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Abstract
Previous domain adaptation methods are designed
to work for a single task, either classification or
regression. In this paper, the task of the learner
is to produce both an estimation and an ordinal
classification of instances that are consistent in
that the classification of instances into quantiles is
derived from the estimated values. We propose
an extension of the boosting for transfer method
(TrAdaBoost), Joint Quantile Loss Boosting Do-
main Adaptation (TrAdaBoost.JQL) for regression
transfer learning, that aims to jointly minimize re-
gression and ordinal classification errors. Moti-
vated by the real-world problem of poverty target-
ing using the Proxy Means Test, we empirically
show that TrAdaBoost.JQL can consistently reduce
RMSE and inclusion and exclusion errors for es-
timating per capita household expenditure, across
a wide variety of districts in Indonesia, compared
to other reweighting-based and invariant feature
representation-based domain adaptation methods.
We design TrAdaBoost.JQL to be flexible as to the
chosen eligibility (poor) threshold used in poverty
targeting practice and as to whether estimation or
ordinal classification accuracy is prioritized.

1 Introduction
The key assumption in supervised learning is that training and
test sets are iid (independent and identically distributed) and
derived from the same distribution. If the distribution of the
test set does not match the distribution of the training set, a
learned model will fail to generalize accurately. In practice,
differences in distribution between training and test sets are
often unavoidable due to sample selection bias, changing en-
vironment, privacy concerns, high labelling cost, etc. Domain
adaptation [Daumé III and Marcu, 2006], a type of transfer
learning, addresses this problem by “borrowing” or “exploit-
ing” a pre-existing dataset or adjusting a model trained in an-
other similar task. Domain adaptation works by correcting
the differences between an augmenting data set (the training
set or source) and augmented data (the test set or target) with
or without a small amount of the target set (the guide or train-
ing target). The performance of the model is then evaluated

on the remainder of the target set (the testing target). In pre-
vious work, domain adaptation methods are designed to work
for a single task, either classification or regression. In this
paper, the task of the learner is to produce both an estimation
and an ordinal class of instances that are consistent in that the
classes are derived from the estimated values.

We analyse a real world application, the Proxy Means Test
(PMT), a popular model-based poverty targeting method used
in many countries for many years [Grosh and Baker, 1995;
Kidd and Wylde, 2011]. The PMT aims to identify the “poor”
groups within a population. A PMT model is developed us-
ing household data from a sample survey, then is used to es-
timate monthly per capita household expenditure (pcexp) for
the whole population in the following year. Households are
ranked based on estimated pcexp from the lowest to the high-
est and are also classified into two ordinal classes, eligible
for benefits (poor) and ineligible (non-poor). A threshold,
such as 40%, is used such that all households at or below the
threshold are classified as eligible. In modelling the PMT,
it is important that the ranking of households based on or-
dered estimated pcexp is consistent with the classification of
a household as eligible or ineligible. That is, if one household
is estimated to have a higher pcexp than another and the first
household is classified as eligible, the second household must
also be classified as eligible (a monotonicity property given
that all eligible households have less expenditure than all in-
eligible households). Thus the eligible group must be exactly
those estimated to be at or below the threshold by pcexp.

PMT models are commonly evaluated based on the accu-
racy of estimation using a metric such as RMSE, but more
important is the evaluation of the classification into the eli-
gible class [Brown et al., 2018]: inclusion error (IE) arises
when an ineligible household is classified as eligible, and ex-
clusion error (EE) arises when an eligible household is classi-
fied as ineligible. Given the problem of limited data [Wobcke
and Mariyah, 2023] and the distribution shift while borrow-
ing from previous datasets, in this work, we aim to reduce
inclusion and exclusion error by developing a PMT model
that takes into account distribution shift as well as jointly
minimizing regression and ordinal classification errors. We
develop an extension to the domain adaptation algorithm for
regression utilizing the idea of boosting by modifying TrAd-
aBoost [Dai et al., 2007]. The idea of our method is to in-
clude ranking-related information in the weighting mecha-
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nism based on the estimation at every boosting iteration. We
revise the criteria of usefulness of source domain instances
in estimating the target instances so that not only estimation
error but also ordinal classification error can be minimized
simultaneously. We design our method, TrAdaBoost.JQL, to
be applicable for any poverty targeting threshold by allow-
ing the threshold to be set at any quantile cut-off, as a variety
of cut-offs are used in practice and the cut-off directly af-
fects the accuracy of the PMT [Narayan and Yoshida, 2005;
Johannsen, 2006; Sumarto et al., 2007; Houssou et al., 2007;
Sharif, 2009; Kidd and Wylde, 2011]. To demonstrate the
generality of the approach, we evaluate our method over dif-
ferent eligibility thresholds using target datasets from a num-
ber of districts in Indonesia. We compare TrAdaBoost.JQL to
existing domain adaptation methods, reweighting-based and
invariant feature representation-based methods.

2 Background
There are at least two paradigms in domain adaptation, in-
stance reweighting and invariant feature representation. The
general idea of instance reweighting is to reweigh source in-
stances (and the guide) with a positive weight with respect to
a loss function to correct the differences between source and
target domains. The invariant feature space approach aims to
identify common features behaving similarly between source
and target, and transform them into an invariant feature space.

In reweighting-based domain adaptation, one of the most
well-known domain adaptation methods is boosting for trans-
fer learning, TrAdaBoost [Dai et al., 2007]. This work
showed how boosting can be used to select useful source in-
stances and filter out source instances that are too different
from target instances. TrAdaBoost requires a small amount
of target instances (the guide) to measure how different the
source instances are from the target set. However, TrAd-
aBoost is highly susceptible to overfitting [Pardoe and Stone,
2010]. When the number of boosting iterations increases, be-
yond some point the performance decreases.

Pardoe and Stone [2010] argued that when the source
dataset is much larger than the guide, TrAdaBoost can take
many iterations for the total weight of the target instances to
approach the total weight of the source instances, and pro-
posed Two-Stage TrAdaBoost. In the first stage, the instance
weights are updated as in TrAdaBoost until reaching a certain
point. In the second stage, the source instance weights are
frozen but the guide instance weights are updated using the
AdaBoost method. Al-Stouhi and Reddy [2011] and Eaton
and desJardins [2009] pointed out that the source weights in
TrAdaBoost converge rapidly. Al-Stouhi and Reddy [2011]
proposed a correction factor so that the reweighting mech-
anism in TrAdaBoost follows the Weighted Majority Algo-
rithm [Littlestone and Warmuth, 1994]; the method is called
Dynamic TrAdaBoost.

Besides boosting techniques, deep learning has shown
promising results in some domain adaptation settings. De
Mathelin et al. proposed two methods for reweighting-based
domain adaptation with a deep learning neural network:
Weighting Adversarial Neural Network (WANN) [de Math-
elin et al., 2021] and Importance Weighting Network (IWN)

[de Mathelin et al., 2022]. WANN includes three networks,
a weighting network to learn the source weights, a task net-
work to learn the task, and a discrepancy network to estimate
the distance between the reweighted source and target distri-
butions, while IWN consists of a reweighting network to pa-
rameterize the weights of the source instances that minimize
the maximum mean discrepancy (MMD) between source and
target distributions.

Different from instance reweighting that utilizes a set of
positive weights calculated from the loss, feature-based do-
main adaptation searches for invariant representations that are
shared for both source and target domains. Transfer Compo-
nent Analysis (TCA) [Pan et al., 2011] reduces the distance
between domains by constructing a reduced feature repre-
sentation in reproducing kernel Hilbert space using MMD.
Similar to TCA, Subspace Alignment (SA) [Fernando et al.,
2013] constructs subspaces from the most informative eigen-
vectors for the source and target domains to minimize the
Frobenius norm of these two subspaces. Alignment of fea-
ture representation is also used by Sun et al. [2016]. Inspired
by [Daumé III, 2007], they proposed Correlation Alignment
(CORAL), which minimizes the distribution differences by
aligning the second order statistics of source and target distri-
butions.

3 Joint Quantile Loss Boosted Guided
Domain Adaptation

Boosting has been utilized in domain adaptation methods
and implemented in different ways. In TrAdaBoost (Algo-
rithm 1), data instances are weighted based on their distribu-
tion or a specified distribution and sent to a base learner along
with some initial weights. The goal is to selectively choose
“useful” instances from the source set given the data distribu-
tions differ by adjusting the weight of each instance in both
source and target domains. In each iteration, TrAdaBoost re-
duces the weights of source set instances with high error and
increases the weights of instances with low error relative to all
data. In contrast, if instances are from the same distribution
(the target set), the weights of instances having high error are
increased and those of instances having low error are reduced.

We present an extension of TrAdaBoost, TrAdaBoost.JQL,
designed to jointly minimize regression and ordinal classifi-
cation (quantile) errors simultaneously where the base learner
works in a regression setting, and which considers joint re-
gression and quantile classification errors in updating the
weights. TrAdaBoost.JQL requires the data to be divided into
quantiles ordered by the target variable (as distinct from quan-
tile regression which produces a model to identify a specific
quantile). A poverty targeting model can be developed us-
ing any threshold and the quantile loss can be defined using
any quantiles; the experiments in this paper use thresholds of
20%, 40% and 60%, and the quantile loss is based on five
quantiles (i.e. quintiles). We define a parameter λ ∈ [0, 1]
to control the trade-off between estimation and ordinal clas-
sification errors (see Definition 2). Considering that different
datasets and domains might have different characteristics, λ
could be a tunable hyperparameter of the method, however all
experiments in this paper use the same fixed value of λ.
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Algorithm 1 TrAdaBoost.JQL for Regression
Input:

1. Two labelled data sets, the source Ds of size n and the
guide (training target) Dg of size m. Let D be the com-
bination of Ds and Dg such that the first n instances in
D are those from Ds.

2. A base learning algorithm, a regressor

3. The maximum number of iterations N
1: The initial weight vector w1 = (w1

s,w1
g) where w1

s =

(w1
1, ..., w

1
n) and w1

g = (w1
n+1, ..., w

1
n+m). The initial

values are specified by the user.
2: for t = 1, ..., N do
3: Set the vector pt = wt/(

∑n+m
i=1 wt

i)
4: Call regressor, providing it with D and the distribu-

tion pt over D, which returns an estimator ht

5: Calculate loss vector et using Definitions 1 and 2
6: Calculate estimator error of ht on Dg:

εt =
m∑

i=n+1

wt
gi · e

t
i∑m

j=n+1 w
t
gj

7: Set βt = εt/(2− εt) and β = 1/(1 +
√
2 lnn/N)

8: Update the weight vector:

wt+1
i =

{
wt

iβ
eti , 1 ≤ i ≤ n

wt
iβ

−eti
t , n+ 1 ≤ i ≤ n+m

9: Calculate estimator weight ωt = − ln(εt/(2− εt))
10: end for
Output: Hypothesis hf (x) = the weighted median of
ht(x) for N/2 ≤ t ≤ N with ωt as the weight for estima-
tor ht

Definition 1. For a dataset D, each instance xi in D is as-
sociated with a true value yi and estimated value h(xi) for a
given learner h. The regression error vector eR and normal-
ized regression error vector ẽR are defined as

eiR = |h(xi)− yi| and ẽiR =
eiR

maxi{eiR}

Definition 2. Using the notation of Definition 1, suppose the
instances xi are assigned a quantile ranking yiQ and esti-
mated value ŷiQ with Q quantiles from 1 to Q. Then the quan-
tile ranking error vector eQ and normalized quantile ranking
error vector ẽQ are defined as

eiQ =
|ŷiQ − yiQ|

Q
and ẽiQ =

eiQ
maxi{eiQ}

The joint quantile loss vector eJQL is defined as

eJQL = λ · ẽR + (1− λ) · ẽQ

where λ ∈ [0, 1] is a fixed parameter.
Our method utilizes boosting in transferring patterns of

instances from the source data by giving “richer” informa-
tion on which instances lead to maximal reduction in joint

loss. The guide is used to help in measuring the magni-
tude of the difference between the source and the target sets.
The source instances with high joint error are weighted lower
while the guide instances with high joint error are weighted
higher in the next iteration, repeatedly until the final iteration
is reached. In our method, two instances with the same re-
gression error can be reweighted differently. If one instance is
ranked into the correct group and another instance is ranked
into the wrong group, then the weight of the first instance
becomes higher than the weight of the second instance even
though both of them come from the source set. In previous
methods, these two instances are reweighted the same.

The main idea of our method is to give the base learner
more information about which instances maximally reduce
the estimation and ranking error, both through the loss func-
tion and by choosing the guide instances uniformly from the
true quantiles of the target set. The ordinal classification error
indicates the instances whose estimations should be improved
to move all instances into the correct classes, which in turn
improves estimation. Our observations show that informa-
tion about ordinal classification loss allows instances in the
source set to have reasonably high weights, thus be consid-
ered “useful” instances for constructing the target function.
This is because the instance’s group is derived from the rank-
ing in each corresponding year’s data, where each instance,
especially in the top quantiles, is more likely to be classified
in the correct group. TrAdaBoost.JQL reduces the effect of
regression error, thus an instance with a reasonable regression
error but grouped in the correct class still may be weighted
slightly higher than just considering the estimation error. In
the next iteration, a base learner pays “attention” to this kind
of instance so that their estimations improve as the number
of iterations increases. This reweighting mechanism results
in more source instances being up-weighted than in TrAd-
aBoost, so more instances are deemed useful for estimation
of the target set instances, resulting in improved accuracy.

4 Experimental Design
4.1 Datasets
The datasets are from Indonesia’s National Socioeconomic
Survey, known as SUSENAS, which is performed twice a
year with different sample sizes depending on the required es-
timation level. SUSENAS variables used in PMT modelling
comprise demographic variables such as the number of tod-
dlers, adults and elderly in the household, marital status and
educational attainment; employment variables such as num-
ber of household members working in the agriculture, indus-
try and service sectors and labour status for each household
member in each workforce category; house condition consist-
ing of floor space, type of roof, wall and floor materials, type
of sanitation and source of drinking water; asset ownership
variables comprising ownership status of house, television,
fridge, water heater, boat, motorbike, car and jewellery; and
target variable monthly total consumption expenditure. Per
capita household expenditure is derived from the monthly to-
tal of food and non-food consumption expenditure divided
by the number of household members. There are a total of 60
features with low variance among households in each district.
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4.2 Methodology
We use five years data (2016–2020) from a variety of districts
in Indonesia and treat each year’s data independently to ex-
pand the scenario of experiments. Each year’s data acts as a
single domain, thus we have data for five domains for every
district. In practice, the most current data is always the test
set (target set) and the earlier years’ data are the training set
(the source set). In general, any year’s data can be the target
set and the other years the source set. As each year’s data is
treated independently, the quantile ranking (quantile class) of
households is defined separately based on the household ex-
penditure in each given year. Each method performs domain
adaptation on a regression task where the natural log of per
capita household expenditure pcexp is the dependent (target)
variable, which is standard practice for this problem because
household expenditure is known to have a log-normal distri-
bution.

There is obvious, though not easily predictable, concept
drift in the target variable pcexp over different years. To show
that our method is robust to this concept drift, we give re-
sults for two target sets, 2016 and 2020 data. We discuss
four scenarios: (i) using 2020 data as the target set with a
10% guide; (ii) using 2020 data as the target set with a 5%
guide; (iii) using 2016 data as the target set with a 10%
guide; and (iv) using 2016 data as the target set with a 5%
guide. In each scenario, we compare our method to one
baseline and seven other domain adaptation methods, both
reweighting-based and invariant feature representation-based
methods: (1) XGBoost with the guide included in the train-
ing set as the baseline; reweighting-based domain adapta-
tion methods (2) TrAdaBoost.R2 [Dai et al., 2007], (3) Two-
Stage TrAdaBoost.R2 [Pardoe and Stone, 2010], (4) Dynamic
TrAdaBoost.R2 [Al-Stouhi and Reddy, 2011], (5) Weighting
Adversarial Neural Network (WANN) [de Mathelin et al.,
2021], and (6) Importance Weighting Network (IWN) [de
Mathelin et al., 2022]; and invariant feature representation-
based domain adaptation methods (7) Subspace Alignment
(SA) [Fernando et al., 2013] and (8) Correlation Alignment
(CORAL) [Sun et al., 2016].

All domain adaptation methods requiring a base learner use
XGBoost with the same hyperparameters. XGBoost is a real-
istic baseline, and is generally superior to Support Vector Re-
gression (SVR) used as a baseline [Dai et al., 2007] and Ad-
aBoost used as a baseline [Dai et al., 2007; Yao and Doretto,
2010]. The baseline learner, XGBoost [Chen and Guestrin,
2016] regressor, has hyperparameters set as follows: (i) col-
umn sampling by tree 0.3, (ii) learning rate 0.01, (iii) maxi-
mum depth 5, (iv) number of estimators 700, and (v) regular-
ization lambda 0.01. These hyperparameters are determined
from grid search results using a 70/30 training/validation split
on source instances over several districts. The same hyper-
parameters are used for baseline learners in all methods to
isolate the effect of domain adaptation.

In all scenarios, we use a fixed λ of 0.5 for TrAd-
aBoost.JQL, chosen after initial data analysis to give a rea-
sonable balance between regression and classification loss.
Clearly λ could also be a hyperparameter for the method and
chosen differently for different thresholds and districts. How-
ever, we have found that λ = 0.5 gives consistent results.

5 Results and Discussion
5.1 RMSE Reductions
Tables 1 and 2 show the RMSE of the baseline XGBoost with
guide included in the training set for a fair comparison, seven
other domain adaptation methods, and our method TrAd-
aBoost.JQL, with guide sizes of 10% and 5% of the target set
respectively. We test all methods in 12 rural districts (districts
1–12) and four urban districts (districts 13–16) in Indonesia.
TrAdaBoost.JQL consistently outperforms all other methods,
especially when the target set is 2020 data, although some-
times the estimation of pcexp for 2016 is better with TrAd-
aBoost. The reductions in RMSE with guide size 10% can
reach up to 6% (rural district 6) and 22% (urban district 14)
for target set 2016 and up to 21% (rural district 7) and 13%
(urban district 13) for target set 2020. With a guide size of
5%, TrAdaBoost.JQL reduces RMSE by up to 6% (rural dis-
trict 6) and 19% (urban district 14) in estimating 2016 data
and by up to 21% (rural district 7) and 13% (urban district
13) in estimating 2020 data.

Dynamic TrAdaBoost, that applies a correction factor to
TrAdaBoost, performs similarly to Two-Stage TrAdaBoost.
Both methods are worse than TrAdaBoost but frequently bet-
ter than the baseline XGBoost. Our observation is that TrAd-
aBoost, Dynamic and Two-Stage TrAdaBoost, which do not
utilize the joint loss in the reweighting process, have fewer
source instances that are deemed “useful” for constructing
the target function compared to the number of source in-
stances utilized in TrAdaBoost.JQL. Two-Stage TrAdaBoost
relies too much on instances in the guide (as weights change
more in stage two), thus performs worse when the guide is
too small.

In general, the weighting-based domain adaptation meth-
ods with boosting, TrAdaBoost, Two-Stage TrAdaBoost, Dy-
namic TrAdaBoost and our method TrAdaBoost.JQL, per-
form much better than weighting-based domain adaptation
methods with neural networks, IWN and WANN, and invari-
ant feature representation-based domain adaptation methods,
CORAL and SA. Before explaining this, note that WANN
sometimes has very high errors and the results show incon-
sistencies between the different scenarios (e.g. district 10).
This is because there are outliers in the training sets with
2016 target sets and in the test sets with 2020 target sets.
However, even after removing these outliers, the reductions
in RMSE are not as high as for other methods, which are bet-
ter able to handle outliers automatically. Overall, the results
show that CORAL, SA, IWN and WANN have RMSE higher
than the baseline XGBoost. We believe that this is due to
the following reasons. First, the typical datasets used with
these methods are much larger, often image or text datasets,
whereas our datasets are comparatively small and use a va-
riety of numerical and categorical features. Second, these
methods are designed to work with high dimensional data
with many informative features, however our datasets con-
sist of many categorical features and more importantly, many
features that are not informative for estimating the target vari-
able. These methods correct the difference between source
and target domains by constructing invariant feature repre-
sentations (CORAL and SA) or by minimizing the discrep-
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District 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Target Set 2016

XGBoost 506 518 706 486 509 685 599 433 390 583 340 618 644 902 850 500
TrAdaBoost 496 510 824 483 503 652 600 430 385 568 323 602 608 704 830 473
Two-Stage 483 530 818 497 509 663 595 435 395 583 327 606 609 713 842 472
Dynamic 485 524 810 482 502 671 588 432 382 575 334 603 628 819 838 480
CORAL 619 584 871 617 611 783 737 494 468 664 397 712 777 987 922 853
SA 523 549 861 515 516 734 652 452 425 596 368 670 701 938 875 539
IWN 519 557 844 501 507 707 626 446 401 593 342 655 683 963 868 556
WANN 722 545 906 514 603 789 785 681 415 3046 444 920 1030 1148 1062 607
TrAdaBoost.JQL 478 506 800 467 501 643 566 409 381 564 329 585 607 705 830 460

Target Set 2020
XGBoost 803 780 1383 775 915 725 897 675 798 613 749 860 1209 1675 1521 752
TrAdaBoost 756 761 1438 760 917 700 734 651 778 609 707 828 1108 1644 1508 736
Two-Stage 780 788 1435 770 928 717 779 664 794 628 717 840 1189 1670 1531 769
Dynamic 783 782 1390 764 921 725 870 673 798 612 755 845 1163 1687 1538 763
CORAL 894 795 1522 852 1097 749 1386 727 840 746 740 926 1328 1903 1632 789
SA 886 829 1493 842 978 793 1349 699 864 673 817 945 1336 1762 1630 816
IWN 850 791 1364 786 928 736 1236 692 814 615 769 896 1239 1702 1558 773
WANN 1033 1274 1476 1782 896 946 1372 1017 995 947 836 967 1092 1899 1841 846
TrAdaBoost.JQL 728 726 1356 742 877 671 707 628 759 590 688 804 1050 1567 1442 687

Table 1: RMSE (×1000 Rupiah), Guide Size 10%

District 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Target Set 2016

XGBoost 504 521 705 488 514 688 603 437 391 585 343 625 653 910 856 503
TrAdaBoost 495 521 820 485 499 661 594 439 385 568 339 617 628 720 836 482
Two-Stage 507 553 846 497 518 674 633 455 393 573 359 635 686 735 872 521
Dynamic 487 526 815 483 504 677 591 439 389 576 341 617 631 823 839 484
CORAL 679 632 902 592 573 795 740 546 519 720 436 822 857 989 934 737
SA 529 562 822 507 521 721 621 465 418 601 373 646 703 944 861 543
IWN 518 560 848 502 504 708 632 447 405 589 343 656 681 968 869 557
WANN 692 2180 874 724 740 890 775 646 522 1026 431 1014 875 2179 1370 695
TrAdaBoost.JQL 481 519 780 480 506 648 581 422 385 570 346 595 633 733 853 460

Target Set 2020
XGBoost 807 781 1377 781 917 727 902 678 801 614 757 867 1218 1683 1525 759
TrAdaBoost 767 778 1418 776 929 699 756 662 784 597 750 848 1119 1675 1528 749
Two-Stage 786 803 1437 788 961 717 775 667 796 608 749 861 1189 1678 1583 761
Dynamic 778 779 1395 769 921 718 861 673 796 603 758 852 1150 1689 1526 755
CORAL 899 849 1539 856 1080 758 1380 726 871 690 783 897 1455 1989 1645 769
SA 894 842 1525 873 970 760 1329 716 876 669 818 935 1266 1785 1601 823
IWN 854 792 1374 787 930 735 1229 692 814 616 769 894 1246 1700 1553 775
WANN 998 766 1632 923 1381 1068 1527 901 1040 955 934 1419 1755 1965 3142 709
TrAdaBoost.JQL 733 736 1331 747 874 670 717 629 759 583 715 820 1061 1584 1448 699

Table 2: RMSE (×1000 Rupiah), Guide Size 5%

ancy (IWN and WANN) using different feature sets. Invari-
ant feature-based domain adaptation performs feature scal-
ing, however Chen et al. [2021] showed that regression per-
formance is not robust to feature scaling. Third, the neural
network models exploit a pretrained model for image and text
classification, however our task does not readily admit the use
of a pretrained model.

5.2 IE/EE Reductions
Inclusion and exclusion errors (IE and EE) represent the or-
dinal classification loss which is the main evaluation metric
used for evaluating the Proxy Means Test. Note that where
the prediction problem is to identify an eligibility set defined
as a fixed proportion of households at or below a given thresh-

old of pcexp, IE and EE are the same, because for every
household incorrectly included in the eligibility class, there
is one other household excluded from the eligibility class that
should be included, and vice versa (assuming the model pre-
dicts an eligibility set of exactly the right size, which in turn
requires that the total number of households is known).

Figures 1, 2 and 3 show comparisons of IE/EE for all meth-
ods at 20%, 40% and 60% eligibility thresholds in four dif-
ferent scenarios for the 16 districts (2020 and 2016 data as
target set, 10% and 5% guide size). In general, the tighter
(smaller) the eligibility threshold, the higher the IE/EE. The
IE/EE of the baseline XGBoost is shown by red dots while
the IE/EE of TrAdaBoost.JQL is shown by light green dots
connected by green lines. The lower the position of a point,
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Figure 1: IE/EE at Eligibility Threshold of 20% – Line Connects Results for JQL (TrAdaBoost.JQL)

Figure 2: IE/EE at Eligibility Threshold of 40% – Line Connects Results for JQL (TrAdaBoost.JQL)

Figure 3: IE/EE at Eligibility Threshold of 60% – Line Connects Results for JQL (TrAdaBoost.JQL)
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the better the performance of a method. In terms of district,
for all of the eligibility thresholds, urban districts generally
have lower IE/EE than rural districts regardless of the target
set and the guide size. Figures 1, 2 and 3 show that TrAd-
aBoost.JQL frequently results in the lowest IE/EE among the
baseline XGBoost and the other domain adaptation methods.
The IE/EE of other domain adaptation methods have a sim-
ilar pattern to RMSE where WANN, IWN, SA and CORAL
have IE/EE higher than the baseline XGBoost. Methods us-
ing reweighting-based domain adaptatation with boosting re-
sult in small reductions in IE/EE. At eligibility thresholds of
20%, 40% and 60%, on average across districts, TrAdaBoost
reduces IE/EE by up to 2%, 3% and 3%, Dynamic TrAd-
aBoost reduces IE/EE by up to 0.2%, 0.7% and 1.3%, while
Two-Stage TrAdaBoost does not reduce IE/EE.

Compared to XGBoost (with guide included in the training
set), our method TrAdaBoost.JQL reduces IE/EE at thresh-
old 20% by up to 36% (target 2016) and 19% (target 2020);
at threshold 40% by up to 19% (target 2016) and 14% (target
2020), and at threshold 60% by up to 13% (target 2016) and
14% (target 2020). IE/EE reductions for TrAdaBoost.JQL
exhibit the pattern that IE/EE reductions at a tight (smaller)
eligibility threshold are higher than IE/EE reductions for a
loose (higher) threshold. This is highly beneficial because a
tight eligibility threshold is frequently used in many poverty
targeting programs such as Indonesia’s Subsidized Rice Pro-
gram (known as Raskin) targeting the poorest 30% [Banerjee
et al., 2018], Indonesia’s Conditional Cash Transfer program
(known as PKH) targeting the poorest 5–10% [Alatas et al.,
2016], and Indonesia’s Non-Cash Food Assistance targeting
the poorest 25% [Banerjee et al., 2023].

5.3 Sensitivity Analysis
We show the average reduction in errors across different
values of λ in Definition 2, ranging from 0, meaning that
TrAdaBoost.JQL only considers ordinal classification loss, to
1, meaning that TrAdaBoost.JQL only considers regression
loss, across 95 districts in three large provinces in Indonesia
with two target sets. Figure 4 shows the average percent-
age reduction in RMSE and IE/EE for the different eligibility
thresholds, 20%, 40% and 60%, for TrAdaBoost.JQL com-
pared to XGBoost with the guide included in the training set,
as λ varies from 0 to 1 in steps of 0.05. The average reduction
in RMSE varies smoothly, as expected, with values of λ be-
tween 0.35 and 0.55 giving similar reductions. Good reduc-
tions in IE/EE for the 40% and 60% thresholds are achieved
with values of λ at or below 0.5, which is consistent with our
preliminary observations (a λ of 0.45 gives slightly better av-
erage reductions than a value of 0.5). Reductions in IE/EE at
the eligibility threshold of 20% are more sensitive to λ com-
pared to the reductions in IE/EE at thresholds of 40% and
60%, as expected, which suggests that our results could be
improved in this setting with a smaller value of λ, perhaps
around 0.25. Finally, note that while every value of λ results
in reductions in both RMSE and IE/EE compared to the XG-
Boost baseline, the magnitude of the reductions could be fur-
ther optimized by choosing a value for λ based on (i) whether
RMSE or IE/EE is prioritized, (ii) the eligibility threshold,
and (iii) the district where the method is applied.

Figure 4: Average reduction (%) in RMSE and IE/EE at various
thresholds of TrAdaBoost.JQL compared to XGBoost

6 Conclusion

We presented a domain adaptation method, TrAdaBoost.JQL
(Transfer AdaBoost with Joint Quantile Loss), that extends
TrAdaBoost to jointly minimize estimation and ordinal clas-
sification errors. We applied our method to the practical prob-
lem of the Proxy Means Test (PMT) for poverty targeting over
different target sets and guide sizes across a variety of rural
and urban districts in Indonesia. TrAdaBoost.JQL improves
the existing approaches to the PMT for poverty targeting by
addressing the problems of limited data and distribution shift
in household survey data and in the target variable of per
capita household expenditure (pcexp).

We evaluated TrAdaBoost.JQL with different guide sizes
and target sets over different eligibility thresholds (20%, 40%
and 60%) across 16 districts in Indonesia. We empirically
showed that TrAdaBoost.JQL can jointly minimize regres-
sion and ordinal classification errors even with very small
amounts of labelled target instances, i.e. guide sizes of 10%
and 5%, equal to 2.5% and 1.25% of the source size re-
spectively, which is important for the practicality of the ap-
proach. TrAdaBoost.JQL gives reductions in estimation error
(RMSE) of up to 22% and ordinal classification loss (inclu-
sion/exclusion error) of up to 36% compared to an XGBoost
baseline that includes the guide in the training data.

The intended application scenario is that TrAdaBoost.JQL
is used to estimate pcexp in the following year (2020 in
our data), using data from previous years (2016–2019 in our
data). We demonstrated the generality of the approach by us-
ing 2016 data as the target set and 2017–2020 as the source
dataset. Considering that the PMT can be used for targeting
for a variety of programs with different eligibility thresholds,
we also provided a mechanism to allow a parameter λ, repre-
senting the weight applied to estimation error as opposed to
quantile classification error, to be varied to suit the scenario.
Empirically, we showed that a lower value of λ suits a tight
eligibility threshold such as 20%, while a value of λ around
0.5 suits loose eligibility thresholds such as 40% and 60%.
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