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Abstract
Financial fraud is one of the most significant so-
cial issues and has caused tremendous property
losses. Graph neural networks (GNNs) have been
applied to anti-fraud practices and achieved de-
cent results. However, recent researches have dis-
covered flaws in the robustness of fraud-detection
models based on GNNs, enabling fraudsters to
mislead them through attacks like data poisoning.
In addition, most existing attack-defense models
tend to study on ideal settings and lose informa-
tion during truncation or filtering, which lowers
their performances in complicated financial fraud
cases. Therefore, in this paper, we propose a
novel robust anti-fraud GNN model. In particu-
lar, we first design an attack algorithm tampering
with both features and structures of graph data to
simulate fraudsters’ attacking behaviors in real-life
complex fraud scenarios. Then we apply singular
value decomposition to the graph and learn the de-
composed matrices in a GNN model with specifi-
cally designed joint losses. This enables our model
to learn the graph patterns in low-rank subspaces
without losing too much detailed information and
fit the graph structure to characteristics including
class-homophily and sparsity to guarantee robust-
ness. The proposed approach is experimented on
real-world fraud datasets, which demonstrates its
advantages in fraud detection and robustness com-
pared with the state-of-the-art baselines.

1 Introduction
In recent years, financial fraud has become a serious social
problem that affects not only the property security of individ-
uals and enterprises, but also the stability and credit of the fi-
nancial system. The survey [PricewaterhouseCoopers, 2022]
reveals that 46% of surveyed organisations reported suffer-
ing from some form of fraud or economic crime within the
last 24 months. Increasingly, it appears that financial fraud
has moved from the fringes of financial market activity to be-
come a widespread type of behavior [Reurink, 2019], which
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Figure 1: The illustration of perturbation attack on the graph. Fraud
nodes will imitate the features of normal nodes and modify the struc-
ture to disturb the detector’s judgment.

has posed great threats to economic growth and social well-
being like employment and personal safety. As the number
of fraud cases has intensively risen in recent years, fraud de-
tection is becoming an increasingly critical topic [Khedmati
et al., 2020]. Since graphs can effectively capture long-range
correlations among inter-dependent data objects [Akoglu et
al., 2015], recent advanced researches have started to model
and identify fraud behaviors on the basis of graphs [Xiang
et al., 2023; Zhang et al., 2024]. Among many graph-based
research methods, Graph Neural Networks (GNNs) have be-
come a widely applied graph analysis method [Liang et al.,
2023]. These methods can achieve a certain level of accuracy
and efficiency in identifying financial fraud in various fields.

However, whenever it becomes known that one detection
method is in place, criminals will adjust their fraud strategies
accordingly and attempt alternative ones [Bolton and Hand,
2002]. The survey [PricewaterhouseCoopers, 2022] also re-
veals a trend that could threaten the social order to a great
extent: organized crime groups are becoming more special-
ized and professional. This can be illustrated by their at-
tempts to conceal their fraudulent behavior as legitimate. As
is shown in Figure 1, fraud nodes will imitate the features
of normal nodes and modify the graph structure to disturb
the detector’s judgment. Such a perturbation attack on the
graph often leads to a decrease in the accuracy of the detec-
tor’s judgment, which has become an urgent crisis and chal-
lenge for the finance industry and academia. If not properly
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addressed, fraudsters can exploit the vulnerability of those
fraud-detecting models, causing severe property losses and
social distrust of the existing financial system.

Existing researches have made decent progress in two crit-
ical aspects: some of them have improved the accuracy of
models in fraud detection, while others have enhanced the
robustness of models in universal scenarios. However, as
real-world fraudsters continually evolving their fraud meth-
ods and carrying out purposed attacks on models, there still
exist new challenges to be settled. First, for most existing
GNN-based anti-fraud models, they do not take into account
the increasingly complex financial-fraud scenarios consisting
of adversarial attacks from different aspects. They rely heav-
ily on the original graph which may be artificially perturbed
by fraudsters and therefore become vulnerable during the pro-
cess of node aggregation. On the other side, for those mod-
els specializing in the defense of graph adversarial attacks,
they tend to study on ideal and unpractical environments and
datasets, failing to focus on real-life based financial settings.
And mainstream methods based on direct truncation or filter-
ing [Wu et al., 2022; Huang et al., 2023] may lose parts of
detailed information of the graph, which will to some extent
affect their overall performance on fraud-detection missions
in spite of their high robustness.

These motivate us to design a novel robust anti-fraud graph
neural network framework to address the two main dilem-
mas. In this paper, we first design an algorithm which simul-
taneously perturbs node features and topological structures
of graph data to simulate the possible multifaceted attacks
from fraudsters, and then propose a novel GNN-based model
with graph learning and singular value decomposition (SVD)
called GLSGNN to defend against the attacks. In particu-
lar, there are two key points in the model: (i) design novel
joint loss functions for the model by exploiting the proper-
ties of pure graph data to improve its robustness while main-
taining classification precision; and (ii) decompose the graph
and apply them as learnable parameters, which enables the
model to learn more patterns of the graph in low-rank sub-
spaces with sufficient details. Specifically, we first employ
the method of SVD to decompose the adjacency matrix of
the attacked graph into three matrices. Each of these matri-
ces will be independently learned as a parameter during the
update of the model. Then, we optimize the model with a
specially designed loss function containing weighed penal-
ization based on sparsity, class-homophily, and classification
results and try to recover the pure graph. For the attack part,
we select different proportions of fraud nodes. We not only
falsify parts of their features to disguise them as non-fraud
ones, but also reconnect them to innocent nodes to perturb
the graph structure. We conduct experiments on a real-world
medical insurance dataset [Gupta, 2019] and Amazon fraud
dataset [Zhang et al., 2020], which demonstrates our model’s
superior performance on both fraud detection and robustness.
Contributions of our work are summarized as follows:

• To the best of our knowledge, this is the first work
that addresses the crucial anti-fraud problem in finan-
cial fields with multifaceted attacks on data by modeling
the conspiracy defraud in a learnable robust graph neu-
ral network, which provides a solution to the newest and

most advanced fraud patterns.
• In order to simulate real-world fraud scenarios, we de-

sign poisoning attacks on both the features of nodes and
the edge structure. To defend against the attacks, We
propose a novel anti-fraud graph neural network model
learning decomposed adjacent matrix under the con-
straint of an elaborate joint loss function, which is ca-
pable of handling the variability of attack patterns while
keeping high classification precision.

• Extensive experiments on real-world fraud datasets
show that our proposed method outperforms the com-
pared state-of-the-art baselines in fraud detection.

2 Related Works
2.1 Graph Neural Networks for Fraud Detection
By mining the hidden features of nodes and focusing on the
complex relationships between nodes, graph neural networks
(GNNs) have become pivotal in fraud detection missions
[Cheng et al., 2020; Ma et al., 2023], with recent researches
adopting fraud detection strategies such as SemiGNN [Wang
et al., 2019a] using attention mechanisms and information
aggregation, [Zhang et al., 2023] introducing a rule mining
module refined with expert knowledge, CARE-GNN [Dou et
al., 2020], PC-GNN [Liu et al., 2021] utilizing neighbor se-
lector for imbalanced supervised learning on graphs and so
on. Other works also focus on different node types and vari-
ous relationships between nodes. They utilize heterogeneous
information networks to enhance their capabilities in fraud
detection. FdGars [Wang et al., 2019b], HACUD [Hu et al.,
2019], FRAUDRE [Zhang et al., 2021] focus on the features
of different nodes or edges in real-world fraud detection sce-
narios. H2-FDetector [Shi et al., 2022] considers both ho-
mophilic and heterophilic connections and applies aggrega-
tion strategies separately. GAGA [Wang et al., 2023], a novel
group aggregation enhanced transformer, provides a portable
method to cope with the low homophily issue. However,
these works rely heavily on the original graph and thus make
it difficult to cope with fraudsters’ disguises and perturbation,
which poses a great threat to the security of the anti-fraud sys-
tem. In contrast, we aim to devise our model and improve its
robustness from the perspective of possible attacks on graph
data in real-world financial fraud cases, which fills the gap in
the field and can inspire more work in the community.

2.2 Graph Adversarial Learning Method
In order to reduce the influence of adversarial attacks on
graphs, researches have been made on defense methods. The
defense methods on graph data can be mainly divided into
four parts: disturbance detection, graph purification, adver-
sarial training, and robust model. DONE [Bandyopadhyay et
al., 2020] uses two parallel autoencoders to deal with struc-
tural and attribute anomalies respectively and detect abnormal
disturbances of nodes. RTGNN [Qian et al., 2023] gener-
ates pseudo-labels on unlabeled nodes and supervises nodes
with different types of labels adaptively for effective learn-
ing while minimizing the impact of noisy labels. GraphDe-
fense [Wang et al., 2019c], BVAT [Deng et al., 2019], LAT-
GCN [Jin and Zhang, 2019] construct a powerful perturbed
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Figure 2: The illustration of the proposed GLSGNN’s architecture. We first employ SVD to decompose the adjacency matrix. The three
matrices decomposed from the input graph will be independently updated as parameters and projected back to approximate the graph structure
in the GNN model. Then, we optimize the model with a joint loss function containing weighed penalization to make the graph close to the
patterns of a clean graph while learning the classification criteria.

data close to the original data through adversarial training,
and ultimately obtain a more robust model on these perturba-
tions. Recent typical robust models employ various strate-
gies such as RGCN [Zhu et al., 2019], RoHe [Zhang et
al., 2022] using attention mechanisms, Pro-GNN [Jin et al.,
2020] learning the clean graph structure, RT-GCN [Wu et al.,
2022], GSR [Zhao et al., 2023] considering graph structure
refinement, Mid-GCN [Huang et al., 2023] exploring mid-
frequency signals to enhance their effectiveness against ad-
versarial attacks in graph-based scenarios. However, most
existing defense methods still have flaws in our situation. In
spite of their robustness, popular graph refinement algorithms
based on truncation and filtering will break the graph struc-
ture and cause information losses, which makes them less
competitive than those fraud detection models in overall per-
formances on less disturbed graphs. Hence, we introduce
a novel anti-fraud model that learns a decomposed adjacent
matrix, constrained by an elaborate joint loss function, which
makes full use of the graph details to enhance the accuracy of
fraud detection while keeping its robustness.

3 Proposed Method
In this section, we introduce the method proposed in detail.
First, we present the definition of the problem. Second, we
show the overall structure of our framework GLSGNN. Third,
we explain the design of every part of GLSGNN, includ-
ing the singular value decomposition, the convolutional layer,
and the learning of decomposed adjacent matrix. Lastly, we
introduce the optimization strategy.

3.1 Problem Formulation
In this paper, we denote the graph as G = (V, E), where
V = {ν0, ν1, . . . , νNv

} represents the set of the nodes in the
graph and E = {e0,0, e0,1, . . . , ei,j , . . . , eNv,Nv

} represents
the set of the edges in the graph. Nv = |V| is the num-
ber of nodes, Ne = |E| is the number of edges, and ei,j

denotes the edge from node νi to node νj , representing the
relationship between those two nodes. Considering the two
significant aspects of a graph: node features and topologi-
cal structure, a graph can also be denoted as G = (A,X),
where A ∈ RNv×Nv is the adjacent matrix of the graph
and X ∈ RNv×Nf is the feature matrix of the nodes. Si-
multaneously, the features of nodes can be denoted as X =
{x0,x1, . . . ,xNv}, with xi being the feature of node νi and
Nf being the number of features of one node. Furthermore,
the set of the labels is denoted as Y = {y0, y1, ..., yNv}, in
which yi represents the label of node νi. The label of a normal
node is 0, while the label of a fraud node is 1.

Based on reality, we design two different kinds of attacks
on the graph to simulate the behavior of fraudsters. Firstly,
since the features of nodes are important factors to classi-
fication and parts of them can be deliberately controlled by
fraudsters, we perturb some of the values to perform feature
attacks. Secondly, as fraudsters may impersonate others or
participate with outsiders to conceal their identities by attach-
ing themselves to non-fraudulent ones, we tend to add fake
edges to the adjacent matrix to perform structure attacks. Dif-
ferent from most previous studies, we simultaneously apply
attacks to features and graph structure, which is more chal-
lenging and closer to real life. Therefore, the problem we
study in this paper can be presented as follows: given an at-
tacked graph G = (V, E), we aim to get an ideal classification
result on unlabeled nodes by learning both GNN parameters
and the graph G in our proposed framework. In particular, our
model needs to learn the classification criteria while purifying
the graph to defend against attacks on data.

3.2 Model Architecture
The overall structure of our proposed framework is illustrated
in Figure 2. In order to defend against the feature attacks
and structure attacks mentioned above, we construct a novel
model structure called GLSGNN. Firstly, we apply the sin-
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gular value decomposition to the attacked graph to get the
decomposed matrices of the adjacent matrix. Then, in addi-
tion to the common parameters of graph convolutional layers
in GNN, we also set the decomposed matrices as learnable
parameters in the model, aiming to fit the attacked graph to
certain characteristics of pure ones. Besides the penalty for
misclassified results, we design several loss functions specif-
ically for the adjacent matrix to learn its sparsity and class-
homophily. Besides, to avoid the learned graph being too dif-
ferent from the original one and containing too many noises,
we add an extra restriction to it. Benefit from the combination
of those methods, our model can make effective corrections
to the attacked graph. At the same time, we can obtain a less
interfered GNN model, which therefore performs better on
the final classification mission.

3.3 Adversarial Learning with Structure
Decomposition

We first decompose the adjacent matrix by using singular
value decomposition (SVD), and the results will be applied
as the initial values of three learnable parameters in the fol-
lowing GNN model which will be continuously updated and
projected back as the approximation of the input graph. The
motivation of this design is based on the fact that most exist-
ing low-rank methods merely preserving top-k singular com-
ponents will inevitably impair the details of the graph [Deng
et al., 2022]. And several recent researches in other fields
like [Wang et al., 2021] have demonstrated that learning with
decomposed matrices will help to get a low-rank structure
and a better spectrum decay pattern of the original matrix
by learning in low-rank subspaces, which further inspires us
to perform the decomposition on the adjacent matrix of the
graph. The SVD process can be formulated as:

A = UΣV>. (1)

U is the left singular vector matrix. Every its column vector
ui is the eigenvector of AA>. The eigenvalue λui of AA>

satisfies: (
AA>

)
ui = λui ui. (2)

V is the right singular vector matrix. Every its column vector
vi is the eigenvector of A>A. The eigenvalue λvi of A>A
satisfies: (

A>A
)
vi = λvi vi. (3)

Σ is the singular value matrix and it’s a diagonal matrix. Ev-
ery element σi on its diagonal is the singular value of A. The
eigenvalue λui of AA> satisfies:

σi =
√
λui . (4)

Therefore SVD can be expressed in another equivalent form,
in which r represents the rank of A:

A =
r∑

i=1

uiσivi
>. (5)

It has to be additionally mentioned that choosing SVD as
the method of matrix decomposition has more advantages.
Each singular value multiplied by its corresponding left and
right singular vectors will result in a matrix with rank 1. Each

of them contains one part of the graph’s information, and
larger singular values refer to matrices representing more im-
portant patterns of the original adjacent matrix of the graph.
Hence, by learning those decomposed matrices, the model is
able to view the graph in different subspaces, which helps it
obtain more information that may not be easily extracted from
the original adjacent matrix.

We denote the initial value of the approximate adjacent ma-
trix as A(0). Considering the meaning of adjacent matrix in
real life, we pass it through a ReLU function to eliminate the
negative values, which can be formulated as:

A(0) = ReLU
(
UΣV>

)
. (6)

3.4 Graph Convolutional Layer with Attention
Among all these GNN models, we choose a two layer
GAT [Velickovic et al., 2017] as the base of our model. By
assigning different weights to neighboring nodes, the atten-
tion mechanism can significantly enhance the robustness of
graph convolutional layers, which aligns with our ultimate
goal. Except from the weights W in convolutional layers, we
set other three learnable parameters U(t), Σ(t), V(t) and ini-
tialize U(0), Σ(0), V(0) with the U, Σ, V obtained in SVD.
The approximation of the adjacent matrix A(t) used in the
learning of the model can be formulated as:

A(t) = ReLU
(
U(t)Σ(t)V(t)>

)
, (7)

where t is the iteration number.
The attention mechanism can be calculated as follows.

Firstly, we evaluate the similarity between nodes, where sij
is the similarity coefficient, NN is a single layer feed-forward
neural network, and hi is the embedding of node νi:

sij = NN(Whi,Whj) . (8)

We can get the attention coefficient αij through the follow-
ing formulation after passing the similarity coefficient sij
through a LeakyReLU function to activate it, whereNi is the
set of neighbors of νi:

αij =
exp (LeakyReLU (sij))∑

k∈Ni
exp (LeakyReLU (sik))

. (9)

Finally, the output of node embedding h′
i after passing

through the convolution layer can be formulated as follows,
where we choose ELU as the activation function and K is the
number of all the attention heads:

h′
i = ‖

K
k=1ELU

∑
j∈Ni

αk
ijW

khj

 . (10)

3.5 Graph Structure Learning
In those real-life pure graph data, most of the nodes are only
connected to a small number of other nodes [Zhou et al.,
2013]. The scale of connection between nodes is relatively
small compared to the size of the whole graph, therefore
the adjacency matrix of the entire graph will remain sparse.
As analyzed above, fraudsters tend to connect themselves to
other innocent nodes and add edges to the graph, which will
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to some extent make the graph denser. In order to learn the
characteristics of sparsity, we consider adding a penalty for
the extra edges in the graph. Therefore we introduce the
frobenius form, and denote this loss function as Lsparse.

Lsparse =
∥∥∥A(t)

∥∥∥
F
=

√∑
i

∑
j

A
(t)2

ij . (11)

The sparsity of the graph in a normal adjacency matrix
means that elements with the value of 1 are as few as possible.
Although the adjacency matrix A(t) no longer only consists
of binary values of 0 and 1 in the learning process, having
fewer large values in the adjacent matrix still represents that
the graph is sparser. Therefore, using frobenius norm as a
constraint can have a decent effect.

Latest researches [Choi et al., 2022; Zhao et al., 2021]
show that it is more helpful for GNNs to learn node clas-
sification criteria when there exist many edges in the graph
connecting nodes of the same class. This kind of connection
pattern between nodes is called class-homophily. This is also
easy to understand in real-life circumstances. For example, in
a social network, similar people with the same backgrounds
and behaviors will have relationships with each other.

In our anti-fraud practice, the characteristic of class-
homophily still exists. Firstly, conspiracy fraud involving
gangs has become increasingly common in recent years. Sec-
ondly, an individual on suspicion of fraud is likely to behave
fraudulently in several other records, which are usually con-
nected in the graph structure. Hence, we evaluate the class
similarity between nodes by designing a loss function de-
noted as Lclass. If the connected nodes have different labels,
Lclass is going to increase for punishment.

Lclass =
1

2

n∑
i,j=1

A
(t)
ij (yi − yj)2 . (12)

3.6 Loss Function and Optimization
Except from Lsparse and Lclass, the entire loss function con-
tains two more parts: Firstly, we denote the loss of classifi-
cation as Lout. This is the common loss function of GNNs,
which is applied to evaluate the gap between the original la-
bels and the predicted results. We choose to use the cross-
entropy function to calculate it, where ŷi is the predicted la-
bel, because the cross-entropy function can not only present
the performance of the model on node classification, but also
keep a decent rate in the gradient descent process.

Lout = −
n∑

i=1

(yi log (ŷi) + (1− yi) log (1− ŷi)) . (13)

Secondly, we don’t want the adjacency matrix to change
too much during the learning of the model, which will in-
troduce excessive noises and make the learned graph unreal.
Therefore, we add another loss function Ldiff to make a con-
straint to the changes. By calculating the differences between
the adjacent matrix in the learning process and the initial one,
we can keep it in an appropriate range.

Ldiff =
∥∥∥(A(t) −A(0)

)∥∥∥
F
=

√∑
i

∑
j

(
A

(t)
ij −A

(0)
ij

)2

.

(14)

Dataset # Edges # Nodes # Features # Frauds

Medical Insurance 89218 13643 26 5141
Amazon Fraud 4,398,392 11944 25 821

Table 1: Dataset statistics including the number of edges, the num-
ber of nodes, the feature dimensions and the number of fraudulent
nodes of the chosen two datasets.

Finally, we add weights between all the parts mentioned
above to formulate the entire joint loss function L, where α,
β, γ are hyper-parameters:

L = Lout + αLsparse + βLclass + γLdiff . (15)

The model can be optimized through standard stochastic
gradient descent-based methods. We use a default Adam opti-
mizer [Kingma and Ba, 2014] with a learning rate of 2×10−3

to execute the optimization process.

4 Experiments
4.1 Experiment Settings
Datasets. To demonstrate the effectiveness of our model,
we choose two real-world datasets. The first one is a medi-
cal insurance dataset based on real medicare claims [Gupta,
2019] containing inpatient data, outpatient data, and benefi-
ciary details data. Due to the limit of computing resources,
we choose a subset of the original dataset and join differ-
ent kinds of data according to the claimID. Experts from our
cooperating organization help us analyze the data and label
fraud behaviors. We view each claim as a node, and if two
claims within a certain time period have the same provider
or beneficiary, we connect these two nodes with an edge.
We also filter out several unhelpful features. The other one
is the Amazon fraud dataset, a multi-relational graph dataset
built upon the Amazon review dataset [Dou et al., 2020]. 25
handcrafted features from [Zhang et al., 2020] are used in
the dataset including product data, user data, etc. Users are
nodes in the graph, and have three relations: U-P-U, U-S-U,
and U-V-U, which respectively connect users reviewing same
products, users giving same ratings and users with similar re-
views. We use the union of all these relations in our experi-
ment. Table 1 shows the detailed statistics of the datasets.

Baselines. We employ the following state-of-the-art meth-
ods on our benchmark dataset to highlight the effectiveness
of the proposed GLSGNN, which are mainly divided into two
categories. Firstly, we select popular GNN-based fraud detec-
tion methods including GraphSage [Hamilton et al., 2017],
GEM [Liu et al., 2018], FdGars [Wang et al., 2019b], Graph-
Consis [Liu et al., 2020], CARE-GNN [Dou et al., 2020], PC-
GNN [Liu et al., 2021], FRAUDRE [Zhang et al., 2021], H2-
FDetector [Shi et al., 2022], GAGA [Wang et al., 2023]. Sec-
ondly, we also select several graph adversarial defense meth-
ods including GCN [Kipf and Welling, 2016], GAT [Velick-
ovic et al., 2017], RGCN [Zhu et al., 2019], ProGNN [Jin et
al., 2020], GARNET [Deng et al., 2022], RT-GCN [Wu et al.,
2022], Mid-GCN [Huang et al., 2023]. In these experiments,
the tasks are learned independently.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Special Track on AI for Good

7504



Evaluation Metrics and Parameter Settings. In the ex-
periment, we utilize area under curve (AUC), macro average
of F1 score (F1-macro), recall score and accuracy to evaluate
the effectiveness of our model, which ensures the validity of
our experiment. For the hyper-parameters, in consideration
of the overall performance, we set the weight α of Lsparse

to 0.0005, the weight β of Lclass to 0.0005, and the weight
γ of Ldiff to 0.1. We adopt a GNN framework with 2 graph
convolutional layers, 8 hidden features and 5 attention heads.
Adversarial Attack Method. We adopt a poisoning attack
rather than an evasion attack, since the former perturbs the
data before the training process of the model while the latter
only performs attacks on test data. In most cases, it is more
difficult to defend a poisoning attack because it will directly
affects the learning of parameters of the model, which is also
closer to real-life scenarios. Specifically, We simultaneously
attack the features and structures of the graph data to simu-
late complex fraud behaviors, and we will first introduce our
strategy on the medical insurance dataset:

• Feature Attack: we first randomly select some fraud
nodes in an attempt to disguise them as normal nodes.
Then, we manually choose parts of the features which
have the risk of being controlled by fraudsters like re-
imbursements, deductible amount, etc. After calculating
the data distribution of normal nodes, we randomly mod-
ify those picked features of the selected fraud nodes to
random values between 40%-60% quantiles of the fea-
ture attributes of normal nodes.

• Structural Attack: we are inspired by real-world
crimes and base on the connection rules mentioned
above to perturb the structure. For the fraud nodes previ-
ously chosen, we change the provider of it to the one of
a random normal claim within the limited time period.
Therefore these nodes will be reconnected to other nor-
mal ones, thereby perturbing the entire graph structure.

And for the Amazon fraud dataset, since the data are well-
encapsulated and thus being hard for us to distinguish the
specific features and nodes, we slightly modify the attack pat-
terns by perturbing several random features of those selected
fraud nodes to the range of normal ones and creating fake
edge links directly on the adjacent matrix.

4.2 Fraud Detection Performance
We compare our model with the state-of-the-art anti-fraud
methods to validate its performance in the original fraud de-
tection task. Table 2 shows the result of the experiment.
From the statistics, it can be seen that our proposed GLSGNN
model achieves excellent performances in the cases, and sur-
passes most of the baseline methods. Especially in the medi-
cal insurance dataset, our model consistently outperforms the
baseline with AUC values ranging from 5.9% to 45.6%, F1
score ranging from 5.0% to 79.0%, recall score ranging from
10.8% to 46.4%, and accuracy ranging from 5.0% to 64.6%,
representing a notable enhancement. Due to the design of
learning matrices decomposed from the full input graph, our
model doesn’t suffer from the flaws of existing defense mod-
els of missing important graph details, thus showing its strong
ability in fraud detection precision.

Model AUC F1 Recall Accuracy

A
m

az
on

Fr
au

d

GraphSage 0.9184 0.7913 0.7902 0.9668
GEM 0.8962 0.6038 0.5722 0.9193
FdGars 0.7388 0.4586 0.4599 0.7089
GraphConsis 0.9241 0.7702 0.7147 0.9381
CARE-GNN 0.9437 0.8966 0.8927 0.9654
PC-GNN 0.9660 0.8791 0.9072 0.9211
FRAUDRE 0.9502 0.8942 0.8953 0.9635
H2-FDetector 0.9596 0.7848 0.9085 0.8981
GAGA 0.9665 0.9060 0.8927 0.9688
GLSGNN 0.9672 0.9119 0.8940 0.9711

M
ed

ic
al

In
su

ra
nc

e

GraphSage 0.6891 0.6356 0.6319 0.6793
GEM 0.5012 0.3888 0.5000 0.6362
FdGars 0.5540 0.5338 0.5540 0.6472
GraphConsis 0.5190 0.4837 0.5119 0.6070
CARE-GNN 0.5882 0.4954 0.5218 0.6165
PC-GNN 0.5290 0.5010 0.5064 0.6348
FRAUDRE 0.6623 0.4138 0.4782 0.4332
H2-FDetector 0.6690 0.6627 0.4851 0.6344
GAGA 0.6070 0.6150 0.6136 0.6358
GLSGNN 0.7295 0.6958 0.7002 0.7130

Table 2: Experiment on the performance of fraud detection on differ-
ent datasets. We compare our model with other popular GNN-based
fraud detection models.The result proves that our method signifi-
cantly outperforms recent anti-fraud baselines in most metrics.

4.3 Adversarial Attack Performance
In the experiment, we apply the attack algorithm introduced
above on both of the datasets and set the attack rate at every
5% from 0% to 25%. From table 3, compared with popular
graph adversarial defense methods, our model shows a bet-
ter performance, which maintains a stable level on all met-
rics with small fluctuations within an acceptable range. Our
model keeps high AUC scores over 0.96 and F1 scores over
0.9 on the amazon-fraud dataset. And simultaneously, on
all attack ratios on the medical insurance dataset, our model
reaches AUC scores over 0.72 and F1 scores over 0.69, which
shows a greater advantage over the defense baselines.

And it is worth mentioning that many popular baselines
can not get satisfying results on the medical insurance dataset.
The most probable reason is that this dataset has only 89218
edges, far less than the Amazon fraud dataset, which makes
some models struggle to aggregate information. However in
real-world fraud cases, the number of edges in the data varies
a lot, and the superior performance of our model on the med-
ical insurance dataset further improves the ability and prac-
tical value of it on different real-world scenarios. In conclu-
sion, these outcomes strongly affirm the superiority of our
proposed model, showing its high precision in detecting fraud
nodes and the stability against intentional perturbations.

4.4 Parameter Sensitivity and Ablation Study
We first vary the important hyper-parameters of α, β, and γ
in the loss function to discover their effects on classification
results. We make this experiment on the medical insurance
dataset and set the attack rate to a peak value of 25%. Figure
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Model
0% 5% 10% 15% 20% 25%

AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1
A

m
az

on
Fr

au
d

GCN 0.8296 0.5615 0.8236 0.5568 0.8241 0.5591 0.8243 0.5657 0.8235 0.5512 0.8238 0.5642
GAT 0.9160 0.8655 0.8971 0.8622 0.8864 0.8597 0.9096 0.8582 0.8888 0.8646 0.8832 0.8622
RGCN 0.8272 0.6035 0.8175 0.5828 0.8169 0.5862 0.8168 0.5828 0.8166 0.5799 0.8153 0.5729
ProGNN 0.7910 0.5675 0.7913 0.5700 0.7909 0.5669 0.7907 0.5673 0.7909 0.5660 0.7906 0.5647
GARNET 0.9130 0.8278 0.9131 0.8231 0.9138 0.8148 0.9163 0.8113 0.9161 0.8158 0.9134 0.8142
RT-GCN 0.9759 0.9114 0.9761 0.9093 0.9572 0.8987 0.9683 0.9008 0.9632 0.8993 0.9660 0.9024
Mid-GCN 0.9424 0.7810 0.9429 0.7845 0.9412 0.7535 0.9400 0.7558 0.9402 0.7637 0.9403 0.7669
GLSGNN 0.9672 0.9119 0.9736 0.9129 0.9681 0.9004 0.9657 0.9075 0.9660 0.9100 0.9646 0.9034

M
ed

ic
al

In
su

ra
nc

e GCN 0.6942 0.6005 0.6429 0.5353 0.6958 0.5686 0.6735 0.6070 0.6401 0.5064 0.6457 0.5790
GAT 0.6883 0.6708 0.7106 0.6539 0.6822 0.6655 0.6865 0.6541 0.6852 0.6098 0.6861 0.6594
RGCN 0.6095 0.6030 0.6078 0.6039 0.6022 0.6044 0.6179 0.6272 0.6148 0.6454 0.5569 0.5620
ProGNN 0.5713 0.4828 0.5484 0.4853 0.5711 0.4687 0.6136 0.4395 0.6063 0.4345 0.6189 0.4418
GARNET 0.6657 0.6523 0.6611 0.6410 0.6636 0.6236 0.6564 0.6293 0.6708 0.6129 0.6627 0.6452
RT-GCN 0.5343 0.5297 0.5324 0.5087 0.5456 0.5044 0.5336 0.5128 0.5453 0.5043 0.5350 0.5363
Mid-GCN 0.6434 0.6519 0.6384 0.6659 0.6325 0.6507 0.6392 0.6534 0.6275 0.6474 0.6309 0.6428
GLSGNN 0.7295 0.6958 0.7252 0.6938 0.7289 0.6950 0.7517 0.6916 0.7364 0.6950 0.7329 0.6924

Table 3: Results of experiments on attack ratios ranging from 0% to 25%. We compare our model with other popular graph adversarial
defense methods. The result proves that our method have excellent performances under each attack ratio in most metrics.

(a) α-ACC (b) β-ACC (c) γ-ACC

(d) α-AUC (e) β-AUC (f) γ-AUC

Figure 3: The result of classification with different hyper-parameters
of α, β, and γ in the loss function.

3(a), 3(d) show the influence of the weight α of Lsparse vary-
ing from 0.0001 to 0.002. The result shows that our model
performs better when increasing α from 0.0001 to 0.0005,
and then remains stable. Figure 3(b), 3(e) show the influ-
ence of the weight β of Lclass varying from 0.0001 to 0.002.
The result slightly fluctuates when β exceeds 0.0005 as focus-
ing too much on edges connecting similar nodes may intro-
duce unnecessary noises. Figure 3(c), 3(f) show the influence
of the weight γ of Ldiff varying from 0.1 to 1. The AUC
score shows a overall decline when we increase the value of
γ, which is probably due to the fact that limiting changes
to the graph will also to some extent restrict the model’s
ability to purify the graph. In conclusion, we can observe
that our model shows a strong stability with different hyper-
parameters. It implies that different loss items in our joint
loss function can keep a dynamic balance during the learning
of the model, which guarantees the capability of our model in

complicated and volatile situations.
In order to demonstrate the effectiveness of the important

components in our proposed method, we also conduct an ab-
lation study. After ablating the SVD module, the AUC score
falls by 4.6% and the F1 score falls by 3.0%. We also remove
the additional items in the joint loss function and only keep
the cross-entropy loss. In this situation, the AUC score falls
by 2.9% and the F1 score falls by 2.1%. The result of this
experiment validates the necessity of the components of our
GLSGNN in robust fraud detection missions.

5 Conclusion

In this paper, in order to solve the two novel critical chal-
lenges on financial fraud detection: (i) anti-fraud GNN mod-
els are fragile facing attacks from fraudsters on graph data;
and (ii) robust defense models have unsatisfying classifica-
tion precision due to information losses during the process of
truncation or filtering, we propose a novel robust anti-fraud
framework GLSGNN. To mimic the behavior of real-life
fraudsters, we simultaneously implement attacks on graph
structure and features. In order to keep both high robust-
ness and superior performance on classification, our model
learns the adjacent matrix decomposed by SVD in a graph
convolutional network with attention mechanism and spe-
cially designed loss functions, which enables the model to
learn better patterns with a graph being continuously purified
without losing too much details. Experiments on real-world
fraud datasets demonstrate the outstanding performance of
our GLSGNN on fraud detection and robustness compared
with other baselines. The effectiveness of GLSGNN will also
provide the real-life anti-fraud systems and practitioners with
new ideas and inspirations to improve social security and jus-
tice, which will make contributions to economic growth and
social well-being including employment, health and so forth.
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