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Abstract
Sustainable cities requires high-quality commu-
nity management and surveillance analytics, which
are supported by video anomaly detection tech-
niques. However, mainstream video anomaly de-
tection techniques still require manually labeled
data and do not apply to real-world massive videos.
Without labeling, unsupervised video anomaly de-
tection (UVAD) is challenged by the problem of
pseudo-labeled noise and the openness of anomaly
detection. In response, a diffusion-based latent pat-
tern learning UVAD framework is proposed, called
DiffVAD. The method learns potential patterns by
generating different patterns of the same event
through diffusion models. The detection of anoma-
lies is realized by evaluating the pattern distribu-
tion. The different patterns of normal events are
diverse but correlated, while the different patterns
of abnormal events are more diffuse. This manner
of detection is equally effective for unseen normal
events in the training set. In addition, we design
a refinement strategy for pseudo-labels to mitigate
the effects of the noise problem. Extensive exper-
iments on six benchmark datasets demonstrate the
design’s promising generalization ability and high
efficiency. Specifically, DiffVAD obtains an AUC
score of 81.9% on the ShanghaiTech dataset.

1 Introduction
The development of sustainable cities requires high-quality
community management, which is strongly supported by
surveillance technology. Through surveillance systems, com-
munity managers can monitor activities in their neighbor-
hoods and effectively ensure that normal activities are tak-
ing place. To reduce the cost of human supervision, Video
Anomaly Detection (VAD), which is designed to automati-
cally detect abnormal activities [Wu et al., 2021], has gained
increasing attention.

In the real world, anomalous events are rare and uncon-
strained, which makes collecting and labeling enough anoma-
lous events nearly impossible. Accordingly, most previous
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Figure 1: Different supervised settings for video anomaly detection.
From left to right: unsupervised setting without any training data
annotation, fully supervised setting requiring frame-level annotation
in the training data, weakly supervised setting requiring video-level
annotation, and OCC supervised setting requiring only normal data
(frame-level). The labeling requirements are illustrated with the
real-world dataset UCF-Crime.

methods detect anomalies in a weakly supervised setting that
learns with video-level labels [Sultani et al., 2018; Tian et
al., 2021], or One-Class Classification (OCC) supervised set-
ting that only learns from normal data [Wang et al., 2022;
Chen et al., 2022]. The OCC supervised VAD refers to model
the distribution of normal pattern with normal data, labeling
the events that deviate from the model as anomalous events.
However, labeling videos or labeling training sets as purely
normal events is still labor-intensive and costly, especially
when dealing with massive amounts of surveillance video in
the real world. To alleviate this problem, a natural idea is
to perform Unsupervised VAD (UVAD) which aims to de-
tect anomalies directly from completely unlabeled videos as
shown in Figure 1. Several recent works [Giorno et al., 2016;
Pang et al., 2020; Yu et al., 2022; Zaheer et al., 2022] have
explored this approach. Figure 1 illustrates the different su-
pervised settings in VAD.

Despite the progress made, two prominent limitations con-
strain further improvements in the performance of existing
UVAD methods. (1) Representative methods [Yu et al., 2022;
Zaheer et al., 2022] generate pseudo-labels by reconstruction
or simple classification, and the model learns the distribution
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Figure 2: DiffVAD detects anomalies by generating and statistically
summarizing latent patterns. Conditioned on history frames (left
frames). The blue (top) and red (bottom) distributions represent nor-
mal and abnormal generations (mapped by t-SNE 2d). In the dis-
tribution of patterns, the red dots are the actual real futures (right
frames) corresponding to the history frame condition. In the normal
case, the real future lies within a dominant distribution pattern and
the generated latent patterns are biased toward ground truth. In the
anomalous case (red boxes mark running and jumping anomalies),
the real future lies at the edge of the distribution pattern, generating
diverse but scattered latent patterns.

of normal patterns under the supervision of pseudo-labels.
However, the noise in the pseudo-labels (incorrect pseudo-
labels) limits the effectiveness of model. (2) Existing UVAD
methods attempt to overfit the training set for learning normal
patterns, ignoring the fact that unsupervised anomaly detec-
tion is essentially an open-set problem. In the unsupervised
setting, the training set cannot include all normal patterns,
thus only fitting the training set will make the model treat the
unseen normal events as abnormal events.

Inspired by recent studies [de Morais et al., 2019; Chen
et al., 2022; Flaborea et al., 2023] of the distribution of fea-
tures of abnormal skeletal anomalies, we explore the distri-
bution of latent patterns of abnormal and normal events. As
shown in Figure 2, we find distributional difference in the la-
tent patterns. In the case of normality, different patterns of
the same event are varied but correlated, i.e., they are biased
towards the ground truth of what actually happens. In the
case of abnormality, different patterns of the same event are
diverse but not correlated. The distinctions outlined above of-
fer the potential to identify diverse normality and abnormal-
ity within the real world. Nevertheless, exploiting this dis-
crepancy requires the generation of multiple diverse patterns
for the same occurrence. Introducing diffusion models [Sohl-
Dickstein et al., 2015; Ho et al., 2020] into UVAD might ful-
fill this requirement. Diffusion models are characterized by
minor modifications and corrections to the generated samples
at each step, thus having the ability to learn multiple latent
patterns or forms of the same action or event.

To this end, we propose a latent pattern learning framework
for UVAD based on diffusion models, called DiffVAD, which
comprehensively consider the diversity of normal and abnor-
mal patterns. Given a video sequence that is either normal
or abnormal, the video frames are corrupted to random noise,

after which multiple patterns of the corrupted frames are re-
constructed based on the clean input frame in the past. Diff-
VAD distinguishes between normal and abnormal by compar-
ing the distribution of different patterns, with different normal
patterns for the same event tending to be more correlated. To
enhance this correlation, we condition the reconstruction of
damaged frames on past motion features. Furthermore, we re-
fine the pseudo-labels based on knowledge aggregation from
neighbours sample to reduce the effect of noise. Since noise
in pseudo-labels is unavoidable, we evaluate the reliability of
the refined pseudo-labels to penalize unreliable pseudo-labels
to guide learning through reliable pseudo-labels.

The main contributions of the article are as follows:
• A diffusion-based latent pattern UVAD learning frame-

work is proposed for sustainable cities. We exploits the
motion conditioned diffusion model to generate multiple
patterns of the same event to account for the openness of
anomaly detection.

• A pseudo-label refinement strategy based on knowledge
aggregation is proposed to alleviate the effect of noise.
We weight the loss based on the reliability of pseudo-
labels to train the model with reliable pseudo-labels.

• Extensive experiments on six benchmark datasets show
that our method achieves state-of-the-art performance
and even outperforms the OCC methods.

2 Related Work
2.1 Video Anomaly Detection
VAD as One-Class Classification. Most previous work con-
siders VAD as one class classification task due to the diffi-
culty of collecting and labeling abnormal samples. The detec-
tion model learns the feature distribution of the normal pat-
tern only from the normal samples during training, and devi-
ation points that do not conform to the model representation
are labeled as anomalies during detection. Reconstruction-
based methods [Lv et al., 2021] and prediction-based meth-
ods [Liu et al., 2018a; Wang et al., 2022] are the two main-
stream methods. These two methods typically use autoen-
coders (AEs) [Hasan et al., 2016], memory-augmented AEs
[Gong et al., 2019; Lv et al., 2021] to reconstruct predict
frames so that frames with large reconstruction or prediction
errors are recognized as anomalies.
Weakly Supervised VAD. Unlike OCC methods that require
frame-level annotations, some work [Sultani et al., 2018;
Feng et al., 2021; Tian et al., 2021; Wu et al., 2021;
Zhang et al., 2023] has attempted to train models with video-
level annotations. Video-level labels are provided in such a
way that normal labeled videos are completely normal, while
abnormal labeled videos contain both normal and abnormal
content. Mainstream weakly supervised methods [Feng et al.,
2021; Lv et al., 2023] detect video-level anomalies through
multi-instance learning.
Unsupervised VAD. To address the need for detection of
large amounts of unlabeled surveillance video in the real
world, limited recent work [Giorno et al., 2016; Pang et
al., 2020; Yu et al., 2022; Zaheer et al., 2022] has explored
UVAD. For instance, Del et al. [Giorno et al., 2016] pioneer

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Special Track on AI for Good

7573



Reverse Diffusion

Unlabeled Input

Pseudo-Labels Refinement

Unreliable

Reliable

Nearest Neighbours 
Knowledge Aggregation

Motion Conditioning

Frame 𝐼1, 𝐼2, … , 𝐼𝑘

3D Conv

𝜏𝜃

Timestep 𝑡

Latent Pattern Generation

Forward Diffusion

𝐼k+1, 𝐼𝑘+2, … , 𝐼𝑁
at timestep 0 

𝐼k+1, 𝐼𝑘+2, … , 𝐼𝑁
at timestep t

…

Random
noise

መ𝐼k+1, መ𝐼𝑘+2, … , መ𝐼𝑁
1 መ𝐼k+1, መ𝐼k+2, … , መ𝐼𝑁

2

መ𝐼k+1, መ𝐼𝑘+2, … , መ𝐼𝑁
𝑚 −1

Generated Multiple Patterns

…

መ𝐼k+1, መ𝐼𝑘+2, … , መ𝐼𝑁
𝑚

Pseudo
Labels

Figure 3: DiffVAD framework overview. The unlabeled input frames are first added with random noise step by step in a forward diffusion
process and then the noisy video frames are fed into the generator to perform the reverse process. In the reverse diffusion process, the
generator denoises the noisy video and generates m latent patterns based on the motion features of the history frames. For the multiple
patterns generated, we compute the distance and mean of each pattern relative to the ground truth. Pseudo-labels are assigned based on the
distribution of latent patterns, with more discrete distributions representing that the frame is more likely to be anomalous. Finally before
starting the next round of training, we refine the generated pseudo-labels to make them more reliable. Best viewed in color.

the exploration of UVAD by detecting dramatic changes in
the anomalies. Pang et al. [Pang et al., 2020] obtain pre-
liminary results by using pre-trained DNNs then refine the
results by performing two classes of ordered regression in
a self-training manner. Yu et al. [Yu et al., 2022] propose
the normality advantage and extend the reconstruction from
OCC supervised VAD to UVAD. Zaheer et al. [Zaheer et al.,
2022] proposes a cooperative learning framework to generate
pseudo-labels for self-training of detection models.

Although the above methods can detect anomalies from
unlabeled data through self-training and pseudo-labeling, the
noise in the pseudo-labels limits the improvement of perfor-
mance. Meanwhile, these methods fit the distribution of the
training set without considering the unseen normal patterns.
In contrast to the above methods, we refine the pseudo-labels
and estimate their uncertainty to eliminate noise. Further-
more, diffusion model [Ho et al., 2020] is introduced to ac-
count for the diversity of normal and abnormal patterns.

2.2 Diffusion Model
Recently, diffusion models [Ho et al., 2020] have achieved
superior performance in many generative tasks, outperform-
ing GANs [Kaneko and Harada, 2020] and AEs [Kim, 2022].
Diffusion models have also found many applications in com-
puter vision tasks such as image restoration [Song et al.,
2021], image super-resolution [Metzger et al., 2023], and im-
age editing [Yang et al., 2023a]. For VAD, Yan et al. [Yan
et al., 2023] introduces diffusion models to improve anomaly
detection. They utilizes the robustness of the diffusion model
to noise to predict and reconstruct video frames in feature
space without resorting to other auxiliary networks. How-

ever, this OCC work is only a single-pattern reconstruction
of events and is not applicable to UVAD with openness. The
latest work [Flaborea et al., 2023] utilizes diffusion models to
generate unbounded skeletal motion to detect anomalies, but
its applicability is limited to human-related anomalies.

Inspired by generating unbounded data [Flaborea et al.,
2023], for unlabeled videos, our work covers multiple pat-
terns of normal and anomalies by latent pattern learning
of diffusion models. Differently, our approach learns un-
bounded patterns rather than being limited to skeletal motion.
In particular, to enable the model to accurately learn abnormal
and normal from unlabeled data, we propose a pseudo-label
refinement strategy to alleviate the effect of noise.

3 Methodology
3.1 Overall Framework
Figure 3 depicts the overall architecture of proposed frame-
work. The diffusion-based latent pattern learning framework
for UVAD consists of a diffusion-based generator (perform-
ing forward diffusion process and reverse diffusion process)
and pseudo-label refinement module. In addition, we intro-
duce motion conditions in the generator network to help the
network generate more relevant multiple patterns for the in-
put frames. Specifically, we condition on the motion features
of the history frame sequence that preceded the input frame
sequence. Pseudo-labels for input frames can be generated by
observing the distribution of generated patterns (counting the
distances of potential patterns from the ground truth); discrete
distributions are more likely to be anomalous. The whole
framework is trained under the supervision of pseudo-labels.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Special Track on AI for Good

7574



3.2 Generation of Latent Patterns
We define a diffusion-based generative network that learns to
reconstruct multiple latent patterns for corrupted future frame
sequences under the condition of clean past frame sequences.

Let I = {i1, . . . , iN} be a sequence belonging to N
time-continuous frames. We divide X into two parts: a se-
quence of past history frames I1:k and a future sequence
Ik+1:N with k ∈ {1, . . . , N}.

In the forward process q, we corrupt the sequence of future
video frames by adding random noise. We sample a random
noise map εk+1:N from the distribution N (0, I) and add it to
Ik+1:N to randomly destroy its pixels.

The extent of added noise depends on the variance sched-
uler βt ∈ (0, 1) and the diffusion time step t. As a result, q at
each diffusion time step t makes it=T

n indistinguishable from
a noisy frame with random sampling.

The reverse process pθ performs denoising of the noisy
frames and estimates the noise map εk+1:N through the U-net
structure εθ. The architecture of the main diffusion model is
the neural network represented by the purple blocks in Figure
3, tasked with estimating the noise in the sequence of input
frames and consequently generating multiple latent patterns.
Our diffusion network of latent patterns gradually shrinks and
then expands (reconstructs) the spatial dimension of the input
frame sequence. To take into account the temporal dimen-
sion of the input sequence, we construct a U-Net with the
spatio-temporally separable GCN (STS-GCN) layer proposed
in [Sofianos et al., 2021]. In detail, the U-Net receives the in-
put Ik+1:N and the motion time conditioning signal h+ τθ(t),
which provides the network with the diffusion time step and
encoded features of I1:k. Furthermore, to align the dimension
of this conditioning signal with the dimension of the network
layer, the former is fed to the embedding layer, which projects
it to the correct vector space. This embedded conditioning
signal is then fed to each STS-GCN layer.

Formally, to obtain an approximation of εk+1:N , we define
the approximation objective conditioned on the diffusion time
step t and the feature embedding h of I1:k. We define the
approximation objective as [Flaborea et al., 2023]:

Lappr = Et,I,ε

[∥∥ε− εθ
(
It1:k, t, h

)∥∥] . (1)

We smooth Lappr as follows:

Lsmooth =

{
0.5 · (Lappr )

2 if |Lappr | < 1
|Lappr | − 0.5 otherwise

(2)

Given a random noise sample z and consider it as the
start for generating latent patterns IP=m

k+1;N of the input frame
sequence. P = m represents mth pattern with m ∈
{1, . . . ,M}. We perform the generation by [Flaborea et al.,
2023]:

Im,t−1
k+1:N =

1
√
αt

(
Im,t−1
k+1:N − 1− αt√

1− αt
εθ (I, t, h)

)
+ z

√
βt.

(3)
We generate M distinct latent patterns I1, . . . , IM . For each
Im, we compute the reconstruction error by means of the
smoothing loss Lsmooth (|I − Im|) used in training.
Conditions of Generation. The conditioning strategy is a

key element of the diffusion model we designed, as it directly
affects the quality of the output. Depending on the features
of the history k frames, the latent patterns of the output can
be more relevant to the ground truth, helping to distinguish
between normal and anomalous.

The right part in Figure 3 illustrates our conditioning strat-
egy, where we use 3D convolution on I1:k to extract features
embedding h. 3D convolution to extract features as condi-
tioning signals is simple and effective. Since the diffusion
models benefits from being conditional on the time step t, we
add the embedding τθ(t) to the embedding h and feed the
generated motion time signal to each layer of our network εθ.
τθ(t) is implemented with a MLP.

3.3 Generation of Pseudo-labels
In our proposed UVAD framework, the pseudo-labels gener-
ated from this round of training are used for the next round
of training. The pseudo-labels are generated on the basis of
observing the distribution of the generated latent patterns.

M different latent patterns I1, . . . , IM is generated by εθ,
we compute tthe mean of the distances of the generated latent
patterns relative to the ground truth by smoothing the loss:

DI =
1

M

M∑
i=1

Lsmooth (|I − Im|) . (4)

We use Dth as the thresholds for generator εθ, ŷI as the
pseudo-lable of I:{

ŷI = 1, if DI ≥ Dth

ŷI = 0, otherwise (5)

Inspired by [Zaheer et al., 2022], we choose to generate
thresholds by a data-driven approach. For the output of gen-
erator, µD and σD is the mean and standard deviation of dis-
tance D for each batch. The Dth is as follow:

Dth = µD + 0.1σD. (6)

This approach of using a fixed percentage of the maximum
distance of the generated latent patterns relative to the ground
truth as the threshold is simple and effective. In addition we
have tried other implementations, such as continuously ad-
justing the thresholds with training. These methods have the
same effect as the approach of Eq. (9), which shows that our
method is robust to the selection of thresholds.

3.4 Refinement Strategy of Pseudo-Labels
The refinement of pseudo-labels is done by aggregating the
knowledge of the nearest neighbor samples. We assume that
features of semantically similar images should be neighbor-
ing in the feature space. This assumption is satisfied by ex-
tracting similar features from the samples using contrastive
learning. The strategy is shown on the left side of Figure 3.

Formally, given a video frame in and a feature extractor fθ,
we obtain a feature vector z = fθ(in) from the video frame
in. The feature z is then used to search for neighbors of the
sample in in the feature space. Thus, the pseudo-label of in
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is refined by aggregating knowledge from the selected neigh-
bors. For this purpose, the anomaly probabilities p̂i outputs of
the selected neighbors are averaged to perform a soft voting:

p̂i =
1

K

∑
i∈I

p′i, (7)

where I is the index set of the selected neighbors, and p̂i is
the average score of vector zi. To obtain fine pseudo-labels,
we use the argmax operation on p̂i:

ŷi = argmaxp̂i. (8)

The above refinement process entails searching a repre-
sentation of the feature space in which neighboring samples
are searched. This is allowed by the bank, which stores the
features obtained from the samples and the original anomaly
probabilities. Neighbors are then selected by calculating the
cosine distance between the features of in and the features
stored in the bank. According to [He et al., 2020], in order
to keep the information stored in the bank more stable, we
use the slowly varying momentum model g′i(·) = h′

i (f
′
i(·))

to update the feature z and the anomaly probabilities p′.
The refined pseudo-label ŷi is used as a self-supervised sig-

nal for loss calculation during training.Since refinement is an
iterative process, the refined pseudo-labels obtained through
knowledge aggregation of neighbors still contain some noise.
To address this problem, we reweight the training loss by es-
timating the uncertainty of the pseudo-label refinement.

Following [Litrico et al., 2023], we exploit an entropy-
based uncertainty estimation method that exploits the consis-
tency between neighboring predictions. The basic idea is that
if the network predicts the same kind of neighboring sam-
ples, we can consider the derived pseudo-labels to be reli-
able (low uncertainty). The average score vector p̂i, obtained
by averaging the probabilistic outputs of the neighbors, has
low entropy in the former case while high entropy in the lat-
ter. Therefore, we reweight the training loss by computing
the weight w. The weight w is more important for pseudo-
labels obtained from p̂i with low entropy and less important
for pseudo-labels obtained from p̂i with high entropy.

Formally, given the frame in, we obtain the average score
vector p̂i from the soft-voting strategy. note that p̂i is obtained
by averaging over a probability distribution, thus it is still a
probability distribution. We compute the entropy of p̂i as:

H (p̂i) = E [I (p̂i)] = −p̂i log2 p̂i. (9)

Based on the normalized entropy value H (p̂i), we obtain
the weight w of the sample in as:

win = exp
(
−Ĥ (p̂i)

)
(10)

3.5 Training and Inference
Training. Based on the pseudo-labels, we generate latent pat-
terns for input data and use Lsmooth weighted according to un-
certainty in order to encourage to generate as more relevant
patterns as possible for pseudo-labeled normal data and as
more inrelevant patterns as possible for pseudo-labeled abno-
raml data. After updating the parameters of εθ, we generate
new pseudo-labels for this batch of data. Before starting a

new round of training, the pseudo-labels need to be refined
and uncertainty estimated.
Inference. For the input sequence of unlabeled frames, we
generate M latent patterns for each frame as trained and count
their distance D from the ground truth. We consider the mean
as aggregation statistics for the distance D between the gen-
erated latent patterns and the ground truth. Latent patterns
for normal events are more correlated, and the distribution of
latent patterns for anomalous events is more discrete.

4 Experiments
4.1 Implementation Details
Datasets
Six real-world benchmark datasets are used to evaluate our
approach, including the ShanghaiTech dataset [Luo et al.,
2017], CUHK Avenue dataset [Lu et al., 2013], UCSD
dataset [Mahadevan et al., 2010], Subway dataset [Adam et
al., 2008], UMN dataset [Mehran et al., 2009], and UCF-
Crime dataset [Sultani et al., 2018]. These datasets cor-
respond to different scenarios, including scenarios such as
schools, pedestrian streets, subway entrances and exits, and
city streets. In particular, the UCF-Crime dataset contains
some illegal activities that harm sustainable cities.

Note that the training set in these datasets contains only
normal events, with abnormal activity occurring only in the
test set. To perform UVAD, we employ two types of UVAD
settings based on previous UVAD work: (i) Partial mode
[Giorno et al., 2016; Liu et al., 2018b; Yu et al., 2022] : only
the original test set of the dataset is used for learning, while
the original training set is discarded. (ii) Merged mode [Pang
et al., 2020; Zaheer et al., 2022]: the original training and test
sets are merged into one unlabeled set for learning. For both
modes, labels are strictly not used in learning. Performance
evaluation is performed only on the original test set to allow
comparison with existing VAD methods.

Evaluation Metrics
Following the existing method [Pang et al., 2020; Lin et al.,
2022; Zaheer et al., 2022], the area under the ROC curve
(AUC) is used for evaluation and comparison. The AUC is
calculated based on the frame-level annotations of the test
videos in each dataset.

Training Details
We resize each video frame to 256 × 256 and normalize it to
the range [- 1,1]. We set the numbers of generated latent pat-
terns M to 10. Both the generator network and the condition
extractor network are trained with AdamW-based stochastic
gradient descent method. The learning rate, and weight decay
were set to 0.0002, and 0.0001, respectively. Training epochs
are set to 60; 60; 60; 10; 25; 30; 15 on Ped1, Ped2, Avenue,
ShanghaiTech, Subway, UMN and UCF-Crime, respectively.
We use pre-trained Resnext101 [Xie et al., 2017] as the ex-
tractor for motion features in experiments.

4.2 Results
Quantitative Results
We compare our method with state-of-the-art OCC super-
vised VAD methods and UVAD methods on six benchmark
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Supervision Method ShTech Avenue UCSD Subway UMN UCF
CrimePedl Ped2 Entrance Exit Scene1 Scene2 Scene3 All Scenes

OCC
Supervised

SRC [Cong et al., 2011] - - - - 80.0 83.0 99.5 97.5 96.4 97.8 -
LSHF [Zhang et al., 2016] - - 87.0 91.0 - - 99.2 98.3 99.9 99.7 -

GNG [Sun et al., 2017] - - 93.8 94.1 - - 99.8 99.3 99.9 99.7 -
FFP [Liu et al., 2018a] 72.8 85.1 83.1 95.4 - - - - - - -

MemAE [Gong et al., 2019] 71.2 83.8 - 94.1 - - - - - - -
OCAA [Ionescu et al., 2019a] 78.7 90.4 - 97.8 - - - - - - -
DAE [Ionescu et al., 2019b] - - - - 93.5 95.1 99.9 98.2 99.8 99.3 -

MLEP [Liu et al., 2019] 76.8 92.8 - - - - - - - - -
PMem [Park et al., 2020] 70.5 88.5 - 97.0 - - - - - - -

SSMT [Georgescu et al., 2021] 82.4 92.8 85.1 96.9 - - - - - - -
DPU [Lv et al., 2021] 73.8 89.5 - 99.8 - - - - - - -

HF2-VAD [Liu et al., 2021] 76.2 91.1 - 99.3 - - - - - - -
ROADMAP [Wang et al., 2022] 76.6 88.3 83.4 96.3 95.2 95.5 - - - 99.1 72.9

BDPN [Chen et al., 2022] 78.1 90.3 - 98.3 - - - - - - -
DLAN [Yang et al., 2022] 74.7 89.9 - 97.6 - - - - - - -
SCAE [Cao et al., 2023] 79.2 86.8 - - - - - - - - -

USTN-DSC [Yang et al., 2023b] 73.8 89.9 - 98.1 - - - - - - -
FPDM [Yan et al., 2023] 78.6 90.1 - - - - - - - - 74.7

DiffVADOCC (Ours) 82.9 90.3 90.1 99.3 96.0 97.2 99.9 99.9 99.9 99.9 77.1

Unsupervised

ADF [Giorno et al., 2016] - - 59.6 57.6 74.6 87.2 80.2 88.3 77.1 84.8 -
Unmask [Ionescu et al., 2017] - - 68.4 82.2 70.6 85.7 99.3 87.7 98.2 95.1 -

CTS [Liu et al., 2018b] - 81.1 69.0 87.5 71.6 93.1 - - - 95.2 -
DAW [Wang et al., 2018] - 85.3 77.8 96.4 - 84.5 - - - - -

STDOR [Pang et al., 2020] - - 71.7 83.2 88.1 92.7 99.9 99.9 99.7 97.4 -
CIL-UVAD [Lin et al., 2022] - 90.3 84.9 98.7 91.3 97.6 99.9 99.9 99.8 99.2 -

NASP [Yu et al., 2022] 71.9 89.7 79.4 97.0 - - - - - - -
GCL [Zaheer et al., 2022] 78.9 85.2 - 97.9 - - - - - 99.3 71.0

DiffVAD−(Ours) 83.1 91.1 90.2 99.2 93.2 99.0 99.9 99.9 99.9 99.9 77.0
DiffVAD+(Ours) 81.9 90.3 87.6 98.9 92.1 98.2 99.9 99.9 99.9 99.9 75.2

Table 1: Comparisons with state-of-the-art methods including OCC supervised methods that require labeled normal data in the upper blocks
and unsupervised methods that do not require labeled data in the bottom block. The numbers are the frame-level AUC(%) performance.

datasets. For a fair comparison, we provide three versions of
DiffVAD under different training settings. DiffVADOCC rep-
resents the OCC supervised version trained with normal data
only. DiffVAD− and DiffVAD+ represent the unsupervised
versions in partial mode and merged mode, respectively. The
results are summarized in Table 1. Generally, our proposed
method is significantly better than all previous UVAD meth-
ods, and even higher than most OCC supervised methods.
This demonstrates the proposed method is perfectly suited to
the need for anomaly detection in real-world scenarios. In the
unsupervised setting, DiffVAD− outperforms DiffVAD+ on
all datasets. This is because partial mode contains less data,
i.e., fewer unseen events, than merged mode.

Qualitative Results
The examples in Figure 4 show anomaly curves of the test-
ing video from the ShanghaiTech dataset compared among
MemAE [Gong et al., 2019], PMem [Park et al., 2020], GCL
[Zaheer et al., 2022] and DiffVAD. MemAE and PMem are
both OCC supervised VAD methods based on memory mod-
ules, while GCL is an unsupervised VAD method. All three
methods perform single-pattern reconstruction of the input
data. The anomaly curve shows the anomaly scores of all
frames in the video in turn, allowing a more intuitive com-
parison of the performance of different methods. It can be
seen that DiffVAD performs significantly better than the other
methods. The anomaly scores of DiffVAD are lower and
more stable on normal segments. On abnormal segments, the
anomaly score curves of the other three methods have obvi-
ous errors whilst DiffVAD has longer abnormal durations and
more accurate anomaly scores. The curves shown in the Fig-

… … …

MemAE

PMem

GCL

DiffVAD

GT

time

False

False

False

Figure 4: The example of anomaly detection comparison on Shang-
haiTech. From top to bottom, we show the sampled video frames,
ground-truth abnormal sections (blue regions are abnormal), result
of MemAE, result of PMem, result of GCL and result of DiffVAD.

ure 4 are consistent with the results in Table 1.

4.3 Ablation Study and Discussion
As shown in Table 2, to validate each component in the pro-
posed DiffVAD effectiveness in detail, the ablation study is
conducted on the ShanghaiTech dataset. Not using any com-
ponents represents a binary classification of abnormal and
normal. It can be seen that both training the model through
the classification task and performing single pattern recon-
struction for training perform poorly. A significant improve-
ment in AUC scores was obtained by designing multiple la-
tent pattern generation and diffusion models to form a latent
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Generator Latent Patterns
Generation

Single Pattern
Reconstruction

Pseudo-Labels
Refinement AUC(%)

Diffusion
model

61.4
✓ 78.1

✓ 72.4
✓ ✓ 81.9

VAE

60.1
✓ 74.7

✓ 70.1
✓ ✓ 76.3

GANs

59.6
✓ 74.2

✓ 68.9
✓ ✓ 77.0

Table 2: Ablation study results on ShanghaiTech dataset. Anomaly
detection performance is reported by AUC.

Figure 5: Visualization examples of normalcy maps of the multiple
latent patterns on (top to bottom) UCSD Ped2, CUHK Avenue, and
ShanghaiTech: the abnormal frames (left); the normal frames in the
same scene (middle); visualization of normalcy maps of the multiple
latent patterns (right).

pattern learning framework.
Latent pattern learning improves 16.7% and 5.7% com-

pared to classification and single pattern reconstruction, re-
spectively. The effectiveness of the pseudo-labels refinement
is demonstrated by the 3.8% increase in score after introduc-
ing it during training. This is explained by the fact that more
reliable pseudo-labels help the model to learn the feature rep-
resentations more correctly and also help to produce the cor-
rect training loss weights. The results in Table 2 illustrate
that the components of our design fit each other and justify
our design’s rationality.

In addition to the ablation experiments with diffusion mod-
els as the generator, we also experiment with VAE [Kim,
2022] and GANs [Kaneko and Harada, 2020] as generators in
the same setup. As shown in Table 2, both VAEs and GANs
performed less than 80% as generators, while the diffusion
model achieved a score of 81.9%. The superior performance
of the diffusion-based generator demonstrates the suitability
of the diffusion model for the UVAD task. It is notable that
the latent pattern learning and pseudo-labels refinement also
improve the score by about 14% and 3% when other models
as the generator.

Evaluation of Latent Patterns
Unlike previous work [Gong et al., 2019; Park et al., 2020;
Liu et al., 2021] that performs single pattern reconstruction,
our proposed DiffVAD generates multiple latent patterns of
the same event. In the case of normality, different patterns of
the same event are varied but correlated, i.e., they are biased
towards the ground truth of what actually happens. In the
case of abnormality, different patterns of the same event are
diverse but not correlated. Figure 5 shows the normal frames,
the abnormal frames in the same scene and the visualization
of normalcy maps of the multiple latent patterns on UCSD
Ped2, Avenue and ShanghaiTech. We can see that (1) the
normalcy maps of the multiple latent patterns is more simi-
lar to the normal frame than abnormal frames, indicating that
the latent patterns of normal events is more biased toward the
ground truth of what really happens. (2) There is no anoma-
lous events in the normalcy map, such as vehicles, jumping
and running. Anomalous features in anomalous frames are
not reconstructed due to the smaller similarity. Therefore,
even in the same scene, the latent pattern of normal events
would not be similar to the anomalous one.

Analysis of Pseudo-Labels Refinement Design
The pseudo-label refinement strategy we devise not only pro-
duces finer pseudo-labels, but also weights the training loss
according to its uncertainty to avoid noise in the early stages
of training. The results in Table 2 demonstrate the benefits
of pseudo-labels refinement designed in this way. The pro-
posed design functions similarly to the teacher-student model.
Differently, we do not need the teacher model only to aggre-
gate the information of the nearest neighbors in the feature
space. Meanwhile, it is also the refinement design based on
aggregated nearest neighbors that allows us to train with re-
liable pseudo-labels without the need for auxiliary networks
or deeper models, keeping the lightweight feature. DiffVAD
meets the need for fast detection of real-world scenarios.

5 Conclusion
UVAD technology is an important safeguard for sustainable
cities. Existing UVAD methods are limited by the openness
problem to learn sufficient patterns, we address this chal-
lenge by introducing diffusion models into the video anomaly
detection task. Specifically, we propose a latent pattern-
based learning framework that learns unseen event repre-
sentations in training by generating multiple latent patterns
of the same event, with fast inference speeed. The design
of pseudo-labels refinement and uncertainty estimation mini-
mize the noise problem. The comprehensive experiments on
six benchmarks and exhaustive ablation studies validate the
effectiveness of proposed framework.
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Póczos. Classifier two sample test for video anomaly de-
tections. In BMVC, page 71, 2018.

[Liu et al., 2019] Wen Liu, Weixin Luo, Zhengxin Li, Peilin
Zhao, and Shenghua Gao. Margin learning embedded pre-
diction for video anomaly etection with a few anomalies.
In IJCAI, pages 3023–3030, 2019.

[Liu et al., 2021] Zhian Liu, Yongwei Nie, Chengjiang
Long, Qing Zhang, and Guiqing Li. A hybrid video
anomaly detection framework via memory-augmented
flow reconstruction and flow-guided frame prediction. In
ICCV, pages 13588–13597, 2021.

[Lu et al., 2013] Cewu Lu, Jianping Shi, and Jiaya Jia. Ab-
normal event detection at 150 FPS in MATLAB. In ICCV,
pages 2720–2727, 2013.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Special Track on AI for Good

7579



[Luo et al., 2017] Weixin Luo, Wen Liu, and Shenghua Gao.
A revisit of sparse coding based anomaly detection in
stacked RNN framework. In ICCV, pages 341–349, 2017.

[Lv et al., 2021] Hui Lv, Chen Chen, Zhen Cui, Chunyan
Xu, Yong Li, and Jian Yang. Learning normal dynamics
in videos with meta prototype network. In CVPR, pages
15425–15434, 2021.

[Lv et al., 2023] Hui Lv, Zhongqi Yue, Qianru Sun, Bin Luo,
Zhen Cui, and Hanwang Zhang. Unbiased multiple in-
stance learning for weakly supervised video anomaly de-
tection. In CVPR, pages 8022–8031, 2023.

[Mahadevan et al., 2010] Vijay Mahadevan, Weixin Li, Viral
Bhalodia, and Nuno Vasconcelos. Anomaly detection in
crowded scenes. In CVPR, pages 1975–1981, 2010.

[Mehran et al., 2009] Ramin Mehran, Alexis Oyama, and
Mubarak Shah. Abnormal crowd behavior detection us-
ing social force model. In CVPR, pages 935–942, 2009.

[Metzger et al., 2023] Nando Metzger, Rodrigo Caye Daudt,
and Konrad Schindler. Guided depth super-resolution by
deep anisotropic diffusion. In (CVPR), pages 18237–
18246, 2023.

[Pang et al., 2020] Guansong Pang, Cheng Yan, Chunhua
Shen, Anton van den Hengel, and Xiao Bai. Self-trained
deep ordinal regression for end-to-end video anomaly de-
tection. In CVPR, pages 12170–12179, 2020.

[Park et al., 2020] Hyunjong Park, Jongyoun Noh, and Bum-
sub Ham. Learning memory-guided normality for
anomaly detection. In CVPR, pages 14372–14381, 2020.

[Sofianos et al., 2021] Theodoros Sofianos, Alessio
Sampieri, Luca Franco, and Fabio Galasso. Space-
time-separable graph convolutional network for pose
forecasting. In ICCV, pages 11209–11218, 2021.

[Sohl-Dickstein et al., 2015] Jascha Sohl-Dickstein, Eric A.
Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium thermody-
namics. In ICML, pages 2256–2265, 2015.

[Song et al., 2021] Yang Song, Jascha Sohl-Dickstein,
Diederik P. Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through
stochastic differential equations. In ICLR, 2021.

[Sultani et al., 2018] Waqas Sultani, Chen Chen, and
Mubarak Shah. Real-world anomaly detection in
surveillance videos. In CVPR, pages 6479–6488, 2018.

[Sun et al., 2017] Qianru Sun, Hong Liu, and Tatsuya
Harada. Online growing neural gas for anomaly detec-
tion in changing surveillance scenes. Pattern Recognit.,
64:187–201, 2017.

[Tian et al., 2021] Yu Tian, Guansong Pang, Yuanhong
Chen, Rajvinder Singh, Johan W. Verjans, and Gustavo
Carneiro. Weakly-supervised video anomaly detection
with robust temporal feature magnitude learning. In ICCV,
pages 4955–4966, 2021.

[Wang et al., 2018] Siqi Wang, Yijie Zeng, Qiang Liu,
Chengzhang Zhu, En Zhu, and Jianping Yin. Detecting

abnormality without knowing normality: A two-stage ap-
proach for unsupervised video abnormal event detection.
In ACM Multimedia, pages 636–644, 2018.

[Wang et al., 2022] Xuanzhao Wang, Zhengping Che,
Bo Jiang, Ning Xiao, Ke Yang, Jian Tang, Jieping Ye,
Jingyu Wang, and Qi Qi. Robust unsupervised video
anomaly detection by multipath frame prediction. IEEE
Trans. Neural Networks Learn. Syst., 33(6):2301–2312,
2022.

[Wu et al., 2021] Jie Wu, Wei Zhang, Guanbin Li, Wenhao
Wu, Xiao Tan, Yingying Li, Errui Ding, and Liang Lin.
Weakly-supervised spatio-temporal anomaly detection in
surveillance video. In IJCAI, pages 1172–1178, 2021.

[Xie et al., 2017] Saining Xie, Ross B. Girshick, Piotr
Dollár, Zhuowen Tu, and Kaiming He. Aggregated resid-
ual transformations for deep neural networks. In CVPR,
pages 5987–5995, 2017.

[Yan et al., 2023] Cheng Yan, Shiyu Zhang, Yang Liu,
Guansong Pang, and Wenjun Wang. Feature prediction
diffusion model for video anomaly detection. In (ICCV),
pages 5527–5537, 2023.

[Yang et al., 2022] Zhiwei Yang, Peng Wu, Jing Liu, and Xi-
aotao Liu. Dynamic local aggregation network with adap-
tive clusterer for anomaly detection. In ECCV, pages 404–
421, 2022.

[Yang et al., 2023a] Binxin Yang, Shuyang Gu, Bo Zhang,
Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, and
Fang Wen. Paint by example: Exemplar-based image
editing with diffusion models. In (CVPR), pages 18381–
18391, 2023.

[Yang et al., 2023b] Zhiwei Yang, Jing Liu, Zhaoyang Wu,
Peng Wu, and Xiaotao Liu. Video event restoration based
on keyframes for video anomaly detection. In CVPR,
pages 14592–14601, 2023.

[Yu et al., 2022] Guang Yu, Siqi Wang, Zhiping Cai, Xin-
wang Liu, Chuanfu Xu, and Chengkun Wu. Deep anomaly
discovery from unlabeled videos via normality advantage
and self-paced refinement. In CVPR, pages 13967–13978,
2022.

[Zaheer et al., 2022] Muhammad Zaigham Zaheer, Arif
Mahmood, M. Haris Khan, Mattia Segù, Fisher Yu, and
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