
Ensuring Fairness Stability for Disentangling Social Inequality in Access to
Education: the FAiRDAS General Method

Eleonora Misino , Roberta Calegari , Michele Lombardi and Michela Milano
University of Bologna

eleonora.misino2@unibo.it, roberta.calegari@unibo.it, michele.lombardi2@unibo.it,
michela.milano@unibo.it

Abstract
Recent advancements in Artificial Intelligence in
Education (AIEd) have revolutionized educational
practices using machine learning to extract insights
from students’ activities and behaviours. Perfor-
mance prediction, a key domain within AIEd, aims
to enhance student achievement levels and address
sustainable development goals related to educa-
tion, health, gender equality, and economic growth.
However, the potential of AIEd to contribute to
these goals is hindered by the lack of attention to
fairness in prediction algorithms, leading to edu-
cational inequality. To address this gap, we intro-
duce FAiRDAS, a general framework that models
long-term fairness as an abstract dynamic system.
Our approach, illustrated through a case study in
AIEd with real data, offers a customizable solution
to promote long-term fairness while promoting the
stability of mitigation actions over time.

1 Introduction
In the past few years, AI in Education (AIEd) has advanced
by leveraging machine learning to extract valuable insights
from students’ activities, educational and social behaviours,
and academic backgrounds [Chassignol et al., 2018]. AIEd
has made significant strides in various domains, such as path
recommendation, teaching strategy optimization, and perfor-
mance prediction. Performance prediction, in particular, aims
to advance student achievement levels by offering more effec-
tive and personalized teaching strategies or identifying influ-
ential factors (such as dropout probabilities) that can advise
supporting actions [Albreiki et al., 2021].

These objectives align seamlessly with Sustainable Devel-
opment Goals (SDGs), encompassing quality education, good
health and well-being, gender equality, decent work and eco-
nomic growth, reduced inequality, peace, justice, and strong
institutions. The social relevance of addressing these issues
is underscored by the detrimental effects of misdirecting stu-
dents towards specific careers or failing to intervene in cases
where academic cessation could be prevented and has far-
reaching societal and economic implications.

However, while AIEd’s potential to significantly contribute
to SDGs is considerable, the necessity for careful consider-

ation and proactive measures to consider potential conflicts
with equity goals and adhere to the ‘Leave No One Behind’
principle is a strong requirement. Indeed, it is imperative
to address biases in AI algorithms, as they can potentially
impact specific groups disproportionately. In the considered
context, using student performance predictions in policy de-
cisions becomes problematic when systematic errors emerge,
leading to disparate and unfair outcomes.

The fairness of AI predictions in educational contexts has
received insufficient attention, and the existing approaches
often do not fully analyze the properties of how fairness is
achieved [Kizilcec and Lee, 2022]. For example, let us con-
sider an AI system to rank students for performance analysis
to allocate scholarships. In this application, fairness can be
ensured, for example, by adjusting the ranking to guarantee
that all sensitive groups have equal opportunities for access
to education over time. Algorithmic solutions for this pur-
pose exist and are often based on choosing mitigation actions
based on historical samples. However, these methods often
overlook the fact that the ranking process is typically repeated
over time, and therefore, decisions made in one step can affect
long-term fairness [Liu et al., 2018].

In particular, historical data can be subject to significant
sampling noise (e.g., resulting from interactions and events
affecting individual cohorts) and does not necessarily account
for trends in the population distribution. Consequently, deci-
sions made in one step can adversely affect subsequent it-
erations; for example, a sensitive group could be penalized
for being over-represented in one instance; alternatively, de-
cisions can become highly unstable over iterations, making
them difficult to motivate from an ethical standpoint. At-
tempting to predict the population dynamics can help, but it
comes with its own issues, such as inaccurate estimates (that
may have a detrimental social impact) and increased compu-
tational load (due to the need to sample future outcomes).

As an alternative, in this paper, we propose to handle stabil-
ity by mapping the long-term evolution of fairness metrics on
sequential ranking processes as an abstract dynamic system.
Based on this idea, we introduce FAiRDAS 1 (Fairness-Aware

1This work reports on a substantially improved version of the
framework introduced in preliminary form in [Misino et al., 2023],
as well as its grounding in the educational field. As a testament to the
method’s suitability to multiple contexts (such as hiring or lending),
the original paper targeted a different application domain.
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Ranking as Dynamic Abstract System), a configurable frame-
work that enables controlling the trade-off between multiple
fairness/quality metrics and, indirectly, the level of stability
of the mitigation actions while ensuring long-term fairness

The paper is organized as follows. The AIEd case study
and the problem formulation are presented in Section 2. In
Section 3, we provide the related fairness concepts and the
relevant state-of-the-art. The general framework is formal-
ized in Section 4. Section 5 presents the experimental setting,
describing FAiRDAS groundings to the AIEd case study, and
discusses numerical results.

2 Problem Formulation
We focus on a case study in AI and education to contextualize
and motivate our approach, and to serve as a guiding example
for presenting a general problem formalization.

2.1 Motivating Case Study
The chosen case study involves ranking students based on
predicted academic performance for identifying potential
dropouts or making recommendations. Real-world data and
guidance for the identification of objectives and quality and
fairness metrics were provided by the Canarian Agency for
Quality Assessment and Accreditation (ACCUEE) 2.
Available Data. The agency collects information to evalu-
ate the performance of the Canary Islands educational system
through periodic diagnostic reports. The available data en-
compasses information spanning four academic years (2015-
2019). The diagnostic procedure involves two primary com-
ponents: (1) assessment of students’ academic proficiency
across various subjects, including Mathematics, Spanish Lan-
guage, and English; (2) context questionnaires to students,
school principals, families, and teachers, focusing on gather-
ing socio-demographic background information.
Performance Prediction. The agency is interested in the
early identification of problematic situations through AIEd
solutions so that appropriate support actions can be imple-
mented in a timely manner. For our analysis, we select the
mathematics test score as the outcome variable to be pre-
dicted due to its minimal number of missing values. Con-
sequently, we assume that students are ranked based on this
score and that correctly predicting its value becomes critical
for the effectiveness of the support program.
Equal Opportunities. While accurate estimates are impor-
tant, the need to ensure equal opportunity in this scenario re-
gardless of students’ social backgrounds is also recognized
as a problem in the literature [Pedro et al., 2019]. For this
purpose, the generated ranking can be adjusted to align with
long-term fairness objectives.

In our case study, we aim to ensure prediction accuracy
while avoiding disparate impacts related to different socio-
economic backgrounds. The chosen protected variable is the
Economic, Social, and Cultural Status (ESCS), serving as a
proxy for students’ socioeconomic status. This index is de-
rived from students’ access to family resources, which deter-
mine the social position of their family/household. Given that

2Dataset: https://zenodo.org/records/11171863.

ESCS is a continuous variable, it has been transformed into a
categorical form through a quantile-based function.
Stability. Long-term stability is crucial in this scenario: on
the one hand, consistently good values of the accuracy and
long-term fairness metrics are obviously desirable, even if
difficult to achieve due to their conflicting natures; on the
other hand, mitigation actions should also be stable over time.
In fact, unstable or inconsistent treatment over time could
have lasting effects on student’s academic progress and over-
all educational experience, in addition to being likely unac-
ceptable in terms of public opinion.

2.2 FAiRDAS Approach under an Intuitive Lens
FAiRDAS is applicable across various scenarios aimed at fos-
tering long-term fairness and its stability over time. This
is especially critical in contexts where biases might persist
or accumulate over time, resulting in systemic disparities
or inequalities in the system’s overall outcomes. Examples
encompass education, hiring, lending, and similar domains
where decisions based on rankings or assessments can cause
continuing repercussions, potentially perpetuating existing
biases if not appropriately addressed.

Figure 1a illustrates a possible scenario: we have differ-
ent rankings generated by the system over time (for instance
ranking t0 can represent students enrolled in 2016, t1 those in
2017, and so forth). Measuring long-term fairness means as-
sessing the fairness of all produced rankings over time (so on
t1, ..tn) instead of measuring it only on ti, thus enabling con-
siderations of the systemic impact and cumulative effects of
the system rankings. It is worth noting that considering long-
term fairness enables flexibility in the strictness of single-
query fairness requirements. Consequently, the AI system
can better reflect the demographic diversity of the population
represented in a single query without significantly compro-
mising accuracy. For instance, coming back to the example
in Figure 1, it means that it might be acceptable for ranking t0
to predominantly consist of ESCS=1 students, potentially re-
flecting the demographic composition of that year, with sub-
sequent rankings t1, ..tn compensating for this over time.

In the generic scenarios depicted in Figure 1a, ensuring
long-term fairness involves taking action on the generated
rankings to satisfy the fairness constraints. These actions can
take various forms – such as adjusting scoring methods or
repositioning candidates at the top/bottom of the ranking –
all of which ultimately reduce swapping candidates (as illus-
trated in Figure 1a (bottom)). During these swap operations,
the actions can be either gradual or drastic.

An extreme example of drastic actions is illustrated in Fig-
ure 1b, where mitigation measures respond to the presence of
many students with ESCS=1 (blue circle) at time t0 by impos-
ing significant penalties on them at t1 causing students with
ESCS=1 to disappear from the rankings in t1 completely. This
process repeats at each iteration for different demographic
groups; for instance, students with an ESCS=4 (green circle)
are penalized at t2, while those with an ESCS=3 (purple cir-
cle) are moved down in the rankings at t3 due to their preva-
lence in previous iterations. While the long-term fairness con-
straint is respected (all the sensitive groups have equal oppor-
tunity over time), such drastic decisions raise ethical concerns
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Figure 1: (a) General application scenario for FAiRDAS: generating resources (student) ranking over time; different colours correspond to
different sensitive features (ESCS). Possible actions to promote fairness reduce to candidate swapping. (b) Drastic actions impose significant
penalties on demographic groups at each iteration. (c) Moderate actions preserve long-term fairness without suppressing demographic groups.

as they unfairly disadvantage certain groups in the single
ranking (making some minorities completely disappear for
one whole year). Thus, there is a critical need for an approach
that promotes not only long-term fairness but also long-term
fairness stability, thereby enhancing the overall trustworthi-
ness of the system. For instance, a more stable approach
would select moderate actions that gradually respond to the
over-representation of demographic groups without abruptly
penalizing a group of students. For example, in Figure 1c,
the moderate actions preserve long-term fairness without sup-
pressing the initially over-represented group of students with
ESCS=1 in the following iteration.

2.3 Ranking Problem Formulation
We can now provide a formalization that is general enough to
model our case study and other similar applications.

Resources and Batches. We target a process where a set
R of m resources (e.g., students, professional profiles) needs
to be repeatedly ranked over time based on observable in-
formation arriving over time (e.g., academic record and per-
sonal situation of each cohort, expertise of the professionals
with respect to incoming customer requests). We refer to the
observable information as batches and view them as a time-
indexed stochastic process {Xt}∞t=1, where each batch Xt is
a random variable with support X and distribution P (Xt).

Actions and Metrics. We assume that the ranking proce-
dure can be controlled by adjusting the values of an action
vector θ ∈ Θ, representing (e.g.) penalty or reward terms
associated with sensitive groups, or simply the parameters of
an ML model. We abstract from other details of the ranking
process by focusing instead on how its outcome affects effi-
ciency, cost, fairness, or any applicable Key Performance In-
dicator. Formally, the ranking quality is represented by means
of a metric function defined in probabilistic terms (e.g., based
on expectations or event probabilities):

y : X, θ 7→ y[X; θ] (1)

where the vector y[X; θ] ∈ Rn represents the value of n met-
rics for a given batch X and for a given action vector θ. In
practical settings, the metrics will always admit a finite sam-
ple formulation, e.g., obtained by replacing theoretical expec-
tations with sample averages.

We assume that ranking is repeated for every batch, fol-
lowed by an adjustment of the action vector so that the overall
problem can be defined in terms of the tuple:

⟨{Xt}∞t=1, {yt}∞t=1, {θt}∞t=1⟩ (2)

where θt is the action vector at time t and yt refers to the value
of the metric function for time t, i.e. to y[Xt; θt]. Ex-post cal-
ibration of the action vector is not an essential assumption of
our framework, and it was made here since it offers advan-
tages in terms of response time (the ranking can be computed
without needing to optimize θt) and transparency (if θt is in-
terpretable, it can be made public before ranking).

3 Related Work
3.1 Fairness Metrics and Sensitive Features
In the context of AIEd, notions of fairness stemming from the
concept of equal opportunity are typically considered [Kizil-
cec and Lee, 2022]. Various variants have been proposed
to overcome limitations of the specific scenario under anal-
ysis (e.g., applicability to continuous features [Holstein and
Doroudi, 2019; Giuliani et al., 2023], generalization of the
equal opportunity concept [Blandin and Kash, 2023], overes-
timation of unfairness [Jiang and Pardos, 2021]). In our case
study, the fairness metric (or fairness metrics) enforced in the
system is entirely at the user’s discretion. For this reason, a
disparate impact metric [Zafar et al., 2017] has been selected
as the fairness metric for the following tests, as it is widely
used in literature in these scenarios and is easily understand-
able. We emphasize that the choice of fairness metric does
not impact the results presented in this work.

Regarding sensitive features, many AIEd approaches only
utilize gender and race, often managing one feature at a time
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[Jiang and Pardos, 2021; Hu and Rangwala, 2020]. The ad-
vantage of FAiRDAS is the ability to include multiple sensi-
tive features for consideration and achieve a balance in terms
of long-term fairness that considers all features. We consider
the Economic, Social, and Cultural Status as the sensitive fea-
ture, which is more appropriate for addressing discrimination
in this scenario [Pedro et al., 2019].

3.2 Debiasing Algorithms
Debiasing techniques have gained significant attention in
AIEd due to their potential to mitigate disparities and enhance
fairness in educational settings [Sha et al., 2023].

One prominent set of debiasing techniques involves pre-
processing steps to mitigate bias in the training data. For in-
stance, approaches such as reweighting samples or data bal-
ancing [Celis et al., 2020] have been explored to mitigate bi-
ases related to demographic factors.

Another class of techniques involves post-processing
methods that aim to adjust model predictions to achieve fair-
ness after learning. Post-processing techniques typically in-
volve applying corrective measures to model outputs to en-
sure fairness, such as re-ranking or re-calibrating predictions
based on demographic attributes [Xian et al., 2023].

One of the most promising techniques is the in-processing
methods involving modifying loss functions, introducing
fairness-aware regularization terms, or optimization tech-
niques [Caton and Haas, 2020]. Among these models, se-
quential minimal optimization works better for predicting stu-
dents’ future performance [Arashpour et al., 2023] (this led
to our baseline choice). However, the main problem with cur-
rent techniques is that few studies focus on the concept of
long-term fairness [Yu et al., 2022; Ge et al., 2021]. Even
more rarely are the actions taken to ensure long-term fairness
analyzed [Yin et al., 2024; Hu and Zhang, 2022]; i.e., solu-
tions often result in unstable actions that adopt overly drastic
measures to achieve fairness goals (e.g., the almost complete
disappearance of a sensitive group as a response to balance its
overexposure in previous rankings). In this work, we will fo-
cus on both the concept of long-term fairness and the stability
of actions taken to ensure it.

4 FAiRDAS
This section introduces the FAiRDAS framework. The main
idea revolves around conceptualizing the evolution of fair-
ness/quality metrics as a dynamic system, allowing the user
to define a target behaviour that can then be approximated by
operating on the action sequence {θt}∞t=1. By configuring the
parameters of the target dynamic system, the user can con-
trol the trade-off between multiple quality metrics, and the
desired level of smoothness and stability.

Target Dynamic System. We assume that the goal for the
evolution of the system is to stably and smoothly drive the
metrics of interest yt ∈ Rn below a user-defined threshold
µ ∈ Rn. The desire for stable behaviour with limited oscilla-
tions suggests characterizing the target behaviour via a linear
discrete dynamic system. In particular, we use:

ȳt+1 = λ⊙ (ȳt − µ) + ȳt, (3)

where ȳt represent the metric values in the target system,
λ ∈ (0, 2)n, and ⊙ refers to the Hadamard (element-wise)
product. Equation (3) corresponds to a particular class of lin-
ear discrete system having a positive-definite coefficient ma-
trix with eigenvalues strictly lower than 2. Such systems are
known to asymptotically reach a stable equilibrium at µ, i.e.
limt→∞ ȳt = µ. Note that µ represents here an equilibrium
point rather than a threshold, meaning that metric values be-
low their threshold will actually be increased: we compensate
for this fact in the next step of our approach.

The convergence dynamics can be controlled via the λ vec-
tor: values of λj close to 0 result in little or no oscillations
for ȳt,j , but typically also in slower convergence; as λj ap-
proaches 2 the corresponding metrics evolve much faster, but
can also exhibit more frequent and wider oscillations.
Approximating the Target Behavior. The second key idea
in FAiRDAS is to approximate the target system’s behaviour
by operating on the action vector. Formally, this requires
solving an optimization problem whose cost function L(θ, ȳ)
measures the discrepancy between the actual metrics yt, as
determined by the actions θt and the target ones ȳt. In this
paper, we use the Euclidean distance:

L(θt, ȳt) = ∥y[Xt; θt]− ȳt∥22. (4)

though other functions can be employed. During the approx-
imation step, we also account for the fact that all values of
yt,j ≤ µj are equivalent in terms of quality since they are
all below the desired threshold. This is achieved by avoiding
penalties for target metrics that are below their threshold, and
in particular by formulating the problem of choosing θ as:

θ∗(ȳt) = argmin
θ∈Θ

L(θt, u) (5a)

subject to: uj = ȳt,j ∀j : ȳt,j > µj (5b)
uj ∈ [0, µj ] ∀j : ȳt,j ≤ µj (5c)

For computing the optimal action vector θ∗(ȳt), we replace ȳt
in the distance function with a new variable u. When ȳt,j is
above a threshold, the action vector θ should be chosen to ob-
tain a good approximation. When ȳt,j is within the threshold,
uj can be freely adjusted to achieve 0 distance.

The solution method for Equation (5a)-(5c) depends on the
characteristics of the action space and of the distance func-
tion L. Moreover, in practice, evaluating Equation (4) ex-
actly is impossible in all but simple cases since the distri-
bution P (Xt) will not be precisely known. For this reason,
the metric values y[Xt; θt] will need to be replaced (e.g.) by
a Monte Carlo approximation computed on historical data.
Consequently, the problem solution will also become approx-
imate and subject to sampling noise.

Note that FAiRDAS targets metric stability directly (by re-
lying on the target dynamic system) and action stability indi-
rectly. This is intentional and motivated by the fact that the
set of available actions may be a poor fit for classical defini-
tions of smoothness (e.g., discrete actions), and it might even
change over time (e.g., the addition of new sensitive groups).
Scale Calibration Mechanism. The optimization problem
from Equation (5a)-(5c) is sensitive to the metric scales. To
address this issue, we propose normalizing the n metrics by:
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1) considering a set of k historical batches; 2) optimizing the
action vector for each metric individually over each batch; 3)
applying the actions to compute all the metrics, thus obtain-
ing a sample of n × k values for each metric representing
its distribution under different action vectors; 4) using the in-
terquartile range of each metric on the sample as a normal-
ization factor. We found this process to be typically effective
at rescaling different metrics into similar ranges. This prop-
erty allows the users to specify priorities by defining thresh-
old rather than using different weights at optimization time.

FAiRDAS General Framework. To ground FAiRDAS on
a specific application, we need to define the following list of
parameters. The metrics of interest define how the fairness
and ranking quality should be assessed. The behaviour of the
target dynamical system from Equation (3) is determined by
the vector λ and the threshold vector µ. A careful definition
of both these elements is required to satisfy all the objectives.

The set of actions defines how the metrics can be altered to
adjust the ranking fairness and quality. The available actions
can vary widely, from direct manipulation of the resource or-
dering to the adjustment of penalty factors or of the parame-
ters of an ML model (e.g., neural network weights). The dis-
tance function defines how we measure the effectiveness of
the approximation of the target system; while the Euclidean
norm should work in most cases, specific settings may call
for a different choice. Finally, the set of actions and the dis-
tance function determine to a large extent which optimization
methods can be used to address Equation (5a)-(5c); among
this pool of candidates, one must be chosen considering com-
putational efficiency, accuracy, and optimality guarantees.

5 Empirical Evaluation
In this section, we present the empirical evaluation performed
on the AIEd case study described in Section 2.1. We first
describe the dataset and FAiRDAS grounding. Then, we de-
scribe the evaluation procedure and report the numerical re-
sults3.

5.1 Dataset
Students Dataset. As described in Section 2.1, the motivat-
ing case study revolves around assessing students’ academic
performance predictions for tasks like identifying potential
dropouts or providing recommendations. With this objective,
we train a multi-layer perceptron (MLP) on the real data to
predict the student’s test score based on three highly corre-
lated features: the number of books, the mother’s education,
and the index of economic, social, and cultural status (ESCS).
Ranking students based on the MLP predictions may lead to
disparate and unfair outcomes. Ensuring long-term stability is
imperative in this situation: while attaining consistently high
values in accuracy and long-term fairness metrics is undeni-
ably desirable, it’s crucial to have stable actions over time to
avoid a negative impact on students’ academic advancement.

To evaluate FAiRDAS ability to handle stability over time,
we create the Students Dataset consisting of 100 batches of

3The source code to reproduce the experiments can be found at
https://github.com/EleMisi/FAiRDAS AIforEd under MIT license.

32 students sampled from the distribution of predicted scores
to simulate polarized requests in terms of ESCSThe resulting
score distribution is highly correlated with the protected at-
tribute ESCS (Figure 2); thus, ranking students without taking
any mitigation action may affect the support program effec-
tiveness and lead to social inequalities.

Figure 2: The students’ score distribution predicted by the MLP
shows a correlation with the protected attribute ESCS.

5.2 FAiRDAS Grounding
As described in Section 4, we need to define a list of param-
eters to ground FAiRDAS to a specific application. Here we
report the grounding for our case study.
Set of Actions. We choose a set of actions that applies di-
rectly to the scores used by the ranking algorithm. Formally,
given the protected attribute v ∈ V , the actions take the form
of a vector θ ∈ [0, 1]|V| with unit L1 norm, such that each
component θv applies to the scores of those resources with
protected attribute value equal to v. The action vector com-
ponents apply to the students of the corresponding protected
groups as a penalizing factor on their score, thus potentially
changing their position in the rank. In particular, values closer
to 1 correspond to more drastic penalization, while the stu-
dent’s score is almost unmodified with values close to zero.

In the Students Dataset, we have four sensitive groups cor-
responding to the four levels of ESCS indicator. Thus, the
action vector has four components, each applying to the stu-
dents belonging to the corresponding sensitive group. Sup-
pose we want to respond to an overrepresentation of stu-
dents with ESCS=4. An example of drastic action in this
scenario is θ = {0, 0, 0, 1} that strongly penalizes all the stu-
dents with ESCS=4 by suppressing their score while leaving
the other students’ scores unmodified. As a result, all stu-
dents with ESCS=4 will be placed in the last positions of the
rank. Conversely, an example of a smooth mitigation action
is θ = {0.22, 0.22, 0.22, 0.34}, where the score penalization
is spread across the four sensitive groups without harsh penal-
ization of a particular category. The resulting ranking will be
closer to the original one, with few adjustments in response
to an over-representation of ESCS=4.
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Metrics of Interest. We use the Disparate Impact Discrim-
ination Index (DIDI) [Aghaei et al., 2019] as a fairness met-
ric, as it is widely used in literature in similar scenarios and
is easily understandable. It is important to emphasize that the
choice of fairness metric does not impact the results presented
in this work. Given a sample including K values for a pro-
tected attribute v ∈ V and a continuous target value f ∈ R,
the DIDI is defined as:

DIDI(θ) =
∑
v∈V

∣∣∣∣∣
∑K

k=1 fk(θ)I(vk = v)∑K
k=1 I(vk = v)

− 1

K

K∑
k=1

fk(θ)

∣∣∣∣∣ .
(6)

where I(ψ) is the indicator function for the logical formula
ψ, and the target value is a function of the action vector θ
applied to the ranking score. In particular, the score sk of a
student is provided by the pre-trained MLP; thus, we have:

fk(θ) = |sk|(1− θvk
), (7)

where θvk
is the component of the action vector correspond-

ing to the ESCS level of the k-th student. To quantify the rank-
ing accuracy, we measure the absolute difference between the
original and modified scores. This translates to:

SAE(θ) =
1

K

K∑
k=1

|sk|θvk
, (8)

where K is the number of students in a request. Note that
the two metrics of interest are conflicting: SAE pushes θvk

close to zero to preserve the original ranking, while DIDI
forces θvk

> 0 for some k to reduce discrimination. Since
the action vector has unit L1 norm, the trivial solution with
θxk

= 0 ∀ k, which nullifies both metrics, is excluded.

Target Dynamic System. We are interested in smoothly
satisfying the metric thresholds while ensuring long-term sta-
bility. To this goal, we adopt the dynamic system described
in Equation (3), characterized by a smooth state evolution
towards the threshold. Since we have two metrics of inter-
est (DIDI and SAE), λ is size 2 vector, with values selected
through a preliminary experiment described in Section 5.4.

Distance Function and Optimization Method. As a dis-
tance function, we use the Euclidian distance in Equation (4)
that we optimize by relying on the Sequential Least Squares
Programming (SLSQP) algorithm.

5.3 Evaluation
We compare FAiRDAS against a baseline approach in terms
of metrics of interests (i.e., DIDI and SAE) and action
smoothness (mActions). The latter aims at evaluating the sta-
bility of selected actions over time and is computed as the
mean absolute difference between subsequent action vectors:

mActions =
1

N

N−1∑
t=1

1

|V|

|V|∑
j=1

|θt,j − θt+1,j | (9)

where N is the number of incoming batches and θt,j is the
j-th component of the action vector chosen for the t-th batch.
We report each metric’s mean and standard deviation over

batches to compare the approaches’ performance and stability
over time.

The baseline approach focuses on searching for the optimal
action vector that minimizes the cost function:

L(θ) = max (DIDI(θ), µDIDI) + max (SAE(θ), µSAE)
(10)

where µDIDI and µSAE are the metrics’ thresholds. The set
of possible actions is the same as for FAiRDAS, and we rely
on the same algorithm to tackle the optimization problem.

5.4 Numerical Results
As an initial step, we aim to analyze the impact of the
eigenvalues λ of the FAiRDAS dynamical system on ac-
tion smoothness. We run repeated experiments with differ-
ent eigenvalues and fixed thresholds and report the action
smoothness in Table 1. As expected from the theoretical
properties of the target dynamic state, lower eigenvalues lead
to more stable actions. This outcome showcases the remark-
able adaptability of the FAiRDAS framework, allowing for
indirect control of the stability level of mitigation actions.
Such flexibility proves advantageous as it enables us to tai-
lor the smoothness of our approach according to the require-
ments of different use cases. In this work, we select eigenval-
ues corresponding to the elbow of action smoothness metrics.

λ mActions σmActions

1.0 0.276 ± 0.029 0.272 ± 0.016

0.5 0.102 ± 0.016 0.119 ± 0.021

0.2 0.044 ± 0.008 0.074 ± 0.019
0.1 0.024 ± 0.004 0.062 ± 0.018

0.01 0.008 ± 0.002 0.056 ± 0.019

Table 1: Mean and standard deviation of the action smoothness com-
puted over the batches. We analyse 5 eigenvalues (λ) with a fixed
threshold and {0.5, 0.5}. For each eigenvalue, we run eight repeated
experiments. We select λ = 0.2 as the elbow of the curve (in bold).

Next, we are interested in analysing how FAiRDAS
and the baseline behave under different pairs of thresholds
({µDIDI, µSAE}). The first pair of thresholds {0, 2} defines
an extreme situation where we care only for fairness with-
out regard for the ranking performance. Next, we select a
loose pair of thresholds {0.7, 0.7} and a strict pair of thresh-
olds {0.5, 0.5}. Lastly, we investigate the not-reachable pair
of thresholds {0.2, 0.2}. Table 2 reports the mean and stan-
dard deviation of the metrics over batches. FAiRDAS and
the baseline achieve similar levels of the metrics of interest
(DIDI and SAE) across all thresholds. However, the baseline
method uses significantly more unstable actions compared to
FAiRDAS, especially under strict thresholds. Regarding fair-
ness and acceptable outcomes, the validation of results has
involved ACCUEE stakeholders in interpreting the ethical ac-
ceptability or discriminatory nature of the mitigation actions.
The finding emphasizes FAiRDAS’s capability to maintain
both effective performance and fairness over time, all while
avoiding drastic actions that give rise to ethical concerns.

The enhanced stability of the FAiRDAS approach is il-
lustrated in Figure 3, wherein we present the action vectors
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Thresholds Approach DIDI σDIDI SAE σSAE mActions σmActions

{0, 2} Baseline 0.292 ± 0.059 0.396 ± 0.057 0.663 ± 0.061 0.442 ± 0.042 0.251 ± 0.033 0.199 ± 0.014
FAiRDAS 0.188 ± 0.051 0.327 ± 0.046 0.692 ± 0.077 0.247 ± 0.03 0.056 ± 0.009 0.052 ± 0.012

{0.7, 0.7} Baseline 0.390 ± 0.075 0.460 ± 0.067 0.631 ± 0.071 0.547 ± 0.095 0.233 ± 0.043 0.265 ± 0.027
FAiRDAS 0.235 ± 0.062 0.358 ± 0.049 0.642 ± 0.072 0.282 ± 0.076 0.023 ± 0.005 0.063 ± 0.015

{0.5, 0.5} Baseline 0.423 ± 0.056 0.507 ± 0.055 0.643 ± 0.081 0.594 ± 0.115 0.330 ± 0.024 0.297 ± 0.026
FAiRDAS 0.234 ± 0.049 0.376 ± 0.078 0.654 ± 0.064 0.309 ± 0.048 0.044 ± 0.008 0.074 ± 0.019

{0.2, 0.2} Baseline 0.551 ± 0.109 0.579 ± 0.071 0.673 ± 0.088 0.728 ± 0.123 0.554 ± 0.034 0.337 ± 0.030
FAiRDAS 0.290 ± 0.048 0.409 ± 0.059 0.683 ± 0.055 0.412 ± 0.065 0.091 ± 0.008 0.097 ± 0.019

Table 2: Mean and standard deviation of the metrics computed over batches for Students Dataset. We run eight repeated experiments for each
pair of thresholds and report the results for baseline and FAiRDAS approach. FAiRDAS and the baseline achieve similar levels of the metrics
of interest (DIDI and SAE), but the baseline’s actions are more unstable compared to FAiRDAS’s ones.

(a) (b)

Figure 3: Action vectors chosen by the baseline (a) and FAiRDAS (b) in an experiment conducted with strict thresholds ({0.5, 0.5}). In each
row, we present the evolution of the corresponding action vector component across 100 batches.

chosen by both approaches in an experiment conducted with
strict thresholds. This figure offers a component-wise com-
parison of baseline and FAiRDAS action vectors across all
100 batches. As described in 5.2, the action vector compo-
nents apply to the students of the corresponding protected
groups as a penalizing factor on their score, thus potentially
changing their position in the rank. Higher values correspond
to more drastic penalization, while with values close to zero,
the student’s score is almost unmodified.

As we can notice, the baseline strategy tends to opt for
rapid and drastic interventions, demonstrated by the rapid
change in colour between batches and by action components
close to 1 (lighter colour). In contrast, FAiRDAS demon-
strates a more tempered and balanced behaviour, with ac-
tion vectors evolving smoothly throughout the experiment
(smooth change in colour along rows) and with similar pe-
nalization across the groups (homogeneous colour along
columns).

This difference in behaviour is evident from the very first
iteration: since we perform ex-post calibration to enhance ac-
tion vector interpretability, both approaches start by taking no
action in the first batch (i.e., θi = 0 ∀ i, corresponding to dark
colour); then the baseline increases the action component θ2
in response to the large presence of students with ESCS=2 in
the first batch, thus suppressing their score; conversely, FAiR-
DAS opts for smoother mitigation action, slightly increasing
the penalization for all the groups. FAiRDAS achieves higher
levels of stability thanks to its underlying mechanism, which

leverages a target dynamic system to guide decision-making
to minimize abrupt changes. By approximating a smooth dy-
namic evolution, FAiRDAS effectively prevents the occur-
rence of drastic interventions, thereby promoting long-term
stability and fairness within the system.

6 Conclusion

In this work, we presented a novel framework, FAiRDAS,
to model the long-term evolution of fairness metrics as an
abstract dynamical system. Our formulation allows control
over (i) the trade-off between multiple metrics and (ii) the
stability level of mitigation actions. The FAiRDAS approach
emerges as advantageous, particularly in contexts where en-
suring long-term fairness is essential. These contexts include
scenarios that yield different outcomes over time, often with
diverse inputs representing possibly a heterogeneous popula-
tion with different characteristics. The primary advantage of
adopting a dynamic system like FAiRDAS lies in its ability
to ensure desirable properties, such as mitigation actions sta-
bility in achieving fairness constraints, as demonstrated in the
AiEd scenario presented. Drastic actions performed by tradi-
tional approaches risk compromising the quality of individ-
ual rankings, rendering them ethically unacceptable. Future
work will be devoted to applying FAiRDAS to other appli-
cation scenarios and conducting more comprehensive tests to
assess its effectiveness.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Special Track on AI for Good

7418



Ethics Statement
While the focus of this paper is specific to education, our gen-
eral approach has broader applicability. By prioritizing long-
term fairness and stability, we aim to contribute to the devel-
opment of AI systems that are ethically robust and socially re-
sponsible, fostering trust and inclusivity in the broader com-
munity. The research conducted adheres to ethical standards
throughout its entirety. All procedures and methodologies
employed in this study have been designed and executed to
comply with established ethical guidelines. In particular, the
ACCUEE ensured the responsible and lawful acquisition of
data and its elaboration in compliance with GDPR. All data
were anonymized before being shared.

Acknowledgements
The work has been partially supported by the AEQUITAS
project funded by the European Union’s Horizon Europe Pro-
gramme (Grant Agreement No. 101070363), and by PNRR
- M4C2 - Investimento 1.3, Partenariato Esteso PE00000013
- “FAIR - Future Artificial Intelligence Research” - Spoke 8
“Pervasive AI”, funded by the European Commission under
the NextGeneration EU programme4.

References
[Aghaei et al., 2019] Sina Aghaei, Mohammad Javad Azizi,

and Phebe Vayanos. Learning optimal and fair decision
trees for non-discriminative decision-making. In Proceed-
ings of the AAAI conference on artificial intelligence, vol-
ume 33, pages 1418–1426, 2019.

[Albreiki et al., 2021] Balqis Albreiki, Nazar Zaki, and
Hany Alashwal. A systematic literature review of stu-
dent’ performance prediction using machine learning tech-
niques. Education Sciences, 11(9), 2021.

[Arashpour et al., 2023] Mehrdad Arashpour, Emad M Go-
lafshani, Rajendran Parthiban, Julia Lamborn, Alireza
Kashani, Heng Li, and Parisa Farzanehfar. Predicting
individual learning performance using machine-learning
hybridized with the teaching-learning-based optimiza-
tion. Computer Applications in Engineering Education,
31(1):83–99, 2023.

[Blandin and Kash, 2023] Jack Blandin and Ian A Kash.
Generalizing group fairness in machine learning via util-
ities. Journal of Artificial Intelligence Research, 78:747–
780, 2023.

[Caton and Haas, 2020] Simon Caton and Christian Haas.
Fairness in machine learning: A survey. ACM Computing
Surveys, 2020.

[Celis et al., 2020] L Elisa Celis, Vijay Keswani, and
Nisheeth Vishnoi. Data preprocessing to mitigate bias: A
maximum entropy based approach. In International con-
ference on machine learning, pages 1349–1359. PMLR,
2020.
4Disclaimer: This paper reflects only the authors’ views. The

European Commission is not responsible for any use that may be
made of the information it contains.

[Chassignol et al., 2018] Maud Chassignol, Aleksandr
Khoroshavin, Alexandra Klimova, and Anna Bilyat-
dinova. Artificial intelligence trends in education: a
narrative overview. Procedia Computer Science, 136:16–
24, 2018. 7th International Young Scientists Conference
on Computational Science, YSC2018, 02-06 July2018,
Heraklion, Greece.

[Ge et al., 2021] Yingqiang Ge, Shuchang Liu, Ruoyuan
Gao, Yikun Xian, Yunqi Li, Xiangyu Zhao, Changhua Pei,
Fei Sun, Junfeng Ge, Wenwu Ou, et al. Towards long-
term fairness in recommendation. In Proceedings of the
14th ACM international conference on web search and
data mining, pages 445–453, 2021.

[Giuliani et al., 2023] Luca Giuliani, Eleonora Misino, and
Michele Lombardi. Generalized disparate impact for con-
figurable fairness solutions in ml. In Proceedings of
the 40th International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

[Holstein and Doroudi, 2019] Kenneth Holstein and Shayan
Doroudi. Fairness and equity in learning analytics systems
(fairlak). In Companion proceedings of the ninth interna-
tional learning analytics & knowledge conference (LAK
2019), pages 1–2, 2019.

[Hu and Rangwala, 2020] Qian Hu and Huzefa Rangwala.
Towards fair educational data mining: A case study on de-
tecting at-risk students. International Educational Data
Mining Society, 2020.

[Hu and Zhang, 2022] Yaowei Hu and Lu Zhang. Achiev-
ing long-term fairness in sequential decision making. In
Thirty-Sixth AAAI Conference on Artificial Intelligence,
AAAI 2022, Thirty-Fourth Conference on Innovative Ap-
plications of Artificial Intelligence, IAAI 2022, The Twel-
veth Symposium on Educational Advances in Artificial In-
telligence, EAAI 2022 Virtual Event, February 22 - March
1, 2022, pages 9549–9557. AAAI Press, 2022.

[Jiang and Pardos, 2021] Weijie Jiang and Zachary A Par-
dos. Towards equity and algorithmic fairness in student
grade prediction. In Proceedings of the 2021 AAAI/ACM
Conference on AI, Ethics, and Society, pages 608–617,
2021.

[Kizilcec and Lee, 2022] René F Kizilcec and Hansol Lee.
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