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Abstract
Credit card fraud imposes significant costs on both
cardholders and issuing banks. Fraudsters of-
ten disguise their crimes, such as using legiti-
mate transactions through several benign users to
bypass anti-fraud detection. Existing graph neu-
ral network (GNN) models struggle with learn-
ing features of camouflaged, indirect multi-hop
transactions due to their inherent over-smoothing
issues in deep multi-layer aggregation, present-
ing a major challenge in detecting disguised re-
lationships. Therefore, in this paper, we propose
a novel High-order Graph Representation Learn-
ing model (HOGRL) to avoid incorporating exces-
sive noise during the multi-layer aggregation pro-
cess. In particular, HOGRL learns different or-
ders of pure representations directly from high-
order transaction graphs. We realize this goal
by effectively constructing high-order transaction
graphs first and then learning the pure representa-
tions of each order so that the model could iden-
tify fraudsters’ multi-hop indirect transactions via
multi-layer pure feature learning. In addition, we
introduce a mixture-of-expert attention mechanism
to automatically determine the importance of dif-
ferent orders for jointly optimizing fraud detection
performance. We conduct extensive experiments in
both the open source and real-world datasets, the
result demonstrates the significant improvements
of our proposed HOGRL compared with state-of-
the-art fraud detection baselines. HOGRL’s supe-
rior performance also proves its effectiveness in ad-
dressing high-order fraud camouflage criminals.

1 Introduction
Credit card fraud significantly harms the financial health of
individuals and businesses, has a major impact on the wider
economy, undermines trust in the financial system, and dis-
rupts the legal environment of society. Credit card fraud, typ-
ically conducted through credit or debit cards, refers to the
unauthorized use of funds in a transaction [Bhattacharyya et
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Figure 1: Node homophily distribution across datasets. Node ho-
mophily indicates the proportion of neighbors with the same label.

al., 2011]. According to the Nilson Report, card fraud losses
for issuers, merchants, and acquirers globally are projected to
total 397.40 billion over the next decade [Report, 2022]. Ob-
viously, credit card fraud has inflicted substantial economic
losses, and effective credit card fraud detection is crucial for
maintaining financial health and achieving the goals of De-
cent Work and Economic Growth.

Many models have been extensively researched and ana-
lyzed to address fraudulent transactions, ranging from rules-
based approaches [Sánchez et al., 2009; Seeja et al., 2014] to
machine learning methods [Burrell, 2016]. Later, deep learn-
ing models have been developed to uncover latent fraud pat-
terns [Fiore et al., 2019; Ma et al., 2023]. However, these
methods treat each fraud action as isolated, lacking the ca-
pability to identify more sophisticated and covert transac-
tions. Recently, graph neural networks (GNNs) have been
employed for credit card fraud detection [Wang et al., 2019;
Cheng et al., 2020; Zhang et al., 2024] and achieve remark-
able success as GNNs can more accurately infer the fraud
probability by capturing patterns within relational graphs.

However, current fraudsters often use multiple benign en-
tities as intermediaries for indirect transactions to disguise
themselves and avoid being identified as part of a fraud ring
[Liu et al., 2021]. This disguise behavior means that a fraud-
ster’s direct neighbors might predominantly be benign enti-
ties, challenging the assumption in GNNs that entities of sim-
ilar categories connect more frequently, which could compro-
mise the model’s effectiveness [Platonov et al., 2024]. As de-
picted in Figure 1, we analyzed the proportion of nodes con-
necting with neighbors of the same label (referred to as node
homophily) in three fraud datasets and one general dataset
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(Cora). Fraudulent nodes are mainly distributed around 0,
exhibiting low homophily, providing evidence for their de-
ceptive behavior, while benign nodes are primarily distributed
around 1, showing high homophily. Furthermore, within the
Cora dataset, different categories often display higher lev-
els of homophily, whereas in the fraud dataset, categories
of varying types exhibit completely different homophily dis-
tributions. Some studies have acknowledged the challenges
posed by the deceptive behavior of fraudsters [Liu et al.,
2020; Shi et al., 2022; Meng et al., 2023].

However, cunning fraudsters may engage in these indirect
transactions through four or even more unsuspecting benign
entities. The aforementioned methods require deeper network
layers to identify such multi-hop indirect transactions, but
increasing depth leads to the phenomenon of feature over-
smoothing [Li et al., 2018; Chien et al., 2021]. Although
some high-order GNNs [He et al., 2021; Wang and Zhang,
2022; Bo et al., 2021] have developed to alleviate the over-
smoothing issue, they mostly rely on mixed-order propaga-
tion. This entails the mixing of high-order and low-order
information before propagation to the central node [Feng et
al., 2020]. However, in disguise scenarios, these approaches
[Wang and Derr, 2021] face significant challenges as the
propagation characteristics inevitably lead to the blending of
high-order information with low-order noise, consequently
producing non-discriminative node representations.

Therefore, to address the issue of disguised fraud involv-
ing multi-hop indirect transactions, we propose a novel High-
order Graph Representation Learning model (HOGRL), aim-
ing to avoid introducing excessive noise during the multi-
layer aggregation process. Specifically, HOGRL directly
learns distinct orders of pure representations from high-order
transaction graphs. We achieve this by effectively decou-
pling neighbor nodes across different hierarchical levels to
construct high-order transaction graphs. Subsequently, we
learn the pure representations of each high-order graph, al-
lowing the model to recognize multi-hop indirect transactions
by means of multi-layer pure feature learning for identifying
concealed fraudsters. Additionally, we introduce mixture-
of-expert attention mechanism to automatically determine
the significance of different orders, thus jointly optimizing
fraud detection performance. Considering the potential loss
of original structural information in the constructed multi-
layer high-order transaction graphs, HOGRL combines em-
beddings from the original graph and multi-layer high-order
transaction graphs into the final node representation. Exten-
sive experiments conducted on a real credit card dataset and
two public fraud datasets demonstrate the superior perfor-
mance of HOGRL compared with state-of-the-art baselines.
Contributions of our work are summarized as follows:

• We propose a high-order graph representation learning
model to address the issue of disguised fraudsters en-
gaging in multi-hop indirect transactions.

• We effectively construct high-order transaction graphs
and directly learn distinct orders of pure representa-
tions from them. Additionally, we introduce mixture-of-
expert attention mechanism to automatically determine
the significance of different orders, thereby jointly opti-

mizing the learning process.
• We conduct extensive experiments to compare our

method with state-of-the-art baselines on both public
and real-world datasets. The results show the superiority
of our proposed HOGRL on fraud detection.

2 Related Works
2.1 GNN-based Fraud Detection
Several machine learning techniques have been proposed in
the literature to address the problem of fraud detection [Pan-
igrahi et al., 2009; Fu et al., 2016; Niu et al., 2020]. Re-
cently, techniques based on GNNs have been introduced for
fraud detection [Cheng et al., 2020; Xiang et al., 2023].
However, current fraudsters employ sophisticated disguises
to evade detection. Some studies have noticed similar chal-
lenges. CAREGNN [Dou et al., 2020] employs label-aware
similarity measurement and reinforcement learning modules
to select more informative neighbors. PCGNN [Liu et al.,
2021] employs balanced sampling and selective neighbor ag-
gregation for node representation. Some studies attribute it to
the heterogeneity of the graph [Liu et al., 2018; Cheng et al.,
2023]. For instance, H2-FDetector [Shi et al., 2022] leverages
homophilic and heterophilic interactions along with a special-
ized aggregation strategy and category prototypes to enhance
detection effectiveness. However, the mentioned approaches
struggle with oversmoothing in identifying multi-hop indi-
rect disguised transactions. In contrast, HOGRL learns pure
representations directly from high-order transaction graphs,
facilitating the recognition of multi-hop indirect disguised
transactions through layered configurations.

2.2 High-order Graph Neural Networks
Recently, scholars have started to tackle the problem of shal-
low layers in GNNs. [Li et al., 2019] adopted the ResNet
[He et al., 2016] concept from image processing, enabling
the construction of deep network structures with dozens of
layers in GNNs. GPRGNN [Chien et al., 2021] intro-
duces a novel Generalized PageRank architecture, assign-
ing learnable weights to enable deep learning capabilities in
the model. There are also some studies [He et al., 2021;
Wang and Zhang, 2022] that attempt alternative methods of
learning weights. MHGNN [Xue et al., 2020] expands the
receptive field by utilizing multi-hop node information, en-
abling the capture of nodes within multiple hops in a sin-
gle layer. FAGCN [Bo et al., 2021] introduces an adaptive
graph convolutional network with a self-gating mechanism to
simultaneously capture both low-order and high-order infor-
mation. AdaGNN [Dong et al., 2021] incorporates a train-
able filter design that spans across multiple layers to capture
the varying importance of different frequency components for
node representation learning. Although these methods theo-
retically detect fraud through high-order information, in prac-
tical applications, due to mixed-order propagation, integrat-
ing high-order multi-hop information can blend with low-
order noise. HOGRL, by decoupling neighbors at different
orders to construct high-order transaction graphs and directly
learning pure representations at different orders, avoids the
mixture of noise during the aggregation process.
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Figure 2: The illustration of the proposed HOGRL model architecture. It contains four components: (a) Graph construction based on original
transactions. We treat each layer of the GNN network as an expert network and dynamically allocate weights using a mixture-of-expert
attention mechanism. (b) Embedding generation based on multi-layer high-order graphs. (c) Graph neural network embedding generation
based on the original graph. (d) Detection network based on concatenated embeddings and joint optimization.

3 Methodology
As shown in Figure 2, our model is primarily divided into
four parts: the construction of the transaction graph, the
generation of node embeddings based on both multi-layered
high-order graphs and the original graph, and the detection
network. In this section, we first introduce relevant defini-
tions and the construction of the credit card fraud transaction
graph. Following that, we introduce how to construct high-
order transaction graphs and obtain pure high-order represen-
tations from them, as well as generate embeddings based on
the original graph. Finally, we introduce the detection net-
work and optimization strategy.

3.1 Preliminaries
Node homophily. The homophily of node [Pei et al., 2020] v
represents the proportion of its neighbors that have the same
label as v, which can be expressed as:

H(v) = |{yu == yv, u ∈ Nv}|
|Nv|

. (1)

In credit card fraud detection, we define the credit card
transaction graph as G = (V, E), where V = (v1, v2, . . . , vn)
denotes a set of credit card transactions (i.e, n = |V|, we
call it node), and E ⊂ V × V represents the set of m edges
(i.e, m = |E|) between transactions in V with eu,v denot-
ing that the transaction u and the transaction v have the same
merchant or receiver, and X ∈ Rn×d denotes the feature ma-
trix, where each row xi ∈ Rd represents the feature of vector
of the node vi and d is the dimension of node features. We
define Y = {y1, . . . , yn} as the set of fraud labels, where
yi ∈ {0, 1} with 0 representing normal and 1 representing
fraud. The topological information of the G is described by
the adjacency matrix A ∈ Rn×n, where Au,v = 1 if an
edge exists between the node u and the node v. Nv is the

neighborhood node set of the center node v, which is given
by Nv = {u | eu,v ∈ E}. We extend this definition by using
N l

v to denote the l-th layer neighborhood nodes of the center
node v, which includes all nodes that can be reached from the
center node v in exactly l hops. For each credit card record,
we aim to infer the possibility of whether it is a fraud event,
and our task can be formulated a node classification.

3.2 High-Order Graphs Generation
The fundamental assumption of GNNs is that leveraging
neighborhood information through feature propagation and
aggregation can enhance the predictive performance of the
central node [Xu et al., 2018]. This assumption is based on
the premise that connected nodes tend to share similar fea-
tures and usually belong to the same category [Pei et al.,
2020; Paszke et al., 2019]. However, in scenarios involving
camouflage, the fraudulent nodes’ indirect transaction dis-
guises may result in low-order neighbors of fraudsters being
multiple benign nodes, which contradicts the premise. This
implies the need to introduce higher-order fraudulent infor-
mation for identifying disguised fraudsters.

Nevertheless, existing high-order GNNs mostly rely on
mixed-order propagation, where while introducing higher-
order information, all layers of information are mixed and
propagated to the central node. This can lead to contamina-
tion of high-order effective information by low-order noise
information. An intuitive idea is to allow high-order infor-
mation to be directly conveyed to the central node without
mixing, ensuring purer higher-order information. Therefore,
we propose decoupling neighbors at different orders to con-
struct high-order transaction graphs. The high-order transac-
tion graph for the l-th layer only includes neighboring nodes
that can be reached within at least l hops. The adjacency ma-
trix of the high-order transaction graph for the l-th layer can
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be represented as follows:

Sl = Al −Al−1 + I, (2)

where A0 = I is the identity matrix. Nv(S
l) represents the

set of neighboring nodes of node v under the adjacency ma-
trix Sl, which can be represented as:

Nv

(
Sl
)
=
(
N l

v\
(
N l

v ∩N l−1
v

))
∪ {v} (3)

3.3 Graph Representation Learning
For the l-th layer high-order transaction graph, the aggrega-
tion process can be represented as:

hl
′

= ReLU
(
Sl ·X ·Wl

′)
, (4)

where Wl
′

is the parameter matrix of the l-th layer high-order
transaction graph. Due to the varying contributions of each
layer’s high-order transaction graph to the final node embed-
dings, we employ a mixture-of-expert attention mechanism
to automatically determine the importance of different layer
high-order transaction graphs. Specifically, we treat each
layer of the graph neural network (Eq(4)), as an individual
expert network. The intermediate representations generated
by these layers are considered the outputs of the expert net-
works. A gating network is then utilized to distribute weights
across the outputs from each expert network. For the high-
order transaction graph at the l-th layer, the weight allocated
can be articulated as follows:

fl

(
hl
′)

= wT
l · hl

′

+ bl (5)

αl =
exp

(
fl

(
hl
′))

∑L
k exp

(
fk

(
hk
′
)) , (6)

where wl is the weight vector for the l-th expert from the gat-
ing network, and be is the bias term. It’s important to note
that while the design of the gating network’s weights is simi-
lar to traditional attention mechanisms, its goal is to dynami-
cally adjust the influence of each expert network’s output on
the final output, aligning with the central idea of a mixture-
of-experts. Then, the embeddings generated based on multi-
layer high-order graphs can be represented as:

h
′
=

L∑
l=1

αlhl
′

. (7)

The mixture-of-expert attention mechanism enables the
model to adaptively select more informative hierarchical
features, thereby improving the overall performance of the
model. Then, we delve into the process of generating embed-
dings from the original graph. In the context of the original
graph, we adopt the mean operator as the aggregator within
the GNN, which is represented as follows:

hl
v = ReLU

(
Wl ·

(
hl−1
v ⊕ hl

Nv

))
, (8)

hl
Nv

= MEAN
({

hl−1
u , ∀u ∈ Nv

})
, (9)

where h0
v = xv , the Wl ∈ Rdl×dl−1 is the l-th parameter

matrix and ⊕ denotes the concat operation. We combine the
learned hL

v (represented it as hv for simplicity.) with h
′

v as
the last representation:

zv = hv + γh
′

v, (10)

where γ is a hyperparameter that determines the weight
of embeddings generated based on multi-layer high-order
graphs. Integrating embeddings generated from the original
graph with multi-layer high-order graphs is based on the fol-
lowing concept: Although the constructed high-order graphs
can directly transmit high-order information to the central
node, they lose the original multi-hop dependencies [Wang
and Derr, 2021]. Specifically, the l-th layer high-order graph
includes connections reached exactly within at least l hops,
neglecting intermediate nodal entities. By integrating embed-
dings derived from the original graph, it becomes feasible to
preserve multi-hop dependencies. This strategy enhances in-
formation propagation efficiency and maintains critical path-
way dependencies within the network’s framework, thereby
enriching the insight available for advanced network struc-
ture analysis and understanding.

For a multi-relational graph G = (V,E), where E =
{E1, . . . , ER} is the edge set ofR relations, we perform graph
propagation separately for each relation and concatenate the
embeddings. This can be represented as:

zv = (z(1)v ⊕ z(2)v ⊕ · · · ⊕ z(R)
v ). (11)

3.4 Detection Network and Optimization
In the downstream detection task, we utilize a multi-layer
perceptron (MLP) as the detection network to infer the fraud
probability as:

pv = MLP(zv). (12)
For the node classification task, we adopt the cross-entropy

loss function for optimization, which can be formulated as:

Lgnn = −
∑
v∈V

[yv log pv + (1− yv) log (1− pv)] , (13)

where yv ∈ Y is the label of the node v. The proposed
method can be optimized through the standard stochastic gra-
dient descent-based algorithms. In this paper, we used the
Adam optimizer [Kingma and Ba, 2015] to learn the parame-
ters. We set the initial learning rate to 5×10−3 and the weight
decay to 5× 10−5 by default.

3.5 Complexity Analysis
Compared to traditional GCNs, the additional computational
burden in our approach primarily stems from generating node
intermediate representations based on high-order transaction
graphs. There is no need to calculateAl. We can calculate Sl ·
X with right-to-left multiplication. The calculation process
can be represented as follows:

Sl ·X = (Al −Al−1 + I) ·X
= AlX−Al−1X+X

= (A(A(. . . (A︸ ︷︷ ︸
l

·X))) + (A(A(. . . (A︸ ︷︷ ︸
l−1

·X))) +X

(14)
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Dataset #Node Relations #Relations

YelpChi 45,954
R-U-R 49,315
R-S-R 3,402,743
R-T-R 573,616

Amazon 11,944
U-P-U 175,608
U-S-U 3,566,479
U-V-U 1,036,737

CCFD 1,820,840 - 31,619,440

Table 1: Statistics of three Datasets.

If we store A as a sparse matrix with m non-zero entries,
then the embeddings generated by the l-th order transaction
graph require O(l ×m × d) computational time, where d is
the feature dimension of X. Under the realistic assumptions
that l � m and d � m, running an L-order layer requires
O(Lm) computational time. This matches the computational
complexity of the traditional GCN.

4 Experiments
4.1 Experimental Settings
Datasets. We have collected fraudulent transaction data from
a major commercial bank, including real-world credit card
transaction records, involving a total of 476, 124 different
users. The ground truth labels are based on consumer re-
ports, verified by financial domain experts. Transactions re-
ported as fraud or confirmed by experts were marked as 1,
while non-fraudulent transactions were marked as 0. We re-
fer to this dataset as CCFD (Credit Card Fraud Detection
Dataset). Besides, we also experimented on two public fraud
detection datasets. The YelpChi graph dataset [Rayana and
Akoglu, 2015] contains a selection of hotel and restaurant re-
views on Yelp. There are three edge types in the graph, in-
cluding R-U-R (the reviews posted by the same user), R-S-R
(the reviews under the same product with the same star rat-
ing), and R-T-R (the reviews under the same product posted
in the same month). The Amazon graph dataset [McAuley
and Leskovec, 2013] includes product reviews of musical in-
struments. There are also three relations: U-P-U (users re-
viewing at least one same product), U-S-U (users having at
least one same star rating within one week), and U-V-U (users
with top-5% mutual review TF-IDF similarities). CCFD is
a single-relation graph. Some basic statistics of three fraud
datasets are shown in Table 1.
Compared Baselines. We compare with several state-of-
the-art GNN-based methods to verify the effectiveness of
HOGRL: GCN [Kipf and Welling, 2016], GAT [?], Graph-
sage [Hamilton et al., 2017], GPRGNN [Chien et al., 2021],
FAGCN [Bo et al., 2021], GraphConsis [Liu et al., 2020],
CARE-GNN [Dou et al., 2020], PC-GNN [Liu et al., 2021],
H2-FDetector [Shi et al., 2022], GTAN [Xiang et al., 2023],
BWGNN [Tang et al., 2022].
Metrics and Implementation. For class imbalance classifi-
cation, the evaluation metrics should have no bias to any class
[Luque et al., 2019]. Therefore, We evaluate the experimen-
tal results on three fraud datasets by the area under the ROC
curve (AUC), macro average of F1-macro score (F1-macro),
and GMean (Geometric Mean).

For all baselines, if the original hyperparameters are pro-
vided, we use them. If not, the hyper-parameter search space
is: learning rate in {0.01, 0.05, 0.001}, dropout in {0.3, 0.4,
0.5, 0.6}, weight decay in {10−3, 10−4, 10−5} hidden di-
mension in {16, 32, 64}. For high-order GNNs, we explore
the number of layers {1, 2, ... , 9}. For HOGRL, we set the
batch size to 2048 for yelp and CCFD, 256 for amazon, the
dropout ratio to 0.3, the embedding dimension to 64 (hv and
hv

′
), the number of layers to 7, and the maxinum number of

epochs is set to 1000. The train, val and test are set to be 40%,
40%, 20% respectively. We train and test on the validation set
every 10 times, and select the model that performs best on the
validation set to test after training ends. Our method is imple-
mented using PyTorch 1.12.1 with CUDA 11.2 and Python
3.7 as the backend. The model is trained on a server with two
32GB NVIDIA Tesla V100 GPUs.

4.2 Fraud Detection Performance
We repeat the experiments ten times for each method and
show the average performance in Table 2. ∗ denotes that the
improvements are statistically signifcant for p < 0.01 accord-
ing to the paired t-test.

The first three rows of Table 2 report the results of some
classic graph-based methods, including GCN, GAT, Graph-
Sage. It is clear that the results of GCN and GAT not sat-
isfactory, showing the limitation of traditional GNNs-based
model in addressing the complex fraud patterns. Graph-
Sage improves performance, attributed to its suitability for
large graphs. FAGCN and GPRGNN can capture higher-
order information, thus performing well. They even outper-
form all graph-based fraud detection methods on the CCFD
dataset, further highlighting the importance of higher-order
information in identifying disguised fraudsters. The graph-
based fraud detection methods (GraphConsis, CARE-GNN,
PC-GNN, H2-FDetector) focus on the deceptive behaviors of
fraudsters, but their models still perform lower than HOGRL
due to their shallow model limitations. The comparison with
the semi-supervised model GTAN is detailed in Section 4.4.

BWGNN excels by employing customized spectral filters
to capture effective information of fraudsters, making it the
state-of-the-art method for graph-based anomaly detection,
while HOGRL outperforms it significantly. On the YelpChi
dataset, compared to BWGNN, HOGRL achieves improve-
ments of 8.9% in F1-macro, 6.9% in AUC, and 6.4% in
GMean. It’s worth noting that popular fraud detection models
perform poorly on CCFD, mainly due to the presence of com-
plex fraudulent techniques in real-world scenarios, affecting
fraud models’ performance. However, our proposed HOGRL
outperforms other models on this dataset. We achieves the
best results with an improvement of 5.4% in AUC compared
to the BWGNN, and a 9.5% improvement in GMean score.
Compared to high-order GNNs, HOGRL shows an improve-
ment of 1.9% in AUC score, 3.6% in F1 Score, and 2.9% in
GMean score at least.

4.3 Ablation Study
To validate the effectiveness of constructing pure represen-
tations using high-order graphs, we designed HOGRL/s, a
model that generates embeddings solely based on the original
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Model YelpChi Amazon CCFD
F1-macro AUC GMean F1-macro AUC GMean F1-macro AUC GMean

Traditional
GCN 0.5735 0.6128 0.5752 0.6438 0.8422 0.7793 0.4873 0.5236 0.5192
GAT 0.5019 0.6171 0.2072 0.5089 0.8503 0.2045 0.4958 0.5405 0.6232

GraphSage 0.6548 0.8351 0.7597 0.7849 0.9519 0.9084 0.5104 0.5444 0.5011

High-order FAGCN 0.6256 0.7583 0.6667 0.8719 0.9644 0.8898 0.6621 0.7444 0.6545
GPRGNN 0.6086 0.7503 0.6954 0.8023 0.9546 0.8825 0.5974 0.7389 0.6587

Fraud
Detection

GraphConsis 0.5673 0.6985 0.6182 0.7378 0.8836 0.7391 0.6506 0.6053 0.4626
CARE-GNN 0.6332 0.7619 0.6791 0.8946 0.9067 0.8962 0.5771 0.6623 0.5728

PC-GNN 0.6300 0.7987 0.7160 0.8999 0.9585 0.8995 0.6077 0.6795 0.5929
H2-FDetector 0.6944 0.8877 0.8160 0.8470 0.9711 0.9223 0.6531 0.6739 0.6163

GTAN 0.7788 0.9141 0.8821 0.9213 0.9621 0.9081 0.6913 0.7218 0.6291
BWGNN 0.7891 0.9170 0.8791 0.9191 0.9759 0.9195 0.6856 0.7195 0.6193

Ours HOGRL 0.8595* 0.9808* 0.9361* 0.9198* 0.9800* 0.9438* 0.6861 0.7590* 0.6784*

Table 2: Fraud detection performance on three datasets compared with popular benchmark methods.

graph. We chose FAGCN and GPRGNN as controls to ex-
plore HOGRL’s ability to capture high-order information. We
visualize the performance of each model using layers from
up to 1 to up to 9 in Figure 3. It is evident that HOGRL/s
achieves its highest performance on the Yelp dataset when
L=3, and on the CCFD dataset when L=2. This pattern is
consistent with most GNNs, where an increase in the number
of layers beyond a certain point leads to a decline in perfor-
mance. The reason for this decline is attributed to the over-
smoothing caused by the coupling of multiple features. How-
ever, HOGRL directly generates pure higher-order represen-
tations from high-order graphs, alleviating the oversmoothing
caused by feature coupling. It is observable that on the Yelp
dataset, as the number of layers increases to 6, HOGRL sig-
nificantly outperforms HOGRL/s in both AUC and Gmean
metrics. On the CCFD dataset, a clear difference between
the two is evident when the number of layers reaches 3. As
the number of layers continues to increase, the performance
of HOGRL/s steadily declines, whereas the performance of
HOGRL remains stable and peaks at L=9. We set L to 7 due
to the computational complexity.

In comparison with higher-order GNNs, it is observed that
the performance of FAGCN and GPRGNN on the Yelp and
CCFD datasets exhibits significant fluctuations with an in-
crease in the number of network layers, highlighting their
lack of stability. Notably, on the Yelp dataset, HOGRL signif-
icantly outperforms FAGCN and GPRGNN in terms of AUC
and GMean metrics. On the CCFD dataset, except for when
the layer count L is 1, where HOGRL’s AUC performance is
slightly inferior to FAGCN, in all other cases it surpasses both
FAGCN and GPRGNN. These results further emphasize the
substantial advantage of HOGRL in capturing higher-order
information, thereby better identifying disguised fraudsters.

4.4 Parameter Sensitivity
We study the model parameter sensitivity by varying the hid-
den dimension, the weight γ on the yelp dataset. Figure 4 (a)
shows that when we increase the hidden dimensions from 16
to 128, our model maintains stable model performance and

Figure 3: Results of models with different layers.

reaches the performance peak at 64. As shown in fig4 (b),
We varied the weight hyperparameter γ from 0 to 2. Perfor-
mance reached its peak when γ=1. When the weight was 0, it
corresponds to HOGRL/s. When the weight γ varies between
0.2 and 2, the performance of our proposed HOGRL model
shows no significant changes.

To further compare the learning capabilities of the models,
we adjusted the proportion of the training set from 10% to
90%, with the remaining nodes equally divided between the
validation set and the test set. For the sake of simplicity in our
illustrations, we selected the state-of-the-art baseline model
BWGNN and the superior semi-supervised learning model
GTAN, and conducted experiments on the Yelp dataset. The
results of these experiments are shown in Figure 4 (c) and
(d). It can be observed that, regardless of the training ratio,
HOGRL consistently performs well. Even with limited data
(10% training ratio), HOGRL still significantly outperforms
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(a) Hidden dimension (b) The weight γ

(c) Train Ratio (d) Train Ratio

Figure 4: Parameter sensitivity analysis with respect to (a) the hid-
den dimension; (b) the weight γ, (c) and (d) the train ratio.

(a) Traditional (b) Ours

Figure 5: Homophily density distribution with different layers. The
left side illustrates the homophily statistics of the traditional mixed-
order propagation process, while the right side shows the homophily
statistics of the high-order graphs proposed by HOGRL.

both BWGNN and GTAN.

4.5 Interpretability Exploration
We visualize the homophily density distribution of fraudulent
nodes at different layers on yelp dataset in Figure 5. It can be
observed that as the number of layers increases from 2 to 5,
the peak density in the left figure remains nearly unchanged,
whereas the peak density in the right figure shifts to the right.
This indicates that the constructed high-order graph exhibits
higher homophily. As the number of layers exceeds 6, the
peak density on the left remains nearly constant, and the peak
density on the left figure is at least twice that of the right fig-
ure. This demonstrates that the high-order graph constructed
by HOGRL enhances the homophily of fraudulent nodes, re-
ducing noise during the aggregation of high-order informa-
tion. This is also the reason why HOGRL significantly out-
performs HOGRL/s starting from L=6 layers.

We also conducted a visualization analysis of node em-
beddings on the Yelp dataset. To visually compare the per-
formance of different models, we employed the t-SNE tech-

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6: Embedding visualization of different models. The red and
blue nodes represent fraudsters and benign entities respectively.

nique [van der Maaten and Hinton, 2008] to map the out-
puts from various models, just before their final layers, into
a two-dimensional space for dimensionality reduction. This
visualization method enabled us to clearly observe and an-
alyze differences in the outputs of the models. The results,
displayed in Figure 6, show fraud nodes in red and benign
nodes in blue, thus highlighting the distinction between the
types of nodes. (a)-(k) represent the baseline models as listed
in Table 2 in sequential order, and (l) depicts the visualiza-
tion outcome for HOGRL. Compared to other models, the
visualization of HOGRL distinctly shows a more effective
separation between fraudulent and benign nodes. This im-
provement in discriminative ability is attributed to HOGRL
directly learning distinct orders of pure representations from
high-order transaction graphs, resulting in embeddings with
greater distinction. For instance, compared to the BWGNN
model, HOGRL demonstrates a notably reduced overlap be-
tween the two types of nodes.

5 Conclusion

In this paper, we propose a novel high-order graph represen-
tation learning model to reduce noise during multi-layer ag-
gregation and identify disguised fraudsters involved in multi-
hop indirect transactions. Specifically, we construct high-
order transaction graphs and directly learn pure representa-
tions from them. Additionally, we introduce a mixture-of-
expert attention mechanism to determine the significance of
different orders. The comprehensive experiments demon-
strated the superiority of HOGRL compared with other base-
lines. The outstanding performance of HOGRL demonstrates
its effectiveness in addressing high-order fraud camouflage
crimes, maintaining the stability of the financial system, and
positively influencing economic growth.
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