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Abstract
Substance use is a global issue that negatively im-
pacts millions of persons who use drugs (PWUDs).
In practice, identifying vulnerable PWUDs for ef-
ficient allocation of appropriate resources is chal-
lenging due to their complex use patterns (e.g.,
their tendency to change usage within months) and
the high acquisition costs for collecting PWUD-
focused substance use data. Thus, there has been a
paucity of machine learning models for accurately
predicting short-term substance use behaviors of
PWUDs. In this paper, using longitudinal survey
data of 258 PWUDs in the U.S. Great Plains col-
lected by our team, we design a novel GAN that
deals with high-dimensional low-sample-size tab-
ular data and survey skip logic to augment exist-
ing data to improve classification models’ predic-
tion on (A) whether the PWUDs would increase us-
age and (B) at which ordinal frequency they would
use a particular drug within the next 12 months.
Our evaluation results show that, when trained on
augmented data from our proposed GAN, the clas-
sification models improve their predictive perfor-
mance (AUROC) by up to 13.4% in Problem (A)
and 15.8% in Problem (B) for usage of marijuana,
meth, amphetamines, and cocaine, which outper-
form state-of-the-art generative models.

1 Introduction
Substance use can create short- and long-term negative con-
sequences for persons who use drugs (PWUDs) [HHS, 2023;
Newcomb and Bentler, 1989; NIDA, 2020]. These conse-
quences include mental illness, HIV/AIDS, hepatitis, drug
overdose, and death. Within the U.S. alone, an estimated
161.8 million people aged 12 or older used a substance (out
of which 40.0 million used an illicit drug) in the past month
before being interviewed in 2021 [SAMHSA, 2022]. Further-
more, according to [NIDA, 2023], substance-involved over-
dose deaths, including those related to illicit drugs and pre-
scription opioids, continue to increase over the years, with
106,699 deaths in 2021 compared to 91,799 (+16%) in 2020
and 70,630 (+51%) in 2019. This alarming trend also applies
globally, with the estimated number of PWUDs in the past

12 months reaching 296 million in 2021 from 240 million in
2011 (out of which 39.5 million and 27.3 million had drug
use disorders, respectively) [United Nations, 2023b].

In response to these large-scale negative impacts, vari-
ous public and private organizations around the globe have
prompted initiatives for preventing and reducing substance
use at both population and individual levels. Prominent
examples are the United Nation’s Sustainability Goal 3:
“Strengthen the prevention and treatment of substance abuse”
[United Nations, 2023a] and U.S. Department of Health and
Human Services (HHS)’s Healthy People 2030: “Reduce
misuse of drugs and alcohol” [ODPHP, 2020].

Generally, approaches toward these initiatives focus on
designing and deploying intervention and outreach pro-
grams/resources (e.g., rehabs and consulting services) for
PWUDs, with the main goal of reducing and eliminating
their usage of certain substances [Ray et al., 2020; Colledge-
Frisby et al., 2023]. While these programs and resources have
shown to be effective to some extent [Ouimette et al., 1997;
Tanner-Smith et al., 2016], they often require volunteer par-
ticipation from PWUDs, who face the difficulties and re-
luctances of (self-)evaluating and (self-)determining whether
they want or need help [Russell et al., 2021; Wilson and
Brown, 2023]. Even when PWUDs agree to use these pro-
grams/resources, they may have already experienced prior
harms such as overdose and mental illness [SAMHSA, 2021;
Andersson et al., 2023]. Therefore, it is important to prevent
harm from occurring in the first place by carefully identify-
ing PWUDs at the highest risk (i.e., those who are prone to
drastically increase usage of some drug) and allocating them
appropriate resources to reduce or eliminate potential harms.

Unfortunately, forecasting individual substance use behav-
ior is challenging due to its complex patterns (e.g., drug
use frequency and co-use of multiple drugs) and tendency
to change over time at short timescales (i.e., within months)
[Karamouzian et al., 2022; Linden-Carmichael et al., 2022;
Lorvick et al., 2023], as well as the lack of appropriate data
and models for predicting short-term future substance use
(see Existing Efforts and Limitations and additional con-
tents in the full paper attached in the supplementary material).

Thus, our goal is to design accurate predictive models for
modeling short-term drug usage (i.e., within months) from
PWUDs to aid healthcare agencies, local communities, poli-
cymakers, and other stakeholders in the efficient allocation of
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resources to PWUDs who need the most help. An effective
predictive model has the potential to improve the well-being
of millions of PWUDs and hampers the ongoing rapid growth
of drug use prevalence and drug overdose death rates.

Our Approach and Associated Challenges. To address
the above shortcomings of substance use data and models, we
formed a collaboration between computer scientists and do-
main experts in substance use research, including social sci-
entists, intervention specialists, and survey interviewers from
University of Nebraska-Lincoln and Rural Drug Addiction
Research Center. With IRB approval, our team recruited a lo-
cal sample of 258 PWUDs in the Great Plains of the U.S. from
which longitudinal survey data were collected and stored in
tabular format (detailed below in Section 2.1). Despite its
high value and relevance to our stated goal, the sample size is
small due to various challenges during data collection (mainly
disruptions due to COVID-19 and the lack of visible harm re-
duction movements and punitive laws in the region), As a
result, our preliminary predictive models trained on currently
available data achieved subpar performance with respect to
the baseline (demonstrated in our full paper). These models
seem to overfit due to the limited training examples (<200)
with respect to the number of (preprocessed) features (>600).

One effective way to tackle overfitting on small datasets
is via data augmentation [Shorten and Khoshgoftaar, 2019]
i.e., creating synthetic samples based on real data to increase
its sample size. Deep generative models such as the popu-
lar Generative Adversarial Network (GAN) [Goodfellow et
al., 2014] provide powerful tools for this purpose due to their
flexibility in representing complex and high-dimensional data
distributions. In recent years, these models have been ex-
tended to generate tabular data, especially healthcare records,
using specialized architectures (e.g., GOGGLE [Liu et al.,
2022]) and/or novel training algorithms (CTGAN [Xu et al.,
2019]), which in turn achieved promising performance across
different evaluation criteria.

However, these models were benchmarked mostly on mod-
erate to large datasets that typically contain at least thousands
of training examples. In rare cases when being applied on
small datasets with less than 1000 samples, e.g., Diabetes
(768) and Breast (569) [Street et al., 1993] as reported respec-
tively in the work for GOGGLE and TabDDPM [Kotelnikov
et al., 2023], the proposed models and its selected compara-
tives often either fail to or narrowly outperform simple base-
lines such as Bayesian networks [Pearl, 2011] and SMOTE
[Chawla et al., 2002] in terms of their considered evaluation
metrics. The benchmark datasets for state-of-the-art models
also contain no more than 200 features, which is substantially
smaller than the size of our feature set (>600 after prepro-
cessing). Additionally, the survey used for collecting our tab-
ular data contains skip logic, a commonly employed function-
ality in survey design for social science applications [Fowler,
1995; Dillman et al., 2014], which has not been addressed by
the aforementioned state-of-the-art models.

Our Contributions. In this paper, we design a novel spe-
cialized generative model to augment our tabularized survey
data with skip logic in order to improve the predictive perfor-
mance of our classification models, which ultimately predict

the following two short-term substance use behaviors: for a
given PWUD and a certain drug, (A) whether they would in-
crease its usage and (B) at which frequency (on a pre-defined
ordinal scale) they would use it within the next 12 months.
We summarize our contributions as follows:

(I) We believe ours is the first work that addresses skip logic
from surveys in tabular data generation. We demonstrate
its practical value by showing both conceptually and em-
pirically how enforcing constraints from skip logic (or
skip constraints for brevity) positively affects the train-
ing of our generative model. We are also one of the first
to investigate the real-world feasibility of deep gener-
ative models in settings where the number of features
exceed the sample size i.e., high-dimension low-sample-
size (HDLSS). (See Related Work in our full paper.)

(II) We design a novel GAN that deals with small tabular
data containing <258 samples and 210 features (209
plus one target variable). Specifically, we leverage CT-
GAN [Xu et al., 2019], a well-known tabular GAN, by
incorporating an auxiliary classifier [Park et al., 2018;
Zhao et al., 2022] within its architecture to generate
high-quality samples conditioned on the corresponding
target variable. Since the transformed feature space has
high dimensionality (over 600), we also embed a global
feature selection mechanism while training the auxil-
iary classifier’s by employing the novel approach from
[Margeloiu et al., 2023] that was shown to perform well
on even smaller and higher dimensional data than ours.
Finally, to enforce the skip constraints stated in (i), we
take advantage of CTGAN’s built-in conditional vector.

(III) We implement and train the proposed GAN and use it to
augment our (training) data. The augmented data is then
used to train binary and multiclass classification mod-
els for predictive problems (A) and (B), respectively,
for each of the following drugs: marijuana, metham-
phetamine, amphetamines, and cocaine. Our experimen-
tal results show that the average Area under the Receiver
Operating Characteristic curve (AUROC) evaluated on
multiple distinct sets of test data is improved by up to
13.4% in Problem (A) and 15.8% in Problem (B) when
the data is augmented, which is significantly higher than
what yielded using state-of-the-art generative models.

2 Problem Description
2.1 Background
Our Tabular Data. The recruitment of PWUDs started
in 2019 under the respondent-driven sampling scheme
[Heckathorn, 2014] in the Great Plains of the U.S. and has
continued to the present time. Enrolled PWUDs were fol-
lowed up within 4–12 months after their initial visit and took
the same survey as before. In the survey, each PWUD an-
swered questions on a computer regarding their individual at-
tributes, including the drug use behavior of 18 different drugs.
Use frequencies of considered drugs (e.g., marijuana, co-
caine, amphetamines, and methamphetamine) were inquired
on an ordinal scale (1–8) of {never, less than once a month,
once a month, once a week, 2–6 times a week, once a day,
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2–3 times a day, 4 or more times a day}. Collectively, the re-
sponses to these questions form the (raw) features stored in a
2-D table.There are 258 samples (each represented as a row)
and 151 features (each represented as a column) in total. (See
supplementary material for the survey questions.) After be-
ing preprocessed (detailed in Section 4.1), the table contains
209 features (plus the target variable for teaching the desired
classification models): 2 continuous and 207 categorical.

Definition 1 (Skip Logic). In survey design, skip logic is
a set of automated navigational rules that allows respondents
to skip to relevant questions depending on their prior answers
[Couper, 2008]. Each of the rules is defined as a skip con-
straint, which restricts the possible values of a subset of fea-
tures A in accordance with the value of some feature a. We
say the skip constraint on the chain A is imposed by a and
denote this as a → A. For the example in Figure 1, the skip
constraint on A = {TB4} is imposed by a = TB3 i.e., TB3
→ {TB4}, in which TB4 is omissible when TB3=“No”.

TB3 In the past 6 months, have you smoked cigarettes?
No (0) — SKIP TO TB5
Yes (1)

TB4 How many cigarettes do you usually smoke in a day?
Not at all (1)
Less than 1 cigarette a day (2)
1-5 cigarettes a day (3)
Half a pack a day (4)
A pack or more a day (5)

Figure 1: Skip Logic: If respondents answer “No” in TB3, they will
automatically be directed to TB5 without being asked on TB4.

Definition 2 (Tabular Data Generation). Following the
notations from [Xu et al., 2019], given a table Treal that
is partitioned row-wise into training set Ttrain and test set
Ttest, the task involves training a data generator G on Ttrain

and then independently sampling rows using the learned G to
generate a synthetic table Tsyn such that |Tsyn| = |Ttrain|
with similar probability mass function for some target vari-
able, y (defined in Section 2.2) (in order for us to fairly eval-
uate the efficacy of G).

Note that a capable G can satisfy the latter requirement
without affecting the overall quality of the generated syn-
thetic samples—that is, the features in each generated row
should be consistent with the label in that row. For our set-
ting, Treal and its derivatives consist of Nc = 2 continuous
features and Nd = 207 + 1 categorical features.

Definition 3 (GAN and Its Extensions). GANs are deep
generative models that have recently found success in mod-
eling tabular data [Borisov et al., 2022] in addition to images
and text. A GAN typically consists of two separate networks:
a generator G that maps a noise distribution (typically Gaus-
sian) to the data distribution and a discriminator D that es-
timates the probability an input sample came from the data
distribution. The learning process is defined as an adversarial
game between G and D in which G attempts to consistently
fool D [Goodfellow et al., 2014].

To stabilize the training of GANs, [Arjovsky et al.,
2017] introduce WGAN that provides a meaningful loss, the
Wasserstein distance, for quantifying the difference between
the generated and real data distributions. Using the value

function from WGAN-GP [Gulrajani et al., 2017] (an im-
provement of WGAN), [Xu et al., 2019] design CTGAN that
aims to tackle class imbalance in categorical features of tabu-
lar data by modifying G to additionally take a vector as in-
put. This so-called conditional vector represents a certain
class/category of some categorical feature and is used to con-
dition both the generated samples and the real training sam-
ples. The model can thus efficiently learn proper conditional
distributions for each feature. We further describe the main
components of CTGAN in Section 3.2.

2.2 Problem Formulation
In this work, we focus on data augmentation by designing a
novel GAN to generate high-quality synthetic samples that re-
semble our tabular data with small sample size and skip logic
incorporated. The augmented data is then used to train classi-
fiers for predicting PWUDs’ usage of a given drug within the
next 12 months, including (A) whether they would increase
its usage and (B) at which ordinal frequency they would use
it. The former is a binary classification problem wherein
PWUDs exhibiting an increase and non-increase (i.e., de-
crease or unchanged) in usage belong to the positive and neg-
ative class, respectively; the latter is a multiclass classification
problem in which PWUDs are labeled according to their or-
dinal usage of the corresponding drug within 12 months after.
We mainly concern with predicting usage of the most preva-
lent drugs (i.e., used by at least half of the PWUDs in our
tabular data), which include marijuana, methamphetamine (or
meth for brevity), amphetamines, and cocaine.

There are two unique properties of our tabularized survey
data that impede existing generative and predictive models
from achieving desirable performance: being high-dimension
low-sample-size (HDLSS) and the presence of skip logic
(whose impact is demonstrated in Challenges and Obser-
vations of the full paper).

3 Our Proposed GAN
3.1 Overview
We focus on GAN architectures due to their prevalence in tab-
ular data generation literature [Borisov et al., 2022] and their
convenient properties (e.g., flexibility for conditional genera-
tion) that help us approach the discussed challenges system-
atically. Overall, we extend the popular CTGAN (reviewed
in Section 3.2) as follows:

i) Due to the large number of (categorical) features, it is
difficult for the conditional generator G to learn to gen-
erate samples that are conditioned on a particular fea-
ture. Therefore, during the training of G, we raise the
production of synthetic samples in order to ensure ade-
quate training for conditional generation on a wide range
of features. Furthermore, we prioritize the generation of
synthetic samples that are conditioned on the empirical
distributions of the target variable.

ii) To enhance the quality of synthetic samples conditioned
on the target variable y, we incorporate an auxiliary
classifier C [Park et al., 2018] into the architecture of
CTGAN for learning the correlation between y and other
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features. That is, C is trained to predict the label of an
input (synthetic or real) sample with y removed.

iii) Within C, which is originally a multilayer perceptron
(MLP), we add two auxiliary networks that together per-
form global feature selection and compute the weights of
the first hidden layer of C [Margeloiu et al., 2023]. The
objectives of this addition are twofold: facilitate effec-
tive learning by C on HDLSS data and provide a mean
to approximate the feature importance scores.

iv) Lastly, we enforce skip logic on synthetic samples dur-
ing training by leveraging CTGAN’s conditional vector.

3.2 Conditional Generator
We first revisit the two main components of CTGAN, the con-
ditional generator and the training-by-sampling procedure.
Formally, the conditional generator takes a vector cond as
additional input, which represents the condition (Di∗ = k∗)
for some category k∗ of the i∗th categorical feature Di∗ ∈
{D1, . . . , DNd

} (∗ denotes the selected feature/category in
cond). It is worth noting that each condition only involves
one category of one categorical feature and does not involve
any continuous features. The sampling of cond is twofold:
sampling for the i∗th categorical feature and sampling for the
k∗th category of that feature. Let ⊕ denote vector concatena-
tion e.g., given x1 = [0, 0, 0] and x2 = [1, 0], x1 ⊕ x2 =
[0, 0, 0, 1, 0]. If each categorical feature Di is encoded as
a one-hot vector di = [d

(1)
i , . . . ,d

(k)
i , . . . ,d

(|Di|)
i ], where

|Di| is the number of categories in Di and d
(k)
i ∈ {0, 1},

then cond is defined as cond = m1 ⊕ . . . ⊕ mNd
where

mi = [m
(1)
i , . . . ,m

(k)
i , . . . ,m

(|Di|)
i ] is the mask vector of

zeros associated with di with m
(k)
i = 1 at i = i∗ and k = k∗.

To ensure the generator produces samples in accordance with
the given conditions, a cross-entropy term measuring the dif-
ference between mi∗ from the input cond and the generated
(denoted by ˆ) one-hot feature d̂i∗ is added to its loss.

To help the model evenly explore all possible categories
in categorical features, a procedure for sampling the cond
vector, termed training-by-sampling, is employed in CTGAN
as follows: randomly choose a categorical feature Di∗ with
uniform probability; construct the probability mass function
across the categories available in Di∗ by taking the loga-
rithm of their frequencies in that feature (with respect to all
training examples in Ttrain); then sample a category k∗ ac-
cordingly and calculate the corresponding mi∗ and cond.
Afterward, the cond vector is used to condition both syn-
thetic and real training samples in order for the discriminator
to properly estimate the (Wasserstein) distance between the
learned and real conditional distributions PG(row|cond) and
P (row|cond), respectively.

We design our GAN to place more emphasis on generating
samples conditioned on y by leveraging the conditional gen-
erator (discussed in the following paragraph) as well as other
known techniques (discussed in subsequent subsections).
Proper Conditional Generation in HDLSS Setting. In
each iteration of CTGAN, cond is sampled twice during the
respective training of the discriminator D and the genera-
tor G, with sample size equal the specified batch size for

both. For our HDLSS setting with |Ttrain| < 200 and
over 600 columns/available conditions to consider, even when
the batch size is maximally set to |Ttrain|, any condition
(Di∗ = k∗) would either be missing or inadequately sam-
pled in the minibatch, and hence it would be impossible for G
to properly learn to produce samples that preserve the input
conditions. Therefore, we increase the sample size of cond
and hence the number of synthetic samples to generate dur-
ing the training of G by a factor of q > 1 with respect to
the batch size (q = 1 in CTGAN). Moreover, instead of ran-
domly sampling Di∗ while constructing cond, we want G to
sample certain features more frequently than others in order
to prioritize learning their conditional distributions, particu-
larly for the target variable y since our main purpose of gen-
erating synthetic samples is to help classification models im-
prove their prediction on y. Therefore, we dedicate a portion
of cond to conditions solely for y. We discuss on how we
sample the remaining Di∗ ’s in Section 3.4.

3.3 Auxiliary Classifier
Incorporating an auxiliary classifier C into GAN architec-
ture has been shown to improve conditional generation qual-
ity for both image and tabular data [Odena et al., 2017;
Park et al., 2018]. C takes either a synthetic or a real sam-
ple having its label removed as input and aims to predict that
label. Its loss, termed classification loss [Park et al., 2018],
quantifies the discrepancy between the label of a real sample
and the label predicted by C for that same sample, which is
formulated as binary and categorical cross entropy for Prob-
lems (A) and (B), respectively. The addition of C also intro-
duces an extra loss term into the loss function of G, which has
the same form as the classification loss but concerns synthetic
samples instead. We refer to this loss as downstream loss as
in [Zhao et al., 2022]. Altogether, C is trained to learn the ac-
tual correlation between the label and the features, then teach
G how to generate realistic samples accordingly.

The synthetic samples that are fed to C are conditioned via
the cond vector that is sampled earlier during the training of
G (we iteratively train D ▶ G ▶ C). Since we are mainly con-
cerned with learning the conditional distribution for the target
variable PG(row|y), we only feed synthetic samples that were
conditioned on y to C when computing the downstream loss.
The proper conditional generation step in Section 3.2 ensures
that we have sufficient amount of such samples for training C.

3.4 Learning Important Features
The auxiliary classifier C was originally proposed to be an
MLP having the same architecture as D [Park et al., 2018].
On HDLSS data, however, C is very likely to overfit, es-
pecially during the first few iterations and epochs when
C encounters few training (either real or synthetic) exam-
ples, which in turn would negatively impact G. Recently,
[Margeloiu et al., 2023] propose a way to overcome over-
fitting on HDLSS tabular classification problem by adding
two auxiliary networks before the first hidden layer of some
classification neural network in order to reduce the num-
ber of its learnable parameters and simultaneously perform
global feature selection. We generalize this idea by integrat-
ing these networks into C to prevent it from overfitting. Fur-
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thermore, by leveraging the global importance scores s =
[s1, . . . , sN ] ∈ (0, 1)N (higher indicates greater importance)
for N features, which are learned by one of the auxiliary
networks, we can inform the conditional generator of impor-
tant categorical features during training-by-sampling. More
specifically, while sampling the cond vector, we sample fea-
tures Di (excluding the target variable y) each with probabil-
ity proportional to its important score si. Hence, conditions
for features that have significant effects on the prediction of
y are sampled more frequently, allowing G to prioritize gen-
erating synthetic samples conditioned on those features.

3.5 Enforcing Skip Logic
We first provide an intuitive explanation of how enforc-
ing skip logic on synthetic samples can benefit the train-
ing of our GAN. Recall that CTGAN attempts to mini-
mize the Wasserstein distance between PG(row|cond) and
P (row|cond), where cond represents some condition (Di∗ =
k∗) as defined earlier in Section 3.2. Let cond1 and cond2
be two distinct samples of cond with different sampled fea-
tures e.g., D1 (i∗ = 1) and D2 (i∗ = 2), respectively (and
hence different sampled categories). With the presence of
skip logic, if D1 and D2 both belong to the same chain im-
posed by another feature D3 and the corresponding skip con-
straint D3 → {D1, D2} is enforced such that both D1, D2

are omissible, then cond1 and cond2 must be redefined to
match the same conditional vector, cond∗, that satisfies such
constraint i.e., (D1 = [BLANK]) AND (D2 = [BLANK]). It
follows that on real data, P (row|cond1) = P (row|cond2) =
P (row|cond∗). This implies that the corresponding synthetic
samples associated with either condition should follow the
same distribution PG(row|cond∗). Therefore, enforcing skip
logic by inferring cond∗ effectively reduces the search space
for PG , which leads to more efficient and stable learning and
hence more consistency in the quality of the generated sam-
ples. We empirically demonstrate this claim in Section 4.2.

Existing methods for enforcing column-wise constraints
require either creating customized transformation functions
coupled with validity check or using reject sampling [Patki et
al., 2016], both of which are ad hoc and highly inefficient for
large number of constrained columns. Instead, we leverage
the cond vector to enforce our constraints. Formally, recall
from Section 3.2 that cond is constructed as

⊕Nd

i=1 mi with
m

(k∗)
i∗ set to 1 and all other entries set to 0 for representing

the condition (Di∗ = k∗). Let us assume the corresponding
categorical feature Di∗ from cond imposes some skip con-
straint κ (e.g., Di∗ = TB3 and k∗ = “No”) on a chain of
features {Di′}i′∈M , where M ⊆ {1, . . . , Nd} such that |M |
is the size of such chain. Let k′i′ ∈ {1, . . . , |Di′ |} be a spe-
cific category that each Di′ takes in accordance with κ (e.g.,
Di′ = TB4 and k′i′ = [BLANK] under TB3=“No”). Then,
we can define κ as the extension of a condition as follows:

κ = [Di∗ → {Di′}i′∈M ]

=

[
(Di∗ = k∗) ⇒

∧
i′∈M

(Di′ = k′i′)

]
.

(1)

Therefore, whenever applicable, we can restrict cond
κ−→

ζ(cond) by reconstructing the individual mask vectors of

cond (with a slight abuse of notation) as

m
(k)
i

κ−→ ζ
(
m

(k)
i

)
=

1 if i ∈ {i∗, i′} and
k ∈ {k∗, k′i′},

0 otherwise.
(2)

Note that κ is only defined for a fixed set of {k∗, k′i′} and
hence can take various forms in practice. For instance, the
following is an exhaustive list of valid expressions for κ =
TB3 → {TB4}:
▶ TB3=“No” ⇒ TB4=[BLANK] (omissible)
▶ TB3=“Yes” ⇒ TB4=“Not at all”
▶ TB3=“Yes” ⇒ TB4=“Less than 1 cigarettes a day”
▶ TB3=“Yes” ⇒ TB4=“1-5 cigarettes a day”
▶ TB3=“Yes” ⇒ TB4=“Half a pack a day”
▶ TB3=“Yes” ⇒ TB4=“A pack or more a day”.

3.6 The Complete Model
The complete training procedure via minibatch stochastic
gradient descent (SGD) is summarized in Algorithm 1. q
was previously defined in Section 3.2. We denote the con-
ditions for y as cond(y). ω ∈ [0, 1] is the ratio for controlling
the prevalence of such conditions in some sample of cond.
Let I be the probability mass function across the categorical
features (excluding y) wherein the probability for selecting a
feature Di∗ is defined as its normalized feature importance
score: si∗/

∑Nd−1
i=1 si (−1 for excluding y). The remain-

ing conditions in cond are sampled following the training-
by-sampling procedure but with features selected according
to I (the categories in each categorical feature are still sam-
pled according to their log probabilities in Ttrain as before),
for which we express as condj ∼ I with a slight abuse
of notation. The loss for D, LD, is defined similarly as in
CTGAN i.e., WGAN-GP loss. The loss function for G is
LG = LGorig+LGdstream where LGorig is the original loss func-
tion for G in CTGAN and LGdstream is the downstream loss
defined in Section 3.3 along with the classification loss LC .

At each iteration of an epoch, the training sequence is as
follows: train the discriminator (lines 3-6), train the generator
(lines 7-10), and train the auxiliary classifier while simultane-
ously updating I according to s (lines 11-13).

4 Experiments
4.1 Methodology
Implementation Details
All experiments were conducted using PyTorch 1.13.1,
CUDA 11.7, and scikit-learn 1.3.2. Our implementation of
the proposed GAN1 is based on CTGAN’s. We refer readers
to our full paper for further implementation details, particu-
larly on our data preprocessing step.

Hyperparameters. For all considered generative models,
unless otherwise stated, we adopt the same specifications as
in the cited original work. We use a batch size of |B| = 30
to train each model, For CTGAN, we set the pac size [Lin et
al., 2018] to 3. C is a 2-layer MLP with (256, 256) neurons

1https://github.com/AnonyMouse3005/HDLSS-GAN
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Algorithm 1 Training Our Proposed GAN
Input: DiscriminatorD, generator G, auxiliary classifier C, constants q and ω
1: Initialize I uniformly
2: for each minibatch B of equal size from Ttrain do
3: Sample noise Z and cond (for trainingD)

Z = [z1, . . . , z|B|] with zj ∼ N (0, 1)
cond = [cond1, . . . , cond(1−ω)∗|B|] with condj ∼ I

4: cond← ζ(cond)⊕ [cond(y)]×ω|B|
5: Sample |B| rows from Ttrain such that each row rj satisfies condj

6: Perform SGD update ofD with LD(G(Z, cond), B)
7: Sample noise Z and cond (for training G and C)

Z = [z1, . . . , zq∗|B|] with zj ∼ N (0, 1)
cond = [cond1, . . . , condq∗(1−ω)∗|B|] with condj ∼ I

8: cond← ζ(cond)⊕ [cond(y)]×qω|B|

9: Perform SGD update of G with LG
orig(G(Z, cond))

10: Perform SGD update of G with

L
G
dstream

(
C
(
{G(Z, condj)}condj∈cond(y)

))
11: Obtain s by computing C(B)
12: Update I according to s
13: Perform SGD update of C with LC(C(B))
14: end for
Return: Trained G

and either a sigmoid (for Problem A) or a softmax (for Prob-
lem B) activation in the last layer. Each of the two attached
auxiliary networks prior to the first hidden layer of C is a 4-
layer MLP (256, 256, 256, 256) with a tanh and a sigmoid
activation in the last layer, respectively. We manually tuned q
and ω (via 10-fold cross validation on Ttrain) before fixing
their values to 20 and 0.5, respectively. Each model is trained
for 100 epochs, each contains ⌊|Ttrain|/|B|⌋ iterations. The
ratio for partitioning Treal is 80 : 20 for Ttrain and Ttest,
respectively, with a total of 100 distinct seeds.

Evaluation Metrics and Framework
Figure 2 illustrates our evaluation framework. We evaluate
the efficacy of generative models2 using three criteria: con-
flict, compatibility [Park et al., 2018], and utility.

Conflict. Every row of a synthetic table generated by G
should not contain too many entries that violate skip logic.
Given the jth row of Tsyn that is represented as r̂j =

Ĉj⊕d̂1,j⊕. . .⊕d̂Nd,j where d̂i,j is the one-hot vector of the
ith categorical feature and Ĉj is the representation of contin-
uous features in that row3, we check for each skip constraint
κ whether the columns of r̂j satisfy the condition (Di∗ = k∗)
i.e., match cond (left-hand side of Equation 1). If it does, the
one-hot vectors of the features within the chain linked by κ
must exactly match the mask vectors associated with said fea-
tures in the restricted cond vector, ζ(mi) (whose construction
is defined in Equation 2). Hence, we quantify the degree of
κ-violation by computing the Hamming distance between the
vectors (r̂i,j)i∈M =

⊕
i∈M d̂i,j and

⊕
i∈M ζ(mi), where

M contains the indices for the features within the chain linked
by κ. The conflict metric of a single row r̂j is the average

2For every measure of Tsyn’s quality while evaluating some
trained generator G, we use G to generate 10 samples of Tsyn (each
satisfies the two requirements specified in Definition 2) and evaluate
their quality independently, then average the respective scores.

3varied across different generative models e.g., CTGAN uses the
proposed mode-specific normalization (and so does our GAN)

Figure 2: Workflow for evaluating the efficacy of generative models.
The “Classification models” blocks refer to the same set of classi-
fiers listed in the definition of Compatibility. Each of these blocks
takes a table as input for training the classifiers and outputs their
predictions on Ttest. The blue dashed arrows represent the compu-
tation of the respective scores/metrics.

Hamming distance across all applicable skip constraints, and
we compute the conflict of Tsyn by taking its average across
all rows. Thus, a synthetic table whose rows adequately con-
form skip logic yields a low conflict score in [0, 1].

Compatibility. The classification models trained on syn-
thetic data should output prediction for unseen examples in
test data as accurately as those trained on real (training) data.
We train classification models on Ttrain and on Tsyn (both
having the same size as defined in Section 2.1), then test them
using Ttest and compare their predictive performance, which
is measured using the standard Area under the Receiver Op-
erating Characteristic curve (AUROC). We train each of the
multiclass classification models in Problem (B) using the one-
vs-all strategy and we compute the resulting AUROC also us-
ing the one-vs-all strategy [Fawcett, 2006].

We report the average difference in AUROC (across dif-
ferent classification models [Xu et al., 2019] and different
partitioning of Ttrain and Ttest) of models trained on Tsyn

and those trained on Ttrain. It is expected for the classifi-
cation models trained on Tsyn to score lower AUROC than
those trained on Ttrain, ideally with a margin as small as pos-
sible. Therefore, the compatibility score of Tsyn should be
negative and close to zero. We consider the following classi-
fiers same for both Problems (A) and (B): elastic-net logistic
regression [Zou and Hastie, 2005], decision tree i.e., CART
[Breiman, 2001], random forest [Ho, 1995], XGBoost [Chen
and Guestrin, 2016], CatBoost [Prokhorenkova et al., 2018],
3-layer MLP (100, 100, 10) with sigmoid/softmax activation
in the last layer, and WPFS [Margeloiu et al., 2023].

Utility. Ultimately, when the real training data is aug-
mented by synthetic samples, the classification models
trained on it should excel compared to the models trained
on real data only. We report the average AUROC (across
different classification models and different partitioning of
Ttrain and Ttest) of the models trained on the augmented
data, Ttrain +Tsyn, and compare it against the average AU-
ROC of those trained on Ttrain. We consider the same set of
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(a) Compatibility (greater i.e., less negative is better)

(b) Utility (greater is better)

Figure 3: Efficacy of considered generative models in Problem (A)
(top) and Problem (B) (bottom). Each column considers one drug.
The red dashed lines in Figure 3b mark the average AUROC of clas-
sification models trained on Ttrain without data augmentation.

classifiers listed above. Unlike compatibility, we do not com-
pute the difference in AUROC scores. Hence, the utility of
Tsyn follows the same scale as AUROC ∈ [0, 1] and should
ideally yield values as high as possible.

4.2 Results
We use our evaluation framework to evaluate CTGAN, TVAE
[Xu et al., 2019], TableGAN [Park et al., 2018], CTABGAN+
[Zhao et al., 2022], and TabDDPM [Kotelnikov et al., 2023]
in addition to the proposed GAN, which are considered state-
of-the-art for tabular data generation. For baseline, we use
Bayesian networks [Pearl, 2011].

Compatibility of Synthetic Data. Figure 3a shows the per-
formance of all considered generative models in terms of
compatibility. Across all considered drugs in both problems,
we see that the drop in predictive performance of classifica-
tions models trained on synthetic data that are generated from
our GAN (<0.05 and <0.07 lower in AUROC for Problems
A and B, respectively) is considerably smaller with lower un-
certainty compared to the performance drop of those trained
on synthetic data from other generative models. This demon-
strates the efficacy of our GAN in generating synthetic sam-
ples that are comparable to real training data.

Utility of Synthetic Data. In terms of utility, the proposed
GAN also performs well in each problem relative to the
benchmarks as shown in Figure 3b. More specifically, the
classification models trained using augmented data from our
GAN gain from 8.35% up to 13.4% in AUROC in Problem
(A) and 8.66% up to 15.8% in Problem (B), whereas those
trained using augmented data from other models barely show
any improvement. This implies that our GAN is capable of
augmenting existing HDLSS data in order for classification
models to effectively improve their predictive performance.

Violation of Skip Logic in Synthetic Data. The evalua-
tion on degree of skip logic violation is summarized in Table
1. Since our work is the first to take this criteria into account,
our proposed GAN has a clear advantage over existing mod-
els, with Tsyn consistently having lower average conflict by
a large margin in both considered problems. The additional
runtime for enforcing all 26 skip constraints is negligible i.e.,
for approximately 5% longer training time.

Model Problem (A) Problem (B)
BN 0.471± 0.113 0.490± 0.154

CTGAN 0.339± 0.074 0.358± 0.085
TVAE 0.297± 0.072 0.325± 0.080

TableGAN 0.417± 0.108 0.452± 0.094
CTABGAN+ 0.351± 0.086 0.379± 0.084
TabDDPM 0.377± 0.107 0.390± 0.090
Our GAN 0.196± 0.048 0.218± 0.039

Table 1: Conflict in Tsyn (averaged over all splits of Treal, lower
is better). Both problems concern meth usage.

Impact of Enforcing Skip Logic. We also perform an ab-
lation study to understand the practical benefits of enforcing
skip logic during our GAN training. As shown in Table 2,
when we enforce skip logic, the training phase exhibits not
only higher stability but also higher efficiency, as evidenced
by the loss of G at 50 and 100 epochs. Note that the adoption
of WGAN (via CTGAN) in our GAN allows us to interpret
the loss in a meaningful way. As a result, the trained GAN
is able to consistently generate high-quality samples, which
positively affects the scores for all three evaluation metrics to
some extent. Similar results for other considered problems
can be found in the appendix of our full paper.

Criteria Enforcing Skip Logic?
No Yes

LG
orig @50 (↓) −2.276± 0.849 −3.472± 0.653

LG
orig @100 (↓) −4.542± 0.933 −4.871± 0.795
Conflict (↓) 0.358± 0.096 0.196± 0.048

Compatibility (↑) −0.026± 0.017 −0.023± 0.009
Utility (↑) 0.818± 0.038 0.821± 0.023

Table 2: Impact of enforcing skip logic during the training of our
GAN in Problem (A) for meth. The (original) loss of G is recorded at
50 epochs (LG

orig @50) and 100 epochs (LG
orig @100). (↓) denotes

less is better and (↑) denotes greater is better.

5 Conclusion
In this paper, using HDLSS tabular data collected by our
team via a survey that employs skip logic on short-term sub-
stance use behavior, we design a novel GAN for augmenting
our limited tabular data in order to help classification mod-
els accurately predict short-term substance use behaviors of
PWUDs: (A) whether they would increase usage of a cer-
tain drug and (B) at which ordinal frequency they would use
it within the next 12 months. Our evaluation results demon-
strate the efficacy of the proposed GAN. The resulting pre-
dictions for the two defined problems can ultimately be lever-
aged by relevant substance use organizations as a comple-
mentary forecasting tool when determining the most appro-
priate resource to allocate to PWUDs that need the most help.
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