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Abstract
Constrained text generation remains a challeng-
ing task, particularly when dealing with hard con-
straints. Traditional Natural Language Processing
(NLP) approaches prioritize generating meaning-
ful and coherent output. Also, the current state-of-
the-art methods often lack the expressiveness and
constraint satisfaction capabilities to handle such
tasks effectively. This paper presents the Con-
straints First Framework to remedy this issue. This
framework considers a constrained text generation
problem as a discrete combinatorial optimization
problem. It is solved by a constraint programming
method that combines linguistic properties (e.g., n-
grams or language level) with other more classical
constraints (e.g., the number of characters, sylla-
bles, or words). Eventually, a curation phase allows
for selecting the best-generated sentences accord-
ing to perplexity using a large language model.
The effectiveness of this approach is demonstrated
by tackling a new more tediously constrained text
generation problem: the iconic RADNER sen-
tences problem. This problem aims to generate sen-
tences respecting a set of quite strict rules defined
by their use in vision and clinical research. Thanks
to our CP-based approach, many new strongly con-
strained sentences have been successfully gener-
ated in an automatic manner. This highlights the
potential of our approach to handle unreasonably
constrained text generation scenarios.

1 Introduction
Constrained text generation is a great challenge in natural
language processing (NLP), demanding the creation of tex-
tual output that adheres to specific requirements. This task
encompasses a broad spectrum of text generation scenarios,
ranging from crafting lyrics adhering to rhythmic, lexical, and
metrical constraints to producing text summaries prioritizing
length, semantic entailment, or other desired properties. This
article focuses on the first category of constrained output,
where strict adherence to specific requirements is paramount.

In NLP, several methods have been developed to tackle
contained text generation. The major approach relies on a

Large Language Model (LLM) guided search [Lu et al., 2022;
Liu et al., 2021; Post and Vilar, 2018; Hokamp and Liu,
2017]. For instance, BeamSearch excels when there are lexi-
cal constraints (i.e., enforce or avoid a set of keywords).

In addition, the latest series of conversational agents like
ChatGPT [OpenAI, 2023], PaLM [Google, 2023], Alpaca,
Vicuna [Touvron et al., 2023] show that LLM can achieve de-
cent constraint satisfaction rates (99%) on lexical constrained
generation task (see sent-04 task in [Yao et al., 2024] for more
information). Nevertheless, at the same time, even fine-tuned
prompted LLMs fail to generate a sentence that contains for
example exactly 82 characters (see sent-01 task).

Intuitively, enforcing that a sentence must contain exactly
82 characters can be reduced to a knapsack problem where
each word has a weight equal to its number of characters and
where the total number of characters of the sentence is the
capacity of the backpack (i.e., 82). It is known to be an NP-
complete problem.

In the NLP taxonomy, this requirement type is called hard
constraint [Garbacea and Mei, 2022], characterized by binary
functions associated with the constraints that must be true.
Interestingly, the concept of hard constraints in NLP aligns
with the classical definition of a constraint in discrete combi-
natorial optimization (CO). Various hard constraints in NLP
find their counterparts in CO, such as the length constraint in
NLP corresponding to a knapsack constraint in CO. In addi-
tion, the knapsack constraint has been well-studied in CO as
it is ubiquitous in real-world problems. Moreover, several ef-
ficient algorithms exist to solve this constraint using dynamic
programming [Trick, 2003]. Thus, using a dynamic program-
ming approach to compute a set of sentences of 82 characters
sounds promising.

Furthermore, over the past decade, research in assisted
song composition, spearheaded by Pachet’s ERC Flow-
Machines1, has highlighted the connection between output
specifications in songs or texts and constraints in the con-
text of CO. Various output requirements were successfully
modeled and solved in CO, including style modeling [Pa-
chet and Roy, 2011], virtuoso melodies [Pachet et al., 2011],
lyrics [Barbieri et al., 2012], meter [Roy and Pachet, 2013],
plagiarism [Papadopoulos et al., 2014], and palindrome [Pa-
padopoulos et al., 2015]. Notably, this research has paved the

1https://www.flow-machines.com
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way for formulating constrained generation tasks in text and
music as constraint satisfaction problems (CSPs).

In the context of text generation under constraints, viewing
this problem as a CSP implies defining: (1) The set of de-
cision variables that represent words of a sentence. (2) The
domain of each variable is the set of allowed vocabulary. (3)
Finally, the constraints are the set of rules that the text (the
assigned variables) must satisfy.

A well-known technique to solve a CO problem when for-
malized as a CSP is Constraint Programming (CP). CP is a
paradigm that computes solutions that satisfy constraints. CP
is mainly based on filtering algorithms (also known as prop-
agators), which remove values from variable domains that do
not belong to a solution of a constraint. The association of
such algorithms with global constraints is one of the main
strengths of CP because they exploit the specific structure of
each constraint. Thus, CP is an excellent candidate for tack-
ling constrained generation tasks.

The paper introduces Constraints First a CP-based frame-
work to generate sentences under constraints. This frame-
work combines the semantic aspects of sentences in a given
language with the constraints imposed on the words that make
them up. On the one hand, it uses n-grams and possibly their
associated likelihoods. On the other hand, it uses variables
whose domains are words and constraints between variables,
to allow, for example, a limit on the number of characters
used. The framework proposes to transform the initial prob-
lem into a combinatorial optimization problem based on the
multi-valued decision diagram (MDD) data structure, which
is particularly well-suited to representing a corpus. This prob-
lem is then solved using constraint programming.

Additionally, it introduces the problem of RADNER sen-
tence generation, which is a clinical test for people with po-
tential vision problems. This problem is used to demonstrate
the interest of our framework in solving a particularly difficult
problem for which no generic solution is known to date.

The structure of this paper is outlined as follows:

• Section 2: Background information on Constraint Pro-
gramming (CP) and NLP is introduced.

• Section 3: A constraint programming model is presented
for generating constrained sentences.

• Section 4: The RADNER sentence problem is formal-
ized as a CSP.

• Section 5: The effectiveness of the proposed approach is
showcased by detailing the generated output.

• Section 6: Open challenges, limitations, and future per-
spectives associated with the approach are discussed.

2 Preliminaries
2.1 Multi-valued Decision Diagram
Multi-valued decision diagrams (MDDs) are directed acyclic
graphs (DAG) data structures used in discrete optimization.
They consist of nodes and arcs, with two particular nodes:
the root node and the terminal node. Here, only Determin-
istic Reduced Ordered MDDs [Amilhastre et al., 2014] are
considered.

MDDs are mainly used as archives for Table Con-
straint [Cheng and Yap, 2010; Lecoutre, 2011] and
are generic to compute and store various other con-
straints [Malalel et al., 2023; ?; Wang and Yap, 2022;
Gentzel et al., 2022; Verhaeghe et al., 2019; Verhaeghe et al.,
2018]. MDDs as a tool for solving optimization problems can
be found in [Jung and Régin, 2022; Gillard and Schaus, 2022;
Rudich et al., 2022; van Hoeve, 2022; Bergman et al., 2016].

MDDs are organized into layers, where each layer contains
nodes and outgoing arcs. Each layer represents a variable,
and therefore, any MDD model represents an n-ary function
f(x1, x2, ..., xn) 7→ {true, false}. Equivalent nodes (i.e.,
nodes with the same outgoing arcs with the same labels) are
merged, compressing the data structure. Various operations
(intersection, union, difference...) can be applied between
MDDs without the need to decompress them.

MDD of a Constraint
Given a constraint C defined over a set of variables X =
{x1, x2, ..., xn}, an MDD can be compiled to store the valid
assignments (tuples) associated with the constraint C. There-
fore, MDD(C) is the MDD associated with the constraint C.

Cost-MDD
A cost-MDD is an MDD whose arcs have additional informa-
tion: the cost c of the arc. Let M be a cost-MDD and p be a
path of M . The cost of p is denoted by γ(p) and is equal to
the sum of the costs of the arcs it contains.

2.2 Constraint Satisfaction Problem
A Constraint Satisfaction Problem (CSP) is a triplet:
⟨X ,D, C⟩, where:

• X = {X1, X2, ..., Xn} is the set of variables of the
problem.

• D = {DX1 , DX2 , ..., DXn} is the set of domains, where
each domain DXi corresponds to the set of possible val-
ues for the variable Xi.

• C = {C1, C2, ..., Cm} is the set of constraints of the
problem. A constraint represents a property of the solu-
tions to the problem.

A solution is an assignment of all the variables to a value
present in their respective domains, such that all the con-
straints are satisfied.

2.3 Language Model
N-gram Model
An n-gram [Shannon, 1951; Jurafsky and Martin, 2009] is a
contiguous sequence of n words extracted from a text cor-
pus. Consider the sentence, “The princess wears a red dress”.
This sentence contains several 3-grams, such as “The princess
wears,” “princess wears a,” “wears a red,” and “a red dress”
We can define chaining rules between n-grams based on
shared word n-tuples. Two n-grams are considered chained
if they share a common sequence of n−1 consecutive words.
More precisely, the last n− 1 words of the first n-gram must
be identical to the first n− 1 words of the second n-gram.
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Figure 1: Example of MDD representing the set of x1 + x2 + x3 ∈
[5, 9]. For each variable xi, the domain D(.) is D(x1) = {1, 3, 7},
D(x2) = {0, 2, 4}, D(x3) = {2, 3, 4}. For example, (7, 0, 2) be-
longs to the set of solutions defined by the MDD.

LLM
Recent advancements in NLP have witnessed the emergence
of powerful language models (LLMs) (e.g., PaLM [Google,
2023], GPT-4 [OpenAI, 2023], LLaMa [Touvron et al.,
2023]) leveraging the Transformer architecture [Vaswani et
al., 2017]. These models are trained on massive datasets, en-
abling them to generate human-quality text through various
decoding strategies, such as greedy decoding or more com-
plex strategies. As language models, their core function relies
on estimating the probability of a given word sequence.

Perplexity
Text perplexity (PPL), a measurement of uncertainty rooted
in Shannon’s information theory, can be readily computed
in large language models (LLMs), given their inherent abil-
ity to calculate text probabilities. It represents the geomet-
ric mean of the inverse conditional likelihoods associated
with a given sequence of words [Jurafsky and Martin, 2009].
Formally, let Sn denote a sequence of n words, written as
Sn = w1w2 · · ·wn. The PPL of Sn is calculated as:

PPL(Sn) =
n

√
1

P (w1w2 · · ·wn)

where P (·) denotes the LLM’s assigned probability. Intu-
itively, PPL reflects the model’s perceived likelihood of gen-
erating a particular text, with lower values signifying higher
confidence [Garbacea and Mei, 2022]. This metric is valu-
able for LLM evaluation, ensuring that the model correctly
identifies well-formed samples through low PPL scores.

3 The Constraints First Framework
This section presents the major steps of the Constraints First
framework. An overview is depicted in Fig. 3.

3.1 Input Data: N-gram Corpora
First, a corpus (i.e., a set of sentences) is needed. This corpus
can be made from various sources (e.g., books, newspapers,
subtitles, Wikipedia,...). From the sentences set, all n-grams
are extracted, and some are filtered out if necessary. For in-
stance, if some words are forbidden, all n-grams where the
words appear are deleted.

root

dog whiteHe The A

likes dog likes whiteblack red

tt

bone likesyou dog pot apple

Figure 2: Example of MDDtrie storing 3-grams (successions of 3
words): “The black dog”; “A red pot”... Any path from the root
to tt is a valid n-gram. To find the successors of the n-gram “The
white dog” (in red), more precisely the following potential words,
we start from root to walk along the arcs that contains the labels of
the two last arc, i.e., “white” and “dog” (in blue). In that case, one
outgoing arc from the node can be reached with “white cat”. Thus,
the successor of “The white dog” is “likes” (in green).

Using n-grams is essential for integrating language into
generation. A sentence in a language is very different from
a random sequence of words. Although it is difficult to man-
age the meaning of a sentence (i.e., generate only sentences
that make sense), this does not mean that the meaning of a
sentence should be completely abandoned during generation.

3.2 Ngram reTRIEval
Next, the set of n-grams is stored within an MDD (see Fig. 2).
This MDD is used as a Trie; thus, it is named MDDTrie. It
manages the operations to store and retrieve n-grams.

3.3 Constraint Programming Model
The Constraint Programming Model is based on an MDD that
was built from MDDTrie. It contains all the feasible sen-
tences satisfying the constraints.

MDD Compilation
MDD can be used to encode and solve CSP [Hoda et al.,
2010; Perez and Régin, 2015]. Figure 1 gives an example
of such encoding. In particular, an MDD-based model has
been shown to be nearly adequate for this task [Bonlarron
et al., 2023]. The approach developed claimed to be general,
but its description is too close the resolution of the MNREAD
sentences problem.

The CSP model is compiled into MDD (i.e., each con-
straint in the CP model (see Tab. 1) is associated with a partic-
ular MDD). The number of layers of the MDD is the number
of variables. The potential label that an arc can have is a func-
tion of the domains of the associated variables of the layer.
The number of characters or syllables of a word is a cost.
Two cost functions, respectively, #Char(.) and #Syll(.),
are available for the label of an arc. Thus, all MDDs in this
approach are cost-MDDs.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Special Track on AI, the Arts and Creativity

7602



A Constraint Programming Model of Standardized Sentences

V X1, X2, ..., XN

D ∀i,D(Xi) = {words ∈ AllowedLexicon}
Language modelling with k-grams

CLMstart IsNgramOfStart(X1, X2, X3, ..., Xk) = ⊤
CLMsucc i > k, Xi = NgramSuccession(Xi−k, ..., Xi−3, Xi−2, Xi−1)
CLMend IsNgramOfEnd(X14−k, X14−k−1, ..., X14) = ⊤
CLength Format (length) Constraints

CL1 ⌊LineSize⌋ ≤
∑L1

i=1 #Char(Xi) ≤ ⌈LineSize⌉
CL2 ⌊LineSize⌋ ≤

∑L2

i=1+L1
#Char(Xi) ≤ ⌈LineSize⌉

CL3 ⌊LineSize⌋ ≤
∑L3

i=1+L2
#Char(Xi) ≤ ⌈LineSize⌉

CL4 ⌊SentenceSize⌋ ≤
∑N

i=1 #Char(Xi) ≤ ⌈SentenceSize⌉

CMeter Meter (syllable) Constraints

CM1

∑N
i=1 #Syll(Xi) = SyllableCount

Table 1: Minimalistic CSP model to generate generic standardized
sentences. The decision Variables are words, and the Domains are
the authorized words. Then, the n-gram constraints ensure that any
assignment of the variables is consistent with the n-gram chaining
rules. Finally, several knapsack constraints are defined to control the
total size of the sentence, its display property (3 lines, for instance),
or its meter property. #Syll(Xi) is the number of syllables of the
assigned variable Xi and #Char(Xi) is the number of characters
of Xi.

The MDD MDDfinal containing all the solutions that sat-
isfy the conjunction of the various constraints can be obtained
in two ways. Either there is an interest in keeping intermedi-
ate results, and MDDfinal is computed by intersecting the
MDDs associated with each explicitly defined constraint. Al-
ternatively, the intersection of the MDDs associated with each
constraint is performed on the fly. This means that when
performing an intersection between MDD1 and MDD2 s.t.,
MDD1

⋂
MDD2, MDD2 is given in intention, so its so-

lutions are never computed. This second approach saves a lot
of memory and is faster. Formally, we have

MDDfinal =

m⋂
i=1

MDD(Ci)

therefore,
MDDfinal = MDD(∧m

i=1Ci)

So far, we have assumed that it is possible to build
MDDfinal explicitly by successive intersections, whatever
constraints are added. This turns out to be the case for our
application domain. This approach is quite realistic for the
types of constraints we have been led to integrate. However,
should it become impossible to calculate MDD intersections
for new constraints, this does not render the proposed frame-
work useless. Indeed, there is no need to build the final MDD
using intersections alone. We could very well build an MDD
integrating a subset of the constraints, then use a CP solver
integrating this MDD (using the MDD4R propagator) with
the constraints not yet integrated to calculate the solution set
of the problem.

3.4 Sentence Curation Helped by an LLM
Once the MDDfinal is computed, all solutions (sentences)
can be extracted. The solution set is then evaluated by LLM.

CORPUS :  SET OF SENTENCES

LARGE LANGUAGE MODEL SORTI NG

N- GRAM EXTRACTI ON & FI LTERI NG

CONSTRAI NT 
PROGRAMMI NG 

NATURAL 
LANGUAGE 

PROCESSI NG

CONSTRAI NED SENTENCES

I NPUT

FI LTERI NG

MODELLI NG 
& 

SOLVI NG

SORTI NG

OUTPUT  
& 

CURATI ON

MULTI - VALUED 
DECI SI ON 
DI AGRAM

MDD

CONSTRAI NTS FI RST FRAMEWORK

- MARKOV 
CONSTRAI NTS

- LEXI CAL 
CONSTRAI NTS

- FORMAT 
CONSTRAI NTS

- UNARY 
CONSTRAI NTS

- N- GRAM 
CHAI NI NG

- SYNTACTI C 
STRUCTURES

- SEMANTI C

Figure 3: This figures summarizes the major step of the Constraints
First framework. Once the filtered n-grams are gathered. The MDD
data structure acts as a bridge between the constraint satisfaction
relying on CP techniques and the n-gram chaining that takes account
of the structure of the language.

Thus, the solutions are sorted by the perplexity score com-
puted by an LLM. This simplifies the sentence selection pro-
cess dramatically.

4 Case Study: Standardized Text
4.1 Why Standardized Text Is Critical?
Reading performance assessment has become a prominent
method for evaluating vision [Radner, 2017]. Standardized
text, particularly sentences, has established itself as a corner-
stone for reading performance assessments in vision research
[Mansfield et al., 2019]. Due to the intricate nature of reading
involving various individual-specific parameters, standard-
ized materials effectively minimize person-related biases in
measurements [Legge, 2016]. Several reading charts utiliz-
ing standardized sentences exist, such as the MNREAD test
[Mansfield et al., 1993] or the RADNER test [Radner and
Diendorfer, 2014]. While sharing a common purpose, each
chart possesses its strengths and limitations. Vision research
necessitates standardized sentences and tools that empower
researchers to readily produce standardized material to assess
reading performances and test hypotheses related to visual
impairment.
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Our  father  always hir ed this 
bad br icklayer , who did not 
come unti l  Fr iday afternoon

27 -29 Char ac t er s

Figure 4: Example of an English RADNER sentence incorporating
relative clauses with three lines and 14 words. A subset of the RAD-
NER rules are highlighted. Each line contains between 27 and 29
characters; also, in purple, several words should be of exactly one
syllable. In red, the second word of the second line must contain 10
characters and three syllables.

This motivation originating from the vision research field
converges with a compelling challenge in artificial intelli-
gence regarding the state-of-the-art in constrained text gen-
eration. To the best of our knowledge, all existing RADNER
sentences were handcrafted. Therefore, this paper introduces
the first approach, which is able to generate them automati-
cally. Solving this real-world problem leads to thinking about
the potential intertwining of CP and NLP.

The work of Bonlarron et al. [Bonlarron et al., 2023] con-
sists of applying this framework to solve the MNREAD sen-
tence problem. The following section introduces a new appli-
cation to demonstrate the genericity of the framework.

4.2 The RADNER Sentences Problem
The basic rules that a RADNER sentence must obey are the
following :

RADNER Core Rules
• (1) The sentences incorporated relative clauses and had

three lines and 14 words.

• (2) Each line had 27–29 characters, including spaces
(82–84 characters per sentence).

• (3) The first and second lines had 5 words.

• (4) The third line had 4 words.

Language Dependent Rules, Here German
• (5) The first word of the first and of the second line was

a word of 1 syllable and 3 letters.

• (6) The second word of the second line was a word of 3
syllables and 10 letters.

• (7) This word was followed by a relative clause that (8)
began with 3 short words, each of 1 syllable.

• (9) In the first line there was one noun of 2 syllables and
another word (not a noun) of 2 syllables.

• (10) The third line began with a word of 2 syllables, fol-
lowed by (11) a noun of 2 syllables.

• (12) The next word was the verb of the sentence, com-
posed of 3 syllables.

A Constraint Programming Model of Radner-like Sentences

V X1, X2, ..., X15

D ∀i,D(Xi) = {words ∈ V ocabulary}
Language Modelling Constraints

CLMstart IsNgramOfStart(X1, X2, X3, ..., Xk) = ⊤
CLMsucc i > k,Xi = NgramSuccession(Xi−k, ..., Xi−3, Xi−2, Xi−1)
CLMend IsNgramOfEnd(X14−k, X14−k−1, ..., X15) = ⊤
CLength Format (length) Constraints

CL1 27 ≤
∑5

i=1 #Char(Xi) ≤ 29

CL2 27 ≤
∑11

i=6 #Char(Xi) ≤ 29

CL3 27 ≤
∑15

i=11 #Char(Xi) ≤ 29

CL4 82 ≤
∑15

i=1 #Char(Xi) ≤ 84

CMeter Syllable Constraints

CM1

∑15
i=1 #Syll(Xi) = 23

CUnary Unary Syllable and Character Constraints
First Line Constraints

CU1 #char(X1) ≤ 4
∧

#Syll(X1) = 1
CU2 #char(X2) ≤ 6

∧
#Syll(X2) = 2

CU3 #char(X3) ≤ 7
∧

#Syll(X3) = 2

Second Line Constraints

CU6 #char(X6) ≤ 4
∧

#Syll(X6) = 1
CU7 #char(X7) = 10

∧
#Syll(X7) = 4

CU8 X8 = ”,”
CU9 #Syll(X9) = 1
CU10 #Syll(X10) = 1
CU11 #Syll(X11) = 1

Third Line Constraints

CU12 #Syll(X12) = 2
CU13 #Syll(X13) = 2
CU14 2 ≤ #Syll(X14) ≤ 3
CU15 2 ≤ #Syll(X15) ≤ 3

Table 2: CSP model to tackle the RADNER-like sentences problem.
It is a particular case of standardized sentences. Therefore, the vari-
ous knapsack constraints are fixed. For instance, the total number of
characters range is [82,84]. Additionally, several unary constraints
are added to further model the RADNER problem. For instance,
CU7 : #char(X7) = 10

∧
#Syll(X7) = 4, ensure that variables

X7 is assigned with a word of 10 letters and 4 syllables. Remark:
The comma is viewed as a word, so the unary constraints associated
with X8 (i.e., CU8 ) enforce its assignment with a comma.

• (13) The last word was a part of the verb and had 2 syl-
lables.

Then, the RADNER test, designed initially in German, was
adapted for other languages; while sharing the same core
rules, several side constraints differ from one language to an-
other. For instance, the first word of the first line must con-
tain three characters and one syllable in the original version.
Whereas in the Spanish version of the sentences (Radner-
Vissum version [Alió et al., 2008]), the first word satisfies the
same rule or contains precisely two characters. Surprisingly,
In the Portuguese version (Radner-Coimbra version [Rosa et
al., 2016]), the first word can also contain only one character.

The CP model described in Tab. 2 defines the RADNER
core problem independent from a particular target language.
For a particular language, some constraints need to be hard-
ened: For instance

CU1 : #char(X1) ≤ 4
∧

#Syll(X1) = 1,
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becomes in German,

CU1 : #char(X1) = 3
∧

#Syll(X1) = 1.

In the Spanish case it becomes,

CU1 : 2 ≤ #char(X1) ≤ 3
∧

#Syll(X1) = 1.

And finally in Portuguese, it is defined as,

CU1 : 1 ≤ #char(X1) ≤ 3
∧

#Syll(X1) = 1.

From a CP point of view, CU1 (as described in the model)
is a relaxation of the CU1 associated with a given language.
Therefore, after the compilation of the RADNER CP model
in MDDfinal, Constraint First allows to perform a refine-
ment of the solutions set, thanks to the MDD propagator or
intersection as mentioned in Sec. 3. Thus, either the model
or the solving or both are parametric.

5 Results
5.1 Experimental Conditions
The approach described in Sec. 3 was implemented in
Java 17. The code is available upon request.

Application: The Constraints First model is evaluated on a
standardized RADNER-like sentence generation task.

Generation: The generation experiments were per-
formed on a machine using an Intel(R) Xeon(R) W-2175
CPU @ 2.50GHz with 256 GB of RAM and running under
Ubuntu 18.04.

Corpus Definition: The n-grams are extracted from
Wikipedia English articles (multistream1-7)2. Then, the gen-
eration is performed with 4-grams. A substantially more sig-
nificant corpus is needed to perform generation in 5-grams.
In addition, if an n-gram does not belong to the NLTK En-
glish words list, the n-gram is filtered out. This is indeed a
coarse lexicon criterion. But it avoids the introduction of bad
n-grams (containing numbers, symbols, links). This criterion
can be refined to adapt to more specific needs (e.g., language
level).

Target Language: English RADNER-like sentences are
generated. RADNER sentences in another language can be
generated if another language is used as in corpus input.

Evaluation: The sentence curation of the solution set is
performed thanks to the PPL assessments of an LLM (GPT2).

5.2 Results Analysis
Table 3 summarizes the benchmark performance on the
Wikipedia articles dataset in 4-grams. The input corpus con-
tains roughly 70 million of 4-grams. Only 6961 solutions
are generated. For instance, with a corpus of only 3 mil-
lion 5-grams, a similar approach generates seven thousand
MNREAD sentences (see [Bonlarron et al., 2023]). Thus, as
expected, due to the various unary constraints and the me-
ter constraints, the RADNER sentences problem is harder.

2https://dumps.wikimedia.org/enwiki/20240201/

n nodes arcs mem (GB) time (m) sols

4 1682 3268 50 23 6961

Table 3: Number of arcs, nodes, solutions, gigabytes (GB), and min-
utes (m) for computing the MDD of RADNER-like sentences in 4-
grams.

Figure 5: Number of nodes for each layer of the MDD during the
solving. The x-axis is the layer number, and the y-axis is the number
of nodes in the layer (also called the width of the layer). Y-axis is
in logarithmic scale. N.B.: There is at least one ingoing arc for each
node in the MDD (except the root node).

Figure 5 further explains duration and memory consump-
tion. The MDD width quickly reaches several dozen thousand
nodes during the process. The impact of unary constraints
that enforce a comma for the variables X8 is dramatic (from
263469 nodes at layer 7 to 32738 nodes at layer 8).

In Table 4, some of the best and worst-ranked sentences
can be found. There is excellent discrimination between good
and poor sentences thanks to PPL sorting for extreme values.
Above 50 of PPL valuation sentences become poor semanti-
cally and then the PPL ranking is not helping so much. There-
fore, going further above is not advisable. Finally, a bigger
corpus is needed to ensure more variability in the generated
sentences.

6 Discussion

6.1 Creative Settings
Constraints First enables the integration of constraints related
to the layout and combination of tokens, pre-tokens (words),
or syllables. This makes it possible to directly model certain
problems encountered in artistic context. For instance, when
generating lyrics, constraints on sounds and rhymes could be
defined and included (e.g., rhythmic templates [Roy and Pa-
chet, 2013]). Furthermore, the curation phase can be simpli-
fied (resulting in fewer outputs) by integrating LLM scoring
earlier in the solving pipeline [Bonlarron and Régin, 2024].
This reduction in the number of outputs encourages the use of
interactive mode, providing quick feedback to enhance cre-
ativity.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Special Track on AI, the Arts and Creativity

7605



RADNER-like generated sentences

sentences PPL

But after only three months of operations, they had been making very little progress 28
With only about three years of operations, the school is divided into seven sections 31
With only about three years of operations, the school is divided into seven boroughs 32
With only about three years of operations, they had been making very little progress 32
With only about three years of occupation, the school is divided into seven sections 32
With only about three years of operations, the state was divided into seven boroughs 32
With only about three years of retirement, he was ranked second among active players 33
With only about three years of occupation, the group was divided into seven sections 33
With only about three years of opposition, the house was divided into seven sections 34
With only about three years of occupation, the group has expanded into other markets 34

His career over three years for conspiracy, and with the only other unlapped runners 749
His career over three years for conspiracy, to which the local area network standard 750
His career over three years for conspiracy, and with the station wagon body variants 769
The sagas describe three of the television, the left the country after Warsaw Chopin 794
The sagas describe three of the television, in the blood plasma within narrow limits 856
The sagas describe three of the television, and that the station wagon body variants 862
His career over three years for conspiracy, and that the only other unlapped runners 862
The sagas describe three of the television, the film was divided into Middle Harbour 862
His career over three years for conspiracy, and that the station wagon body variants 1217

Table 4: Radner-like sentences generated in 4-grams sorted accord-
ing to PPL

6.2 The Challenge of Intertwining NLP and CP
for Constrained Text Generation

Faced with a constrained text generation problem, machine
learning was not used due to the lack of available data, and
no existing approach that proved appropriate from a combi-
natorial point of view was adopted. Instead, the problem of
constrained text generation has been approached as a discrete
combinatorial optimization problem. However, this paradigm
choice raised a new challenge: how can certain constraints
concerning the text itself, such as the meaning of a sentence,
be expressed?

Why is this so difficult? Let us take a step back; in NLP,
the philosophy is to “act as a human.” Meanwhile, in CP, it
is “take a decision as a human”. Satisfying rules requires de-
cide as while making sense rather requires act as. Although
act as and decide as seem close, they are very far apart con-
ceptually and, in fact, when we observe the techniques used
to achieve them. This ambivalence of point of view to gen-
erate constrained text is revealed in a loose combination of
symbolic and statistical reasoning. This naturally pushes us
towards a symbolic approach to resolution (decide as for the
combinatorial aspect) but also forces us to look at more sta-
tistical considerations (act as to express what we do not know
how to model symbolically).

6.3 LLM Have the Attention but Not the Intention
At its core, meaning is rooted in intention. When we com-
municate, we have a specific purpose in mind, a message we
want to convey. This intention drives the selection of words
and the structure of our utterances. LLMs are attention-based.
They process vast amounts of text data but do not have a per-
sonal “I” behind these computations.

If there is no I, then there is no intention. It is not easy to
conceive the idea of meaning being a function of the inten-
tion of a machine. And yet, by taking inspiration from bits of
text written by humans (n-grams), do not we recover bits of
intentions? So we built sentences from bits of intention taken
from corpora, and finally selected the best ones based on a
democratic vote of general intention (distribution induced by
training corpus) calculated by an LLM. The general intention

does not necessarily make sense (because there is no I behind
a statistical distribution calculated from millions of texts ei-
ther). However, at least it has the merit of being intelligible.
The result is an illusion of meaning in the sentences selected.

6.4 Almost Bona-Fide Sentences for LLM
Evaluation?

The proposed method enables the generation of “unreason-
ably” constrained sentences, rendering them extremely un-
likely to occur naturally. This suggests that the model consis-
tently produces original sentences, effectively creating a new
type of benchmark for evaluating LLMs.

A crucial question arises: if these sentences are so unlikely,
does it imply that LLMs have never encountered them during
their training phase? If so, could this approach serve as a new
benchmark for assessing LLM performance? This question
can be further explored by examining the perplexity (PPL)
scoring of such a dataset. What should we make of a per-
fect sentence that receives a poor PPL score? Is it simply an
expected outlier, like any other sample in the testing phase
where the LLM assigns a poor PPL score to a perfectly valid
sentence? Or could it be a subtle indication that while LLMs
excel in well-structured scenarios driven by greedy decoding,
they are susceptible to being misled by almost well-formed
sentences? (With..., the school is divided into seven boroughs)

This observation raises a possibility: LLMs may excel at
processing typical language patterns but struggle to effec-
tively handle sentences that lie outside the boundaries of their
training data. This suggests that their ability to generalize
to unseen data may be limited, particularly when faced with
highly constrained structures.

Investigating the PPL scores of sentences generated using
this method could provide valuable insights into the strengths
and limitations of LLMs in dealing with unexpected linguistic
contexts. This approach could be further developed to create
more sophisticated benchmarks that challenge LLMs to han-
dle diverse and nuanced aspects of human language.

7 Conclusion
The paper presents Constraints First framework as a hybrid
modeling approach that loosely combines CP and NLP, to ex-
ploit the best of both worlds. Our comprehensive methodol-
ogy guarantees the satisfaction of an arbitrary list of prerequi-
sites while we use LLM expertise to select the best solutions.

Constraints First effectively solves a real-world problem,
The RADNER sentences problem, while raising a fundamen-
tal question: How can CP be integrated with NLP? By com-
bining symbolic and statistical approaches, we use CP to for-
mulate and solve the well-defined part of the problem and
LLM to deal with those we do not know how to solve and
formulate clearly. In the particular case of sentence genera-
tion, as it is unclear how to define symbolically a meaning
constraint, we rely on statistical computation to ensure the
intelligibility of a sentence.
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