra and inter-class proprieties of
the normalized Euclidean space, we use the option of Triplet
Margin Loss [Balntas et al., 2016; Hermans et al., 2017] –
that is, given a pair of portraits from the same design {p1, p2}
and one from another p3 but from the same production P, we
minimize the distance from the first two, while maximizing
the distance of the third (images shown in lowercase; func-
tions and classes in uppercase):

argmin
E

max
{
∥E(p1,P)− E(p2,P)∥2− (1)

∥E(p1,P)− E(p3,P)∥2 + 1, 0
}

This means that, during training, character portraits must be
provided in sets of three. We also ensure that the total training
weight of each production style and of each character design
within each style is the same, to further help with generaliza-
tion. While it is technically possible to train E in conjunction
with the context-aware translation, it is more computationally
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Figure 2: Context-Aware Inference. Eyes are detected in a sequence of frames and a color guide, then fed to our context-aware redrawer G,
and the resulting styled eyes are post-processed into the original art. The whole process can run in real-time. See AV for full version.

Production 
Style Input

Data Input

Triplet 
Loss

Figure 3: Style-Aware Encoder. We train a network capable of gen-
eralized character design recognition using triplet loss. Unlike tra-
ditional facial recognition, where only a set of labeled portraits is
seen, we additionally input random unlabeled portraits to account
for production style. See AV for full version.

efficient to train E first and then freeze it to train the remain-
der networks.

Level-of-Detail Split Having the portraits organized by
character design, we extract the intended art details (eyes in
our case study) from them using a Faster R-CNN network
again, but now with the knowledge of their corresponding de-
signs. We standardize all extracted art to the same size. Then,
we exploit the fact that characters are often drawn with differ-
ent levels of detail, depending on their prominence on screen,
to discriminate between low and high details regions. So, af-
ter empirical observation, regions with less than 0.31% pixels
were assumed to be low-detail and to be redrawn, while re-
gions with more than 0.48% pixels were used as art direction
examples (see AV).

3.2 Context-Aware Translation
Having generated the dataset, we can now train the redrawing
model. We want to find a function x+ = g(x, S) that, given
a low-detail content image x and color guide S (equivalent
to style images in a style transfer context), is capable of out-
putting a higher detail version x+ of x. This leaves us with
two conflicting goals: we want the translated artwork x+ to

match the provided design S and its level of detail, but to still
fit within the original drawing of x.

We define an image-to-image network G, to be trained as
a context-aware redrawer, with the purpose of approximating
g. As illustrated in Fig. 2, it is composed of a convolutional
encoder-decoder structure with an additional style encoder.
The latter matches exactly the encoder described in Section
3.1 and is used to compute a set of affine transformations that
control the Adaptive Instance normalization in the decoder.
Triple Reconstruction Loss Let l be a low-detail image
and h a high-detail one, each sampled from different designs
L and H, respectively. Our approach is to train the redrawer
as an image translation problem such that t = G(l, h) outputs
the result of applying design H to l.

To help G learn a translation model and ensure it main-
tains the local structure of l, a second output l̂ = G(l, l) is
frequently used as part of a reconstruction loss [Huang et al.,
2018]. However, this is not appropriate for our problem, as
we are not interested in the network producing low detail im-
ages. We propose a novel reconstruction loss that analyses a
total of three generated images:

LR = [∥h−G(h, h)∥+ ∥F (l)− F (t)∥+ ∥F (l)− F (l̂)∥]11, (2)

where F (x) is a low-pass image filter applied on the light-
ness of the image x, implemented by converting to frequency
space using fast Fourier transform and remove any frequen-
cies above a set threshold (0.06, as shown in Fig 5). The ba-
sis is that, by removing high frequencies and color changes,
differences between low-detail and high-detail images are ig-
nored as well, allowing us to create a reconstruction loss in
low-detail images.
Adversarial Discriminators We address our aforemen-
tioned conflicting goals by using two independent image
multi-task classifiers instead: a quality discriminator Q judg-
ing whether the output is high detail and matches the intended
design, and a context discriminator C judging whether it fits
within the original artwork and its own design, irrespective of
detail-level.

To achieve this purpose, as we show in Section 4, we
need to train each discriminator differently, despite sharing
many commonalities: both have the same partial convolu-
tional structure and are trained using hinge loss with R1 reg-
ularization [Mescheder et al., 2018], to prevent over-fitting
and mode collapse. This results in the following losses for
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Figure 4: Context-Aware Training. Detected portraits are clustered using our style-aware encoder (left), with additional portraits as style
guides. Content and style images are extracted from portraits of different designs (center). These are used to generate 3 redrawings from
different combinations of these input pairs, which are judged by multiple losses, including two multi-class discriminators (right).

penalizing wrong classifications of positive LP and negative
LN examples:

LP (x, S) = [max(0, 1−D(x)S) + γ∥∇D(x)S∥2]1
LN (x, S) = [max(0, 1 +D(x)S)]1

, (3)

where D ∈ {Q,C} can be any one of the discriminators,
D(x)S is the discriminator’s score of image input x for design
class S, ∇D(x)S its derivative used for R1 regularization and
γ = 10 (R1 standard weight). That is, D should converge
to [0, 1] for positive entries and to [−1, 0] otherwise. The dis-
criminators are then given different input masks to weight dis-
parate regions of images differently: the quality discrimina-
tor Q focuses on the interior of the redrawn region, while the
context discriminator C focuses on the opposite, including an
outer border that is not redrawn. They meet and oppose each
other in the intersection of their two regions. Finally, they are
trained to judge the training image pairs {l, h} and the gener-
ated triplets {t, l̂, ĥ} such that Q looks for high detail output,
while C tries to tell real and generated art apart:

argmin
Q

LP (h,H) +
LN (l,H) + LN (t,H)

2

argmin
C

LP (h,H) + LN (t,H) + LP (l,L) + LN (l̂,L)
(4)

That is, Q attempts to learn to identify real high-detail im-
ages as positive examples, and low-detail or generated art as
negative ones; while C attempts to identify real as positive
and generated as negative, independently of detail. Images
are always judged for the design class they are supposed to
belong to. Then, to train the redrawer network G using these
discriminators, we use hinge loss with a latent feature loss to
regularize the adversarial training. Let DF be the latent fea-
tures computed by a discriminator D in a hidden layer, and

l

l̂

Example Coefficients Filtered

Figure 5: Low-Pass Filter. l̂ is computed during training from en-
hancing l. Right shows the result of our low pass filter.

s a sampled image (either l or h) from the given design class
S. The adversarial loss function of each discriminator D be-
comes:

LD(x, S) = [1−D(x)S]
1
1 + [DF (x)S −DF (s)S]

1
1 (5)

The use of hinge loss, R1 regularization and feature match-
ing loss have been used in different forms in image-to-image
translation problems [Liu et al., 2019; Saito et al., 2020]. Just
as with training the discriminators themselves, our contribu-
tion is how these are then used to train a redrawer capable of
addressing our problem. We combine our novel reconstruc-
tion loss with two adversarial losses to verify discriminator
conditions and another two to ensure reconstruction persis-
tence, where LQ and LC are the adversarial functions of each
discriminator, defined in Equation 5:

argmin
G

LR + LQ(t,H) + LQ(l̂,L) + LC(t,L) + LC(ĥ,H) (6)

Post-Processing To further ensure image regions generated
fit within the original image, we apply a few image process-
ing operations: after re-sampling the network output to the
original resolution, we apply color transfer [Reinhard et al.,
2001] and place it into the original image using Poisson im-
age editing [Pérez et al., 2003].

4 Ablation Experiments
Clustering We compared our style-aware clustering ap-
proach with FaceNet [Schroff et al., 2015], trained on the
same labeled animated character faces. We statistically ana-
lyzed how effective the latent representations learned from ei-
ther method work on a validation dataset of production styles
not seen during training: we measured the ratio of the aver-
age squared norm distance between each point of the same
character, and the average squared norm distance between
the mean points of each character. The lower this value,
the better is the latent space representation in principle. Our
method measures a ratio of 1.212e−4 in the validation data,
which outperforms FaceNet’s 1.494e−4 ratio. Interestingly,
our method performs similarly to a FaceNet network trained
on the validation dataset, whose ratio was 1.209e−4. This
shows our method presents better generalization to unseen
data. Furthermore, we show in Fig. 6 how well split the char-
acter faces from validation production styles are. The colors
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(a) FaceNet (b) Ours

Figure 6: Clustering Validation. 2D visualization of characters faces
from a production not seen during training [Coolkyousinnjya and
Dragon Life Improvement Committee, 2017], generated using T-
Distributed Stochastic Neighbor Embedding [Van der Maaten and
Hinton, 2008] on the latent spaces learned using FaceNet [Schroff et
al., 2015] and our proposed encoder network. Colors correspond to
ground truth labels. As shown, character differentiation is clearer in
our learned space. See AV.

of the points represent their ground-truth labels, and there is
a visible improvement with our method.

Redrawing We evaluated our redrawing approach against
neural cross-domain image translation with content and style
inputs. While multiple variations of these networks exist
[Saito et al., 2020; Ojha et al., 2021], they mostly compete in
translation ability and do not address our problems. Thus, we
chose as a baseline for comparison Liu et al. [2019] method
(FUNIT). We progressively introduced each of our novelties
to show the importance of each one (Fig 7): we introduced
our style-aware clustering by training FUNIT only on the few
manually labeled faces versus the generated dataset. We then
added our double-discriminator method, while maintaining
FUNIT’s traditional reconstruction loss. Finally, we intro-
duced the proposed triplet reconstruction, followed by the
post-processing step. FUNIT fails to respect pose/expression
and context. Without our large-scale dataset, it often fails
to generate realistic art and cannot generalize to designs not
seen during training. Our dataset and double discriminator
approach solve all of these issues, but reduce the ability of
the network to generate highly detailed art. Our novel triplet
reconstruction fixes that.

Our method is also very stable and demonstrates tempo-
ral coherence (see AV) despite not specifically incorporating
it in the loss. We believe the reason for this consistency is
its emphasis on preserving the intended pose and context of
the drawing: removing the regularizer from the adversar-
ial losses results in mode-collapse, and removing the qual-
ity loss results in a poor auto-encoder as expected (see AV).
Yet, removing the reconstruction loss does not result in un-
predictable output as expected, just an inability to learn useful
transformations, and removing the context loss does not result
in output reminiscent of FUNIT. Our explanation is that the
network, by following the context loss, is being incentivized
to exhibit spatial and temporal consistency in its output. This
stability is what enables our less explicit form of reconstruc-
tion loss to direct the training toward useful results.

We critically evaluate the performance of existing tech-

niques – namely style-transfer, image-to-image translation,
and text-to-image diffusion – against our proposed context-
aware translation. Figs. 1 and 8 clearly illustrate the limi-
tations of these existing approaches, thereby reinforcing why
our method is a more apt solution for this particular type of
problem. Furthermore, tests shown in the AV provide com-
pelling evidence of our method’s robustness and versatility in
handling a variety of challenging scenarios, further substanti-
ating its suitability for this application.

The limitations of the network we found boiled down to
two cases: uncommon occlusions and strong rotations. As
most occlusion to anime eyes is hair and the vast majority
of are drawn up-right, the network can generate artifacts out-
side of those expected conditions: the shape of occluders be-
low the eyeline might be distorted as if was a skin tattoo, and
eyes will be drawn upright if a character is reversed (see AV).
Adding a network capable of estimating eye rotation to the
pipeline would automate this process and further improve the
generated dataset. But outside of these two unusual spaces,
artifacts we did find were created by Poisson-blending, not
our models, which leads us to conclude post-processing is
the current main limitation of the method.

5 User Study
To validate our work, we conducted a study with 63 volun-
teer participants, predominantly self-identifying as anime ex-
perts, comprised of three tasks with images from anime pro-
ductions, all shown in randomized order. The user study and
our statistical analysis is provided in the AV.
Realness (T1) Participants assessed eight images – four
originals and four with our technique – to spot drawing is-
sues, not knowing the mix. Statistical analysis using the χ2

test with Yates correction [1988] showed no significant dif-
ference in error detection between original and modified, in-
dicating our generated eyes do not have evident artifacts and
are indistinguishable from real productions.
Level of Detail (T2) Participants selected for higher detail
among eight pairs of images unedited and enhanced by our
method. Using the [David, 1988] multiple comparison test,
we found a statistical significant preference for our enhanced
images, indicating our method effectively produces images
with higher detail from original artwork.
Preference (T3) Participants chose the better-looking im-
age from pairs made to cross-compare 3 methods: our
method, FUNIT [Liu et al., 2019] and FUNIT enhanced with
our clustering. Our method was preferred in 95.16% of cases.
Using the same statistical analysis as in T2, we found images
generated by our method are preferred to the ones generated
by previous work, even when it is enhanced with our dataset.

6 Conclusions
We have presented context-aware translation: a novel unsu-
pervised image-to-image network, trained with two adversar-
ial classification networks. We built these classifiers using
partial convolutions, allowing them to weight generated im-
ages differently and independently. We introduced novel loss
functions for these discriminators and a novel reconstruction
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Figure 7: Ablation of Contributions. We compared our method with traditional image translation by progressively introducing our contribu-
tions (rows 4 to 6). The synthetic data extrapolated using our style-aware clustering prevents over-fitting (a,e) and allows generalization to
unseen designs (g,h,i). Further introducing our dual discriminators allows redrawn areas to maintain artwork fit, but sacrifices detail (a,b,c,e,i)
and ability to redesign shape or color (g,h). Finally, introducing the triplet reconstruction loss brings that expressiveness back. See AV.
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Figure 8: Ablation of Related Work. We compared our method with
style transfer and image-to-image translation with and without post-
processing. See AV.

loss based on image triplets to achieve context-aware trans-
lation. We proposed a deep-learning approach with a novel
character design clustering to automatically collect training
data from animation frames and input data during inference.

We have shown the method is capable of automatically re-
drawing the eyes of an anime character according to a pro-
vided character design direction. In this way, the shape and
color of the iris can be changed, features, like reflexes and
shades, can be added and the level of detail can be increased
under the precise artist’s control. We have made the method
easily replicable, by removing the need for internal produc-
tion data or labeled data. Given the general nature of our
method, we expect it to be usable or extendable to other
elements in and outside of animation. Only our frequency
threshold value and the quality-split criteria could be specific
to our use case of animation, but such is the case of many
meta parameters in deep learning methods.

The obtained results also indicate the model might be pre-
senting emergent behavior of precise image segmentation, de-

spite never having seen segmented data, which we plan to ex-
plore in future work. As the models run nearly in real-time,
Re:Draw could be used interactively as artists draw or color
line-art. Only post-processing, which is significantly more
computationally intensive, prevents the entire method from
being run interactively. Given blending is also the main cul-
prit behind artifacts, the focus of future work will be to further
improve the method, likely within the reconstruction loss, to
remove the need for post-processing altogether.

We have substantiated the need for such a style-driven en-
hancement with a professional user survey that reported the
impact in the time of high quality drawing of the face details.
Finally, we have validated our approach and results with abla-
tion and a user study showing that our style-normalized latent
space pushes the state of the art regarding the identification
of non-photorealistic imagery, our approach is preferred over
traditional image-to-image translation 95.16% of the time and
the images generated are not discernible with respect to im-
ages drawn by artists with traditional techniques.
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