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Abstract
In critical care settings, where precise and timely
interventions are crucial for health outcomes, eval-
uating disparities in patient outcomes is important.
Current approaches often fall short in comprehen-
sively understanding and evaluating the impact of
respiratory support interventions on individuals af-
fected by social determinants of health. Attributes
such as gender, race, and age are commonly as-
sessed and essential, but provide only a partial view
of the complexities faced by diverse populations.
In this study, we focus on two clinically motivated
tasks: prolonged mechanical ventilation and suc-
cessful weaning. We also perform fairness au-
dits on the models’ predictions across demographic
groups and social determinants of health to better
understand the health inequities in respiratory inter-
ventions in the intensive care unit. We also release
a temporal benchmark dataset, verified by clinical
experts, to enable benchmarking of clinical respira-
tory intervention tasks.

1 Introduction
Critically-ill patients often find themselves in the intensive
care unit (ICU) seeking specialized support for respiratory
distress [Doyle et al., 1995; Ware and Matthay, 2000]. De-
spite advances in supportive treatments, the in-hospital mor-
tality rate remains 40% for conditions such as acute lung
injury and acute respiratory distress syndrome [Rubenfeld
et al., 2005; Sweatt and Levitt, 2014]. Managing respira-
tory distress involves intricate treatment measures, includ-
ing invasive mechanical ventilation [Esteban et al., 2000],
non-invasive mechanical ventilation [Esquinas et al., 2017],
and high-flow nasal cannula [Frat et al., 2017]. However,
existing recommendations and outcomes, especially regard-
ing intubation and weaning procedures for ICU patients, re-
main controversial and poorly understood [Zuo et al., 2020;
Papoutsi et al., 2021; Suo et al., 2021; Wanis et al., 2023;
Kondrup et al., 2023].

Health disparities are widespread within marginalized
communities, particularly across respiratory diseases, acting
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as significant contributors to morbidity and mortality in the
United States [Schraufnagel et al., 2013; Moy et al., 2017;
Thakur et al., 2014]. These communities, facing systemic
barriers and social inequalities, bear a disproportionate bur-
den of adverse health outcomes due to factors such as eco-
nomic instability, limited access to education, and housing
insecurity [Purnell et al., 2016]. Recognizing and evaluat-
ing social determinants of health (SDOH) is important for ad-
dressing the complex factors that influence the quality of and
access to healthcare [Holmes Fee et al., 2023; Bundy et al.,
2023; Lua et al., 2023; Marmot, 2005; Nakagawa et al., 2023;
Moukheiber et al., 2024]. A comprehensive understanding of
SDOH can offer insight into potential disparities that might
be overlooked within studies focused solely on traditional at-
tributes such as age, race, gender, and health insurance, mak-
ing it important for the evaluation of algorithmic bias [Celi et
al., 2022; Nazer et al., 2023].

Observational health data, derived from EHRs, presents a
valuable resource with the potential to enhance healthcare.
Although efforts have been made to establish benchmarks
for EHR data [Harutyunyan et al., 2019; Purushotham et
al., 2018; Wang et al., 2020; Gupta et al., 2022; Rocheteau
et al., 2021], these benchmarks primarily focus on conven-
tional clinical prediction tasks, such as mortality and length-
of-stay predictions. To the best of our knowledge, the cur-
rent benchmark datasets lack dynamic aspects of pulmonary
function, encompassing complex respiratory treatment strate-
gies, ventilator settings, and pulmonary mechanics, along
with other clinically-relevant variables for guiding decision-
making. Furthermore, current ICU benchmark datasets of-
ten lack a link to SDOH, which limits the ability to fully un-
derstand and address the complexities influencing the recom-
mendations for intubation and weaning in ICU patients. The
recently released MIMIC-IV dataset, linked to SDOH fea-
tures based on patient zip code [Yang et al., 2023], enables
detailed fairness assessments of SDOH dimensions. There-
fore, we use MIMIC-IV to benchmark clinical respiratory in-
tervention tasks for ICU patients.

In this work, we benchmark two time-dependent clinically-
motivated prediction tasks, including successful weaning and
prolonged mechanical ventilation. We further evaluate the
differences in performance gaps across protected attributes,
including age, gender, race, and English proficiency, as well
as eight SDOH features. We also release a dataset with hourly
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intervals to enable benchmarking of respiratory intervention
tasks. This dataset is enriched with ventilation data and a
wide range of other covariates, including demographics, lab
results, measurements, illness severity scores, treatment in-
terventions, and outcome variables. It covers 50,920 patients
admitted to the ICU, with records collected over 90 days.
This dataset can help address weaning delays and failures,
optimize strategies for respiratory support, identify efficien-
cies in clinical practices, provide decision support to attend-
ing physicians regarding intubation decisions in the ICU, and
facilitate time-series and reinforcement learning applications.

2 Methods
2.1 DataSet
Dataset Overview
We introduce a temporal benchmark for clinical respira-
tory interventions, a 90-day hourly ventilation dataset de-
rived from MIMIC-IV version 2.2. MIMIC-IV is an
open-access, de-identified database compiled from electronic
health records of patients admitted to the ICU or Emergency
Department at the Beth Israel Deaconess Medical Center in
Boston between 2008 and 2019. Our temporal data includes
confounding variables categorized into static and dynamic
variables. Figure1 depicts hourly characteristics for a single
patient’s ICU stay over 30 days.

Cohort Selection
In the MIMIC-IV database, a patient can have multiple ICU
stays over the years or experience transitions between differ-
ent ICUs during the same hospital admission. To prevent data
leakage and maintain data integrity, we choose the first ICU
stay with respiratory support for each patient. This approach
ensures that data used for modeling is independent and not in-
fluenced by information from subsequent stays. Additionally,
patients with a do not resuscitate or do not intubate directives
and those who were on invasive ventilation 24 hours before
ICU admission are excluded, resulting in a total of 50,920
patients.

Data Extraction and Preprocessing
The majority of timestamps for time-varying variables in the
raw MIMIC data are presented in the year, month, day, hour,
minute, and second format, offering the potential to derive
granular data for comprehensive medical analysis. The spo-
radic recording of multiple observations allows us to aggre-
gate the data into hourly bins to improve the data density and
analytical consistency. Our dataset spans the period of 0 to
2160 hours (equivalent to 90 days) following ICU admission
for each subject.

Patient-level Static Variables
Static parameters extracted for patients, as outlined in Ta-
ble 1, encompass demographic variables, comorbidity scores
assessing neurological function (such as the Glasgow Coma
Scale and its components: eye opening, verbal, and motor
responses), as well as an evaluation of patient organ dysfunc-
tion (based on the maximum Sequential Organ Failure As-
sessment score) performed 24 hours after admission to the
ICU.

Variable Description

intime ICU admission time
outtime ICU discharge time
gender patient gender
anchor year patient shifted year
anchor age patient age in anchor year
insurance patient insurance type
language English proficiency indicator
marital status patient marital status
race patient race
first careunit ICU type during first admission
pbw kg patient predicted body weight (kg)
height inch patient height (inches)
elixhauser vanwalraven Elixhauser-Van Walraven score
gcs Glasgow Coma Scale (GCS) score
gcs motor GCS motor response component
gcs verbal GCS verbal response component
gcs eyes GCS eye-opening response component
gcs unable Endotracheal tube indicator
sofa 24 hours Max 24-hour Sequential Organ Failure

Assessment (SOFA) score

Table 1: Patient-level static variables.

Measurement Observations
The time-varying measurements in the data encompass ven-
tilation settings, laboratory results, and vital signs. Ventila-
tion settings and vital signs are extracted from the MIMIC
chartevents table, while labs data are obtained from the
MIMIC labevents table, each identified by their respective
ItemIDs. To handle multiple values within a single hour
for a subject, we aggregate the results by computing the
median, as the median exhibits reduced sensitivity to noisy
data. The labs are sourced from arterial blood gas (ABG)
specimens, as arterial blood measurements are deemed to
have greater clinical relevance and precision when evaluat-
ing parameters such as respiratory function, acid-base bal-
ance, and oxygenation status. Two parameters derived from
ventilation settings are also presented: set pc draeger (set
pressure for pressure-controlled ventilation from the Draeger
ventilator) and set pc (set pressure for pressure-controlled
ventilation). Set pc draeger is calculated as the difference
between the inspiratory pressure from the Draeger venti-
lator (pinsp draeger) and the set peak inspiratory pressure
(ppeak). Based on clinical knowledge, set pc is popu-
lated with pcv level (pressure controlled ventilation level) if
present, pinsp hamilton (inspiratory pressure from Hamilton
ventilator) if pcv level is absent, and set pc draeger (inspira-
tory pressure from Draeger ventilator) if both are absent. All
variables related to ventilation parameters, vital signs, and
labs, and their corresponding descriptions, are described in
Table 2.

Treatment Interventions
Three respiratory support methods, including invasive venti-
lation (INV), non-invasive ventilation (NIV), and high-flow
nasal cannula (HFNC), are presented as binary indicators per
hour. The curation of these respiratory support variables is
verified by clinical experts to ensure accuracy and reliabil-
ity. In MIMIC, the procedureevents table identifies patients
on INV or NIV during their ICU stay, while the chartevents
table identifies patients on HFNC. INV and NIV in MIMIC
have documented start and end times recorded by respiratory
therapists, however, HFNC lacks a corresponding time inter-
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Variable Description

Ventilation parameters

ppeak peak Inspiratory pressure (cmH2O)
set peep set peak inspiratory pressure (cmH2O)
total peep total peak inspiratory pressure (cmH2O)
rr respiratory rate (insp/min)
set rr set respiratory rate (insp/min)
total rr total respiratory rate (insp/min)
set tv set tidal volume (mL)
total tv total tidal volume (mL)
set fio2 set fraction of inspired oxygen
set ie ratio set inspiratory-to-expiratory ratio
set pc set pressure for pressure controlled ventilation (cmH2O)
set pc draeger set pressure from Draeger Ventilator (cmH2O)
pinsp draeger inspiratory pressure from Draeger Ventilator (cmH2O)
pinsp hamilton inspiratory pressure from Hamilton ventilator (cmH2O)
pcv level pressure controlled ventilation level (cmH2O)

Labs

calculated bicarbonate calculated bicarbonate, whole blood (mEq/L)
so2 oxygen saturation (%)
pCO2 partial pressure of carbon dioxide (mmHg)
pO2 partial pressure of oxygen (mmHg)
pH pH

Vital Signs

heart rate heart rate (bpm)
sbp systolic arterial blood pressure (mmHg)
dbp diastolic arterial blood pressure (mmHg)
mbp mean arterial blood pressure (mmHg)
sbp ni systolic non-invasive blood pressure (mmHg)
dbp ni diastolic non-invasive blood pressure (mmHg)
mbp ni mean non-invasive blood pressure (mmHg)
temperature temperature (°C)
spO2 oxygen saturation pulse oximetry (%)
glucose blood glucose

Table 2: Measurement observations. “set” in ventilation settings
refers to values set by healthcare professionals on the ventilator to
suit the patients’ respiratory needs. “ ” refers to intermediate vari-
ables.

val; having only the time at which the measurement was ob-
served. Therefore, we pre-process the data to establish a start
time and end time for each HFNC event per ICU stay. In
addition, multiple HFNC events could occur during a single
ICU stay. Therefore, if the time gap between two consecu-
tive HFNC events exceeded 24 hours, we treat them as sepa-
rate events. For each HFNC event, the minimum and maxi-
mum time at which the HFNC is applied is used to obtain the
HFNC start time and the end time. HFNC events with identi-
cal start and end times are excluded. In cases of overlapping
mutually exclusive treatments, where patients are recorded
to be on both non-invasive and invasive ventilation simulta-
neously, we prioritize the most invasive treatment strategy
(INV > NIV > HFNC). The overlap of mutually exclusive
treatments occurs due to the complexities involved in transi-
tioning between ventilation therapies within the ICU, which
often includes a series of procedures during the transition
period. Furthermore, for short intervals (less than 6 hours)
recorded between two different treatments, we attribute the
gap to the less invasive treatment. This allows us to handle
situations where the precise timing of treatments is unclear.

Additional binary indicators for interventions include va-
sopressor administration and continuous renal replacement
therapy. Vasopressors are extracted from the MIMIC in-
putevents table and matched to the corresponding hour us-
ing their respective start and end times. A patient is classi-
fied as being on vasopressors if they received norepinephrine,

epinephrine, dopamine, phenylephrine, or vasopressin. In-
formation regarding continuous renal replacement therapy
(CRRT) is extracted from the MIMIC chartevents table. Pa-
tients are identified as being on CRRT if they have a positive
value for blood flow rate or fluid removal during dialysis. A
summary of all treatment interventions is presented in Table
3.

Variable Description

invasive invasive ventilation indicator
noninvasive non-invasive ventilation indicator
highflow high-flow nasal cannula indicator
vasopressor vasopressor treatment indicator
crrt continuous renal replacement therapy indicator

Table 3: Treatment interventions.

Outcome Variables
The majority of the outcome variables are recorded as binary
indicators at each hour, with one denoting the occurrence of
the event. These include discharge outcome, ICU out-time
outcome, death outcome, and sepsis. Discharge outcome and
ICU out-time outcome indicate if a patient was discharged
from the hospital or ICU respectively. The death outcome
variable denotes whether a patient died at a specific hour.
The date of death in MIMIC is derived from hospital and
state records. In cases where both data sources are available,
in-hospital mortality is preferentially used over state-linked
data. The state-derived date of death includes only the date
component, so a default time of midnight is used when con-
verting the date to a timestamp. The data also includes a sep-
sis outcome variable that identifies whether a patient is septic
according to the Sepsis-3 diagnostic criteria. Additionally, it
contains the length of stay variable, which indicates the dura-
tion of a patient’s ICU stay in fractional days. A summary of
the outcome variables is presented in Table 4.

Variable Description

discharge outcome hospital discharge indicator
icuouttime outcome ICU discharge indicator
death outcome death indicator
sepsis presence of sepsis using sepsis 3 criteria
los ICU length of stay (fractional days)

Table 4: Outcome variables.

2.2 Benchmark Tasks
We consider two clinically motivated prediction tasks for res-
piratory interventions in ICU settings: prolonged mechanical
ventilation and successful weaning.
Task definition for prolonged mechanical ventilation: Pro-
longed mechanical ventilation can increase the caregiver bur-
den and affect a patient’s quality of life [Vali et al., 2023;
Sayed et al., 2021]. We aim to predict prolonged mechan-
ical ventilation using the first 24 hours of data in the ICU.
Specifically, we define prolonged mechanical ventilation as
the initial attempt to ventilate a patient for more than 14 days
in the ICU.
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Figure 1: Visualization of time-varying covariates for a patient’s stay, 30 days after ICU admission. The plots, listed from top to bottom,
include ventilation parameters, laboratory results, and vital signs, respectively.

Task definition for prolonged successful weaning: Weaning
has been studied in recent clinical trials [Pham et al., 2023].
In this study, we use the first attempt to separate a patient
from a mechanical ventilator. We aim to predict prolonged
successful weaning using five days of ICU stay data. Specif-
ically, we define successful weaning as no re-intubation or
death within seven days of extubation.

The pre-processed patient cohorts for prolonged mechan-
ical ventilation and successful weaning includes 4,930 and
2,358 cases, respectively. The numerical features for each
task are normalized by min-max scaling. For each task, we
split the data into 70% training, 10% validation, and 20% test-
ing, while ensuring no patient overlap in the sets to avoid data
leakage. In our hybrid sequence-based models, we combine
continuous and static features to capture both the hourly dy-
namics of a patient’s condition and the patient’s individual

characteristics, providing a comprehensive basis for our bi-
nary classification tasks on a stay level. For our hybrid fully
connected networks which do not involve recurrent connec-
tions, we employ static features in conjunction with the me-
dian of the time-series features.

Model Architecture
In our proposed benchmark, we employ five types of machine
learning models to address the aforementioned tasks. We
specifically focus on deep learning-based methodologies, in-
cluding sequence models and a multilayer perceptron (MLP)
aiming to assess whether models that operate over time-steps
can enhance overall model performance. The sequence mod-
els encompass Gated Recurrent Units (GRU), Long Short-
Term Memory (LSTM), Bidirectional LSTM (BiLSTM), and
Temporal Convolutional Neural Networks (TCN). For the
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sequence-based models, we apply a joint-fusion strategy to
concatenate the hourly time-dependent variables with the
static variables. Details of the sequence-based models are
depicted in Figure 2. We fine-tune each model through an
exhaustive hyperparameter search. The learning rate is ini-
tialized at 0.001 and decays by 5% for each epoch, with a
batch size set to 512. The optimization algorithm used is the
Adam Optimizer, and the loss function used is binary cross-
entropy. We stop the model training when the validation loss
does not improve over three consecutive epochs.

Figure 2: Model architecture of the sequence models. The archi-
tecture uses a joint-fusion strategy that concatenates hourly time-
dependent features with static features and includes recurrent layers
such as an LSTM, BiLSTM, or GRU, or neural networks like TCN.

Model Evaluation

We assess the models by evaluating their accuracy using the
area under the receiver operating characteristic curve (AU-
ROC). To perform binary classification on the predictions, we
determine the optimal threshold value by selecting the thresh-
old that maximizes the difference between true positive rate
and false positive rate, and then we compare each prediction
against this threshold. We report 95% confidence interval of
the evaluation metrics, calculated by performing bootstrap-
ping on the metric scores over 1000 iterations.

2.3 Fairness Audits Along SDOH & Demographic
Attributes

We perform fairness audits by considering protected at-
tributes, such as race, age, and gender, along with eight
SDOH attributes. This provides deeper insights into the pa-
tient population beyond conventional demographic attributes.
We utilize the MIMIC-IV census tract-level SDOH data to
conduct fairness audits on our benchmark tasks [Yang et al.,
2023]. Our analysis includes investigating the differences in
fairness across subgroups based on SDOH attributes, such as
whether a patient resides in areas with high employment rates,
has a high reliance on public assistance or food stamps, lives
close to healthcare facilities, engages frequently in heavy
drinking or smoking, has high student expenditure, resides
in homes with high electricity heating and lives in areas with
few deaths from firearms.

We assess the performance of downstream classifiers based
on three definitions of fairness, including, demographic par-
ity (parity gap), equality of opportunity for the positive class
(recall gap), and equality of opportunity for the negative class
(specificity gap) [Chen et al., 2019]. We follow methods used
in prior work to expand the demographic parity gap [Zhang et
al., 2020; Hashimoto et al., 2018], and use a similar process
to obtain the recall, and specificity gaps. These evaluations
are conducted on the best-performing model for both tasks.

3 Results & Discussion
3.1 Benchmark Tasks
The AUROC for both prolonged mechanical ventilation and
weaning are shown in Table 5. We found that the sequence-
based model, the GRU (Hybrid) model, outperforms all other
models on both binary prediction tasks.

Model AUROC (↑)

Mechanical Ventilation Successful Weaning

MLP 0.641 (0.638 - 0.643) 0.749 (0.747 - 0.751)
TCN (Hybrid) 0.747 (0.745 - 0.749) 0.743 (0.741 - 0.744)
LSTM (Hybrid) 0.770 (0.768 - 0.772) 0.764 (0.763 - 0.766)
BiLSTM (Hybrid) 0.775 (0.773 - 0.777) 0.752 (0.750 - 0.753)
GRU (Hybrid) 0.778 (0.776 - 0.780) 0.776 (0.774 - 0.778)

Table 5: Benchmark results for two clinically-motivated tasks: clas-
sifying mechanical ventilation lasting more than 14 days, using 24
hours of data, and successful weaning lasting more than 7 days, us-
ing 5 days of data. Scores are reported with 95% confidence inter-
vals obtained through 1000 bootstrap samples.

3.2 Fairness Audits on Benchmark Tasks
We illustrate the differences in parity, recall, and specificity
for demographic and social determinants of health attributes
in the mechanical ventilation (Figure 3) and successful wean-
ing tasks (Figure 4) using the best performing model (GRU).
Recall indicates the proportion of actual positive instances
that the model correctly identifies. It is particularly relevant
in clinical settings where minimizing false negatives is crucial
for timely effective patient diagnosis. To analyze variations
in model performance among continuous SDOH attributes,
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Figure 3: Performance gap measures for the prolonged mechanical ventilation task under the best model (GRU). A positive bar indicates
the model favors one group over the other group. Error bars denote a 95% confidence interval obtained through 1000 bootstrap samples.
a) Performance gap evaluation for SDOH attributes. b) Performance gap evaluation for demographic attributes.

Figure 4: Performance gap measures for the successful prolonged weaning task under the best model (GRU). A positive bar indicates
the model favors one group over the other group. Error bars denote a 95% confidence interval obtained through 1000 bootstrap samples.
a) Performance gap evaluation for SDOH attributes. b) Performance gap evaluation for demographic attributes.

we discretize the attributes into two quantiles. A positive re-
call gap suggests that the model favors the low prevalence of
the specified SDOH attribute over the high prevalence. For
categorical variables like gender, race, age, and English pro-
ficiency, a positive recall gap indicates that the model favors
males, whites, non-elderly individuals, or English speakers
over their respective counterparts.

In Figure 3a, for the task of predicting prolonged mechan-
ical ventilation the model favors individuals who reside in ar-
eas with high employment rate, have a high reliance on pub-
lic assistance or food stamps, are close to a medical-surgical
ICU, rarely engage in heavy drinking or smoking, have high
student expenditure, reside in homes with high electricity
heating, and live in areas with few deaths from firearms.
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Additionally, as seen in Figure 3b the model favors certain
demographic groups, including females, non-white individu-
als, younger individuals, and non-English speakers. On the
other hand, as depicted in Figure 4a, for the task of predict-
ing weaning, the model favors individuals who reside in areas
with high employment rate, have a low reliance on public as-
sistance or food stamps, are far from a medical-surgical ICU,
rarely engage in heavy drinking, often smoke, have low stu-
dent expenditure, reside in homes with high electricity heat-
ing, and live in areas with more deaths from firearms. Ad-
ditionally, as seen in Figure 4b, the model favors certain de-
mographic groups, including males, non-white individuals,
elderly individuals, and non-English speakers.

The performance gaps illustrate the disparities in the
model’s predictive performance and the necessity for fairness
auditing prior to model deployment. By assessing SDOH in
addition to the previously studied traditional labels we hope
to disentangle biases and uncover other hidden confounders
and associations.

4 Conclusion
In critical care settings, it is important to carefully assess
model biases across demographic and SDOH attributes be-
fore deployment. In this study, we benchmark two time-
dependent tasks, including successful weaning and prolonged
mechanical ventilation. Using different fairness definitions,
we evaluate the differences in performance gaps for both
tasks across demographic and SDOH attributes. Furthermore,
we release an hourly dataset to support the benchmarking of
respiratory intervention tasks. Our work aims to enable the
development of machine learning models for timely interven-
tions in critical care, emphasizing the consideration of social
determinants to promote equitable healthcare access and im-
prove patient outcomes.

Data Availability
The temporal dataset for respiratory support in critically ill
patients is hosted on PhysioNet [Moody and Mark, 1996], an
NIH-funded repository that is widely used to support biomed-
ical research and education worldwide. It is available at
this link, https://doi.org/10.13026/0d8j-2w14. The presented
dataset consists of 50,920 distinct adult patients admitted to
the ICU of Beth Israel Deaconess Medical Center (Boston,
MA, USA) between 2008 and 2019. We extract static, time-
varying, and outcome variables from MIMIC-IV in an hourly
materialized view and store the content for each patient in a
*.csv format named after the patient’s unique identifier (sub-
ject ID).

Code Availability
We provide the GitHub repository at https://github.com/
respiratory-support/respiratory-interventions which includes
SQL scripts, offering tools for data management, querying,
and analysis. Python scripts are also provided to demonstrate
the application of the dataset in various clinical prediction
tasks.
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