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Abstract
In recent years, there are trends toward cleaner port
environments through enforcement by imposed
legislation. Transit optimisation of fuel-based port
service boats like harbour tugs has emerged as a
critical task to reduce fuel consumption and car-
bon emission. In this paper, an innovative learning-
based method, comprising a Reinforcement Learn-
ing (RL) model together with a fuel consumption
prediction model, was proposed to formulate fuel-
saving transit routes. Firstly, an ensemble model
is established by combining a Long Short-Term
Memory (LSTM) model with a Multilayer Percep-
tron (MLP) model, predicting fuel use based on
tugboat movement and environment factors. Sub-
sequently, an innovative RL based on Deep De-
terministic Policy Gradient (DDPG) framework is
developed considering the characteristics and ob-
structions of waterway in Singapore as well as the
environmental factors to learn the optimal transit
strategy that minimizes fuel consumption. We also
demonstrate the efficacy of the solution to gener-
ate routes from origin to destination terminals, ex-
hibiting significantly reduced fuel consumption in
comparison to real-world transit scenarios.

1 Introduction
Singapore has been one of the busiest ports in the world
[Chew et al., 2023]. One-fifth of the world’s gross shipping
tonnage and one-half of the world’s crude oil pass through
Singapore’s ports. There are approximately 1,000 ships in
port at any time. One ship arrives or leaves the ports every
two minutes, via the Singapore Strait.

Due to the heavy shipping volume in Singapore’s ports,
harbour tugs which provide ship handling services play
an indispensable and crucial role, including assistance in
berthing/unberthing of ships and maneuvering of ships within
the crowded confines of the port. In recent years, there have
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been trends toward cleaner port environments through en-
forcement by imposed legislation [Caliskan, 2022]. Figure
1 presents the roadmap of the International Maritime Orga-
nization(IMO) on greenhouse gas(GHG) emission reduction
strategies. It sets the timelines with goals and promotes green
technologies for both ocean-going vessels and harbor crafts.
These new legislations would translate to economic pressure
on vessel operators, requiring either retrofitting the fleet ready
for replacement of cleaner fuels or optimising the operation or
both. For example, vessels which are required to meet emis-
sion criteria have to be modified. Modifications include in-
stallation of scrubbers, selective catalytic reduction systems,
humid air motors, or engines which use cleaner fuels. In ad-
dition, vessel operators may adopt operational profiles which
improve fuel efficiencies. Examples of fuel-efficient oper-
ational profiles include imposition of slow steaming or up-
per limits on vessel speeds, or efficient navigational methods
which utilize tide or current conditions to reduce engine de-
mand. Of the energy-saving/emission-reducing methods de-
scribed above, at the current phase, the use of efficient nav-
igational methods is perhaps the most economical to imple-
ment, as these methods do not entail any costly modifications
to the vessels. The use of efficient navigational methods is
perhaps also most suited to small harbour crafts such as har-
bour tugs. Harbour tugs operate in home waters where the
sea/environmental conditions are well-known and data read-
ily available. By mapping and obtaining optimized naviga-
tional profiles, the fuel efficiency of harbour tugs can be im-
proved and operating costs reduced. Higher fuel efficiencies
would result in lower emissions, therefore contributing to de-
carbonization and meeting legislative requirements. In the
interim, the approaches implemented can be also applied to
greener fuels to reduce the operation cost in the future.

In this work, we conducted a systematic study from the
machinery data and tugboat movement traffic data analytics,
quantified the determinant factors, and sitting above, built the
learning-based models including an ensemble model for fuel
consumption estimation/prediction and reinforcement learn-
ing (RL) model to generate optimised fuel saving route be-
tween origin and destination. In comparison with real-world
transit instances in quantitative evaluation, it has been proved

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Special Track on AI for Good

7483



that the routes suggested by the proposal solutions allow sig-
nificant fuel consumption reduction, which in practical ex-
ercise will bring in economic benefit for tug operators and
contribute towards sustainable green port development.

The contributions of this work are highlighted as follows:
(1) We address an industrial problem statement on sustain-

ability in the maritime sector. Sensor data like fuel flow
meter readings, resolution per minute and other engine
states are collected for this study with a comprehensive
distribution and quality analytics that directly contribute
to the downstream learning-based approaches. To the
best of our knowledge, this is the first work to formulate
such a problem and model in a systematic way with real-
world engine sensing data for model training, evaluation
and comparison studies.

(2) By diving into the fuel consumption profiling and dis-
tribution, we propose an ensemble model that combines
LSTM and MLP which ensures the prediction perfor-
mance over the full spectrum of navigational states. This
work also considers comprehensive categories of fuel
consumption relevant features including both the tug
navigational states and environmental factors. The fea-
ture selection is quantitatively guided by the correlation
studies.

(3) We propose a real-time tug route planning algorithm
based on RL. Our solution approach provides a novel
definition of waterway distance and incorporates the
ensemble-based fuel consumption estimation to define
rewards for fuel-saving actions, which is proven to be
effective experimentally.

(4) Our solution approach has been evaluated against histor-
ical transit instances of harbour tugs. The efficacy of the
solution is validated via case studies covering both regu-
lar and irregular cases. The results reveal the promising
applicability of the solutions in practical operations to
substantially reduce fleet fuel consumption.

The remaining of this paper is organized as follows: Sec-
tions 2 and 3 provide a solution overview and data description
and analytic insights; The ensemble model for fuel consump-
tion estimation is explained in Section 4, followed by the RL
modeling elaborated in Section 5. The performance evalu-
ation is presented in Section 6 along with case studies. We
conclude in Section 7 by summarizing the proposed solution
and research findings.

2 Overview of Our Approach
In this paper, we introduce an integrated approach, as illus-
trated in Figure 2, that combines prediction and optimization
models to enhance the efficiency of tugboat transit operations.
The combined model comprises a stacked Long Short-Term
Memory (LSTM) and Multilayer Perceptron (MLP) model,
proficient in predicting transit fuel consumption. Concur-
rently, a Deep Deterministic Policy Gradient (DDPG) model
is integrated to design optimal routes for tugboats while op-
timizing fuel consumption. Significantly, the model is built
based on the Singapore waterways, incorporating environ-
mental factors such as water depth, wind and current. In sum-

Figure 1: IMO’s GHG reduction pathway and primary strategies for
emission reduction.

mary, the solution aims to address the challenges of tugboat
transit, offering a versatile approach that incorporates predic-
tive accuracy and route optimization based on real-world con-
ditions.

Figure 2: Structure of the combined model. It consists of a stacked
LSTM and MLP model and a DDPG model.

3 Data Preparation
The dataset utilized in this study is comprehensive, encom-
passing Automatic Identification System (AIS) data, ma-
chinery data, and environmental data. AIS data records
details of tugboat transit, including navigational states like
speed and course attached with timestamp [Xiao et al., 2020;
Zhang et al., 2022]. Analysis of the frequency distribution
of tugboat speed reveals a range predominantly within 0-16
knots as in Figure 3. Recognizing various operational states
such as waiting, transit, and berthing/unberthing, we employ
filtering criteria based on speed, distance to the harbor, and
proximity to ships to extract the transit state.

From the transit state data, tugboat transit trajectories are
extracted and stored in JSON format for each trajectory, pro-
viding a structured representation of their movements. The
machinery data provides detailed cumulative information on
the fuel consumption of both port and starboard side engines
of tugboats. Integration of the dataset with trajectory data,
based on timestamp alignment with a time interval of approx-
imately 1 minute, facilitates a combined dataset for further
analysis. To visualize the relationship between fuel consump-
tion rate and speed, a plot is generated from the combined
dataset as shown to Figure 4. The visualization provides an
initial insight: when the speed is below 8 knots/s, the mean
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Figure 3: Frequency distribution of speed(knot)

values exhibit a relative consistency, but a noticeable increase
is observed after surpassing 8 knots/s. This observation is
noteworthy when considering the choice of speed will largely
affect the overall fuel consumption. The environmental data,

Figure 4: Distribution of transit fuel consumption rate(Litre/s) ver-
sus speed(knot)

including water depth, wind, and current information pre-
sented in a grid-based format, is merged with trajectory de-
tails based on coordinates. Additionally, to accurately repli-
cate real-world conditions specific to Singapore’s waterways,
detailed information about the Singapore waterway pattern is
included in the dataset. This comprehensive dataset, enriched
with diverse information, forms the basis for our subsequent
modeling, enabling an exploration of factors influencing tug-
boat transit in the Singapore waterway.

4 Fuel Consumption Estimation Model
Given the collected transit data that contains a number
of length-variable trajectories and each of them comprises
evenly sampled points (one point per minute) everywhere,
we advocate for the development of a time-dependent model
functioning as a regressor. It is worth noting that time de-
pendence should be taken into consideration as the fuel con-
sumption rate is influenced by historical features. For exam-
ple, under the same speed at timestamp t, an increase in speed

typically leads to higher fuel consumption, whereas maintain-
ing a constant speed does not.

Based on this insight, we develop an LSTM model which
traverses the trajectories by first encoding the input variables
(mainly including vessel operator parameters and environ-
ment information) within a history time window w and then
projecting the latent representation to the current fuel con-
sumption rate. Specifically, the LSTM model aims to maxi-
mize the following likelihood

LLSTM =
J∏

j=1

|Trj |∏
t=w

p(yt|xt, ..., xt−w), (1)

where J is the number of trajectories and |Trj | denotes the
length of j-th trajectory. The applied LSTM is based on the
cell module proposed by [Alahi et al., 2016], which is also
used for recent ocean engineering [Yuan et al., 2021]. Denot-
ing gate control signal, input gate, forget gate and output gate
by z, zi, zf , zo respectively, which are transformed from last
state ht−1 and current xt, we have

ct = zf ⊙ ct−1 + zi ⊙ z

ht = zo ⊙ tanh(ct)

ŷt = σ(Wht),

(2)

where the predicted ŷt is derived by mapping ht by a linear
layer W with Sigmod as an activation. By assuming that re-
gressor output as a mean of a noisy prediction, characterized
by Gaussian distribution, we use Mean Square Error (MSE)
loss to train the model

MSE(yt, ŷt) = (yt − ŷt)
2. (3)

However, from Figure 5(a) we can observe that the trained
LSTM is not sufficient for real usage; it performs well on
the group of data whose true fuel consumption is lower while
incurring relatively larger errors on higher true fuel consump-
tion data, known as a lack of subgroup robustness [Liu et al.,
2021]. We find this phenomenon can be attributed to the data
imbalance, shown in Figure 5(b). It is obvious that error is
strongly negatively correlated with data density. Recent re-
search advocates increasing the importance of scarce data.
We then conduct oversampling on the minority of training
data so that the training data exhibits an approximately uni-
form distribution, which is proved more stable than its coun-
terpart reweighting strategy by the recent advance [An et al.,
2021]. Disappointingly, according to our experiments (his-
tograms w/ oversampling in Figure 5(a), LSTM cannot bene-
fit much from this workaround, probably because the unreli-
able time-dependence (e.g., noisy) on limited data is uninten-
tionally amplified by oversampling.

We address this issue by additionally employing an MLP
model (also with loss of Eq. (3)) to capture the instant relation
between input and output at each timestamp t, which virtually
takes advantage of oversampling strategy [Steininger et al.,
2021] but not as precise as LSTM on low fuel consumption
data. Hence, we combine them by trusting MLP on larger
predictions while trusting LSTM on smaller predictions. In
practice, we do fuel estimation in the following scheme

ŷt =

{
MLP(xt), if MLP(xt) > 9
LSTM(x(t−w):t), otherwise. (4)
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Figure 5: LSTM fails to do precise prediction on scarce data, which
cannot be remedied even with the data augmentation technique.

Note that Eq. (4) used for efficacy testing or down-streaming
reinforcement learning does not touch true yt. Such an en-
semble is demonstrated as simple and efficient (Refer to Sec-
tion 6.1).

5 RL-Based Fuel-Saving Route Planning
A state-of-the-art RL framework, termed Deep Deterministic
Policy Gradient (DDPG) [Lillicrap et al., 2016] was proposed
to simulate the movement and fuel consumption of tugboat in
the Singapore port. The following subsections describe the
basic principle of DDPG and several important definitions of
tugboat optimization based on DDPG.

5.1 DDPG
DDPG is one of the advanced algorithms in deep reinforce-
ment learning, which combines the advantages of deep learn-
ing and deterministic policy gradients algorithm with the
Actor-Critic structure. DDPG contains an actor network and

a critic network. The actor network (µ) is a policy network
that takes the state si as input and outputs action ai, as for-
mulated by

ai = µ (si|θµ) , (5)
where θµ is the weights of µ. The critic network is a Q-value
network that takes both the state si and action ai as input and
outputs the Q-value (qi), as shown by

qi = Q
(
si, ai|θQ

)
, (6)

where θQ is the weights of Q. The loss function of the critic
network is

LQ =
1

N

∑
i

(
yi −Q (si, ai) |θQ

)2
, (7)

and
yi ≈ ri + γQ′

(
si+1, µ

′
(
si+1|θµ

′
)
|θQ

′
)
, (8)

where y is the target Q-value and µ′ and Q′ are the target ac-
tor and critic networks, which are initialized with the same
weights of actor and critic networks, respectively. The ob-
jectives of training the critic network is to minimize LQ, as
indicated by

θQ
∗
= argmin

θQ

LQ, (9)

where θQ
∗

is the optimal weights. The actor network pro-
duces the action that can obtain the highest Q-value. There-
fore, the objective of µ is to maximize the following function,
as defined as

Lµ =
1

N

∑
i

Q
(
si, ai|θQ

)
. (10)

The gradient ascent algorithm is adopted by calculating the
gradient of Lµ to the weights θµ, as formulated by

▽Lµ (θ
µ) =

1

N

∑
i

▽Q
(
s, a|θQ

)
(a)▽ µ (s|θµ) (θµ) .

(11)
The updates for the weights of the target networks are based
on the following rules, as shown by

θQ
′
= τθQ + (1− τ) θθ

Q′

, (12)

and
θµ

′
= τθµ + (1− τ) θθ

µ′

, (13)
where τ is a preset soft replacement, and 0 < τ < 1.

5.2 Environment and State
The environment is simulated based on real-world naviga-
tional conditions in Singapore. It consists of the boundaries
of the Singapore waterway as well as the environmental infor-
mation including water depth, current and wind. Considering
the definition of the state, it should take into account that the
current state is sufficient to provide all the important infor-
mation for the agent to predict the next states [Moradi et al.,
2022]. For this work, the state comprises the following infor-
mation:

• Current latitude (φ) of the tugboat;
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• Current longitude (λ) of the tugboat;

• Course over ground (COG) at the last state;

• Wind direction and force;

• Current direction and force;

• Water depth.

5.3 Agent and Action
Since DDPG is an algorithm designed specifically for envi-
ronments with continuous action spaces, we represent the ac-
tions by continuous values. In this study, we will define the
continuous action space of the agent from two perspectives,
i.e., COG (c) and speed over ground (SOG) (v) of the tugboat.

For the SOG action, the selection of speed (v) for the tug
boat should satisfy the following constraint referring to the
speed frequency distribution, as shown by

3 ⩽ v ⩽ 16, (14)

where the unit of speed is in knot. Another action to gener-
ate is the COG, which is in the range of [0, 360). Apart from
the magnitude of SOG and COG, another constraint that is
very critical in real cases is the tugboat can only travel within
the navigable waterway boundary. If the next state generated
based on the action is out of the navigable waterway bound-
ary, such as encounter land, pier, restricted area, etc., a value
of 2 degrees will be added or deduced to make an iterative ad-
justment on COG until the agent makes a valid action either
by turning clockwise or counter-clockwise.

5.4 Reward
The reward consists of 3 parts. The first part is a waterway
distance reward (D). It should be noted that waterway dis-
tance is not a straight-line distance, instead it is the common
route distance over the extracted regular waterway pattern for
harbour tugs. The rationale behind using waterway distance
is that straight-line distance will confuse the model in the
case of the blockage of the island/land area ahead between
the current position of harbour tug to the destination terminal.
To implement the waterway distance calculation between any
two positions within the port water, an Application program-
ming interface (API) is developed to generate the passage
plan over the waterway pattern using an enhanced Theta* al-
gorithm [Daniel et al., 2010]. The API accepts two position
coordinates (latitude and longitude) and returns the distance
between the two coordinates. Then, the waterway reward is
calculated based on the ratio of the waterway distance of the
next state to the destination and the waterway distance of the
origin to the destination, a negative reward will be given in
order to punish the move leading to far away from the desti-
nation and to encourage the move closer the destination. The
second part is the turning reward (T ), as the tugboat is not
encouraged to make big turnings. If the turning is within 60
to 90 degrees, half of the magnitude of the turning degree
will be given as punishment, and if the turning is more than
90 degrees, there will be a negative reward for the turning
degree. The third part is the fuel consumed (F ), which is a
negative reward based on the prediction from the fuel con-
sumption estimation model. A reward of 3000 is given when

the agent reaches the destination successfully [Muñoz et al.,
2019]. The reward function is formulated as

r(si, ai) =

{
+3000 if succeed
−k1 × Fi,i+1 − k2 ×Di+1 − k3 × Ti,i+1 otherwise .

(15)

5.5 Actor-Critic Networks Architecture
Both the actor and critic networks are based on a Multi-Layer
Perceptron (MLP), which consists of 2 hidden layers with 512
nodes at each layer. The hidden layers employ ReLU as their
activation functions. The output layer of the actor network
uses a Tanh activation function to produce actions within -1
to 1 and the critic network’s output layer estimates the Q-
function and does not have an activation function.

The proposed RL algorithm for fuel-saving route planning
for harbor tugs has been illustrated in Algorithm 1. Steps
1 and 2 initialize the weights for actor and critic networks
as well as the target actor and target critic networks. Step 3
initializes the replay buffer. Steps 4 to 23 involve training the
entire network with each episode in the context of RL. Step 5
initialize the state. Steps 6 to 22 obtain the data for each time
step within the episode for training. Steps 7 and 8 get the
action and next state. If the obtained next state is within the
navigable waterway boundary, reward and network weights
will be updated accordingly (from steps 10 to 17). Otherwise,
an updated COG will be assigned for the action at to repeat
the process from step 8 until the derived next state meets the
requirement.
Algorithm 1 DDPG for fuel-saving route planning

1: Initialize θQ and θµ for critic and actor networks;
2: Initialize θQ

′
and θµ

′
for target networks with θQ

′ ← θQ

and θµ
′ ← θµ;

3: Initialize replay buffer R;
4: for episode = 1, · · · ,M do
5: Receive initial state s1;
6: for t = 1, · · · , T do
7: at = µ(st|θµ) +Nt;
8: Execute action at and obtain next state st+1;
9: if st+1 is in navigable waterway boundary then

10: Calculate waterway distance;
11: Get reward rt;
12: Store transition (st, at, rt, st+1) in R;
13: Sample a minibatch (si, ai, ri, si+1) from R;
14: Update θQ by minimizing LQ;
15: Update θµ by maxmizing Lµ;
16: Update θQ

′
based on Eq. (12);

17: Update θµ
′

based on Eq. (13);
18: else
19: Increase/reduce COG in at to get new next

state st+1;
20: Repeat the process from step 8;
21: end if
22: end for
23: end for

6 Results & Discussion
The experiment for tugboat route planning is based on trajec-
tory. We randomly select some historical transit trajectories
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and train the model based on the real-time environment. A
new route is suggested by the model and the total fuel con-
sumption of the trajectories are compared.
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Figure 6: Fuel estimation examples on selected trajectories.

6.1 Estimation Performance
We test the proposed fuel consumption estimation model on
a prepared test set to validate its efficacy. Beside MSE,
MAE (mean absolute error), R2 (R Square), and Ratio (Pre-
dicted/true value) are used as evaluation metrics. By chang-
ing the employed threshold (default as 9) to zero or infin-
ity, we can simply obtain the MLP and LSTM model, whose
overall prediction performance is summarized in Table 1.
We can see that by leveraging the MLP, the average fuel
consumption error can be eventually reduced by 0.34L/min,
demonstrating the effectiveness of the proposed ensemble
model.

Metric MSE MAE R2 Ratio (%)
LSTM 3.76 1.23 0.58 106.90
MLP 5.77 1.83 0.51 130.89

Ensemble 2.50 0.89 0.71 102.89

Table 1: Fuel consumption performance on the test set.

Figure 6 also exhibits the predicted results on some ran-
domly selected trajectories. It is evident that given both ves-
sel operations and real-time environmental information, the
proposed model can be trained to have the capability to pre-
dict the consumed fuel for each time interval while also ef-
fectively capturing the underlying trends.

Figure 7: Instance Case 1: Historical human-operated route (top)
versus our solution (bottom)

6.2 Instance Case 1

In the figures depicted above, the blue dot denotes the ori-
gin, while the orange dot signifies the destination. The his-
torical trajectory reveals a pattern where the tugboat travels
a considerable distance away from the Pasir Panjang Termi-
nal before returning, resulting in a prolonged route associ-
ated with elevated fuel consumption. In contrast, the optimal
route recommended by the model advocates for the tugboat
to sail close to the terminal. This strategic adjustment leads
to a remarkable reduction, approximately three-fourths, in the
overall fuel consumption. The visual representation empha-
sizes the tangible benefits of the model’s trajectory sugges-
tions, showcasing its potential to significantly enhance fuel
efficiency in tugboat transit operations.

Figure 8: Instance Case 2: Historical human-operated route (top)
versus our solution (bottom)
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6.3 Instance Case 2
In this particular scenario, the tugboat initiates its journey
from the terminal and proceeds towards the island. How-
ever, in the historical trajectory, an observable deviation oc-
curs as the tugboat follows a curved path on its way to the
terminal. Conversely, the model recommends a more direct
and efficient route—a straight line guiding the tugboat from
the western island to the terminal and then along the termi-
nal to its destination, similar to the actual case. This opti-
mized trajectory, characterized by reduced turns and a more
direct path, contributes to a noteworthy reduction in fuel con-
sumption owing to the shorter overall distance covered. The
model’s ability to suggest more streamlined routes shows its
potential to enhance fuel efficiency and operational effective-
ness in tugboat transit scenarios.

6.4 Instance Case 3
In this case, a comparison between the historical transit tra-
jectory and the route suggested by the model reveals dis-
tinct path patterns from the origin to the destination. The
model, however, proposes a more optimized way of transit,
demonstrating the utilization of both environmental factors
and speed. Notably, the historical trajectory, with a time in-
terval of 1 minute between each data point, exhibits dense
clusters of points, indicative of the tugboat moving at a rela-
tively low speed, while based on the plotting of FO rate versus
speed, low speed may not lead to low total fuel consumption,
which meets the transit suggestion from the model. Further-
more, this observation indicates the model’s ability to recom-
mend routes that make efficient use of vessel speed and lever-
age environmental conditions to minimize fuel consumption.

Figure 9: Instance Case 3: Historical human-operated route (top)
versus our solution (bottom)

6.5 Fuel Consumption Table
The table below presents the results of historical fuel con-
sumption alongside the fuel consumption suggested by the
model for three distinct cases. Notably, across all three cases,
there is a substantial reduction in fuel consumption in the

Figure 10: Platform dashboard implemented to facilitate fuel-saving
transit training and instruction for tug masters

model-suggested transit compared to historical data. This ob-
servation underscores the potential for significant improve-
ments in the way current tugboats navigate, indicating a clear
need for optimizing fuel consumption. The discernible re-
duction in fuel consumption also highlights the efficacy of
the proposed model in offering more efficient transit routes.

Case No. Historical Fuel Con-
sumption (Litre)

Model Fuel Con-
sumption (Litre)

1 306.8 L 79.7394 L
2 174.2 L 148.7517 L
3 181 L 117.3034 L

Table 2: Comparison of historical and model total fuel consumption

6.6 Dashboard Implementation

In accordance with the optimisation models, we have imple-
mented a platform system that can support the retrospective
review of harbor tug transits for fuel-saving operations. The
dashboard developed is illustrated in Figure 10, which allows
directly comparing the optimised transit solutions (through
RL-based fuel-saving route generation and speed pattern)
with the historical real-world transit and also qualifies the
amount of fuel consumption and saving. This helps the tug
masters acquire essential insights on how to achieve fuel-
efficient transits based on real-world instances.

7 Conclusion
In this paper, we introduce an integrated approach that in-
tegrates a fuel consumption prediction model with a Deep
Deterministic Policy Gradient (DDPG) model for optimizing
tugboat transit operations. The integrated model adeptly sug-
gests optimized transit routes for tugboats, leveraging both
speed and environmental factors to enhance operational effi-
ciency. Through trajectory-based analysis, our model consis-
tently demonstrates a substantial reduction in total fuel con-
sumption, indicating significant opportunities for further opti-
mization in tugboat transit trajectories. The results also affirm
the model’s efficacy in contributing to fuel savings and under-
score its potential for practical implementation in real-world
tugboat operations.
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