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Abstract
In the face of economic downturns, Small and
Medium-sized Enterprises (SMEs) within intercon-
nected networked-loans are vulnerable to cascad-
ing debt crises, exacerbated by factors like social
media-induced financial shocks. Traditional risk
assessment models, which mainly rely on financial
data, inadequately predict such crises, as evidenced
by the collapse of Silicon Valley Bank in 2023. To
address this issue, we developed RisQNet, a model
that uses temporal graph networks to incorporate
diverse risks, including real-time media influences.
This approach not only advances risk prediction
through news feature extraction and large language
models but also enhances risk management strate-
gies with intuitive visualization tools. Validated on
a dataset with a total loan volume of USD 3 trillion,
RisQNet outperforms the state-of-the-art baseline
and achieves 87.1% of AUC. Our collaborative ef-
fort with financial regulators and the SME commu-
nity underpins the model’s development, aligning
with the UN SDG 8. RisQNet represents a signifi-
cant step forward in leveraging AI for financial sta-
bility, offering a promising approach to combat the
propagation of debt crises in financial networks.

1 Introduction
Small and Medium-sized Enterprises (SMEs) are crucial to
the global economy, representing 90% of businesses and con-
tributing to more than half of global employment and GDP,
as per United Nations data. Access to finance is vital for
SME growth, yet challenges like limited credit histories often
lead them to secure loans through mutual guarantees, forming
complex networked-loans. While these networks distribute
financial risk, they also pose a threat of collective defaults
during economic downturns. A single default can trigger a
cascade, potentially destabilizing the entire financial system,
as Figure 1 illustrated by the propagation of defaults in a real
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networked-loan. This scenario highlights the urgent need for
effective regulatory strategies to identify and mitigate such
systemic risks.

Figure 1: The illustration of risk guarantees. (a) Node A default
triggers a cascading crisis in the network. (b) Details of the loan
workflow, showing how default risk spreads through guarantees.

The assessment and management of financial risk has a
long history of development. Previous work on financial risk
modeling used statistical and regression methods as early as
the 1950s [Baesens et al., 2003]. However, the global finan-
cial crisis has led to the realization that classical econometric
models are limited in their ability to understand financial mar-
kets under extreme conditions, in part because they ignore
the complex interactions within the system [Somin et al.,
2020]. In contrast, new perspectives on financial risk assess-
ment are offered by machine learning and deep learning tech-
niques with their ability to capture and analyze complex data
patterns. [Achakzai and Juan, 2022] employed convolutional
and recurrent neural networks for the detection of financial
fraud. Similarly, [Cheng et al., 2023] integrated deep re-
inforcement learning with high-order graph message-passing
networks to identify key firms and reduce contagion risk in
the banking industry. Furthermore, [Yang et al., 2020] de-
veloped a spatial-temporal graph neural network approach to
extract supply chain relationships in SMEs and assess credit
risks. However, the landscape of financial stability and risk
management still faces critical challenges:

• Tackling the influence of social media on financial sta-
bility: The challenge in today’s digital era is the unprece-
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dented influence of social media on financial markets. A
notable example from 2023 is how negative sentiment
across social platforms played a critical role in the crisis
of Silicon Valley Bank. The core of this challenge is devel-
oping methods to sift through and accurately interpret the
vast and often noisy data on social media.

• Addressing cascading risk in networked-loans: The inter-
connected nature of networked-loans implies that defaults
by key entities can trigger widespread cascading risk. They
have the potential to not only cause rapid collapse within
the network but also provoke a systemic financial crisis.
Despite this, current risk management strategies are primar-
ily designed for isolated events, overlooking the cumulative
effect on the overall health of the financial system.

• Capturing multivariate correlations in financial analysis:
Traditional neural network models, such as Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU),
are limited in their ability to capture the complex correla-
tions among multiple financial variables. This limitation
poses a significant challenge in accurately predicting finan-
cial outcomes and assessing risk.

To address these challenges, this paper introduces a novel
risk assessment framework, RisQNet. This framework ana-
lyzes social media content by categorizing it into two distinct
types: public news and research reports. For public news,
which is abundant but often contains a significant amount
of noise, we apply a news stream extraction method [Bal-
ashankar et al., 2023] to identify risk features. In contrast, for
the high-quality but scarcer research reports, we leverage ad-
vanced large language models for financial ratings. Further,
RisQNet quantifies the cascading risk level by utilizing a risk
matrix, which is widely acknowledged in the financial sector
for assessing the systemic health of networks. Additionally,
the framework incorporates a modified version of the Trans-
former model, the iTransformer [Liu et al., 2023], which
regards independent time series as variate tokens through a
transpose strategy. This allows for the capturing of multivari-
ate correlations in financial data through the attention mech-
anism, providing a more nuanced understanding of financial
risk. Our contributions can be summarized as:

1. We have pioneered the integration of news features extrac-
tion with large language model for financial network be-
havior forecasting. This innovative approach underscores
the pivotal role of social media in finance and sets a new
standard for subsequent research and applications.

2. We have developed RisQNet, a state-of-the-art (SOTA)
framework that merges multisource risk information with
detailed node characteristics, advancing beyond tradi-
tional risk assessment by addressing the complexities of
digital media. This greatly enhances the accuracy and
comprehensiveness of financial risk evaluations.

3. We have rigorously evaluated RisQNet on a unique real-
world financial network dataset, proving its practical util-
ity and significant social impact. Such approach can
strengthen the financial stability of SMEs, promotes eco-
nomic growth, and aligns with sustainable development
goals, underscoring our commitment to fostering a re-
silient and inclusive financial ecosystem.

2 Related Works
2.1 Graph Neural Network
Graph Neural Network was introduced in [Scarselli et al.,
2008]. Subsequently, a spectral-based GNN presented in
[Bruna et al., 2014], formulating a convolutional operator in
the spectral domain based on spectral graph theory. Later,
GCN [Kipf and Welling, 2016] was raised up to simplify
the convolutional operator. However, most spectral-based
GNNs were highly dependent on graph structure. To over-
come this, spatial-based GNNs defined convolutional opera-
tor on the graph directly [Niepert et al., 2016; Hamilton et
al., 2017]. Another approach for GNN was based on the
attention mechanism. The graph attention network (GAT)
[Velickovic et al., 2017] used the attention mechanism in the
propagation step. To capture both temporal and spatial in-
formation, [Nicolicioiu et al., 2019] incorporated temporal
consideration into GNN. GNNs have been used in finance
widely, such as stock market analysis [Ying et al., 2020]
and loan default prediction [Cheng et al., 2019]. [Li et
al., 2020] stacked multiple GNN modules to learn hierar-
chical representations, serving for e-commerce. However,
none of them took into account media influence or incorpo-
rated a large language model into their framework. Recently,
TransGNN [Zhang et al., 2023] was presented to expand
the receptive field and improve GNN’s performance by com-
bining the GNN layer and the Transformer layer alternately.
STGIN [Luo et al., 2022] merged Informer and GAT lay-
ers for spatial-temporal relationships. Our approach extracts
structural information through GAT and processes time series
based on iTransformer.

2.2 Networked-loan
Networked-loan is a special economic phenomenon. Tra-
ditionally, banks tend to favor large corporations for loans
due to their substantial fixed assets as collateral. How-
ever, the financing needs of SMEs are equally important,
as they have implications for societal employment rates and
economic vitality [Keskġn et al., 2010]. To meet the re-
quirements of bank loan evaluation standards, SMEs are al-
lowed to seek guarantors to endorse their loan applications
[Haron et al., 2013; Columba et al., 2010]. As more en-
terprises join, a complex network is formed among these
enterprises, guarantors, and borrowers [Wang et al., 2020;
Jian and Xu, 2012]. This mode poses new risk manage-
ment challenges for regulatory authorities and banks. When
a company within the network experiences a debt crisis, indi-
vidual defaults will propagate throughout the network along
the guarantee relationship [Bougheas and Kirman, 2015;
Cheng et al., 2020]. Especially during recessions, acci-
dental defaults spread like wildfire, even triggering a sys-
temic financial crisis [Martı́nez-Jaramillo et al., 2010; Sum-
mer, 2013]. The intuitive visualization tools provide in-
sights into the complex interconnections of networked-loans
and the contagion pattern of defaults [Niu et al., 2018;
Niu et al., 2020]. However, if the regulatory authority can ef-
fectively predict potential default nodes before a large-scale
contagion occurs and implement appropriate regulatory mea-
sures, they can effectively avert a massive systemic default.
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3 Methods
We first clarify the notation and definitions in Network-loans,
then delve into the architecture of RisQNet and the details of
the fusion of multidimensional risk information in financial
risk prediction.

3.1 Definitions and Architecture Overview
Definition 1. Guarantee Contract. A guarantee relationship
is formed when one company agrees to guarantee a loan for
another company. This contract includes three key elements:
1) amount, the value of the loan; 2) start time, the effective
date of the contract; 3) end time, the expiration date of the
contract.
Definition 2. Networked-loan. Given a set of loan guarantee
relationship datasets, it can be represented as an ordered set
of T graph snapshots:

G = {Gt}Tt=1 =
{{

V,Et, Xt
}}T

t=1
(1)

where each node vi ∈ V , V =
{
v1, v2, . . . , v|V |

}
denotes

SMEs. The edge ei,j ∈ Et represents the guarantee con-
tract from node vi to vj , and |ei,j | represents the guarantee

amount. Xt =
{
Xt

1, X
t
2, ..., X

t
|V |

}
, Xt

i ∈ RFv denotes the
original node feature matrix, including both basic SME pro-
files (enterprise size, registered capital, number of employees,
etc.) and credit behaviors (credit period, credit amount, de-
fault history, etc.).
Definition 3. Loan Default. When a lender defaults, a record
detailing the time of default is generated. Nodes are tagged
with a default attribute where y = 1 denotes default at time t,
and y = 0 indicates no default.

Figure 2: Real-world temporal networked-loans.

Figure 2 illustrates the evolution of a real-world temporal
networked-loan. Our objective is to forecast impending de-
faults at the subsequent time point, based on the known state
of the network.

We now formalize our default prediction problem as fol-
lows: Using a series of financial network snapshots marked
with default risks {Gt}Tt=1, we forecast the nodes default
probability at a subsequent time point.

Figure 3 shows RisQNet. This framework comprises three
primary components: (a) Multisource Risk Learning Module
considers both media influence and cascading risk. (b) Graph
Attention Learning Module extracts features from networked-
loans. (c) Default Prediction Module aggregates the above in-
formation, ensuring that our predictions are affected by both
the intrinsic characteristics of the nodes and dynamic risk
shocks that evolve over time.

3.2 Media Influence Learning
Financial trends are influenced by media information, we em-
ploy varied learning strategies tailored to the characteristics
of multisource data, facilitating a comprehensive evaluation
of media influence.

To analyze massive public news, we employed semantic
role labeling, a well-established and effective technique in
social science research [Balashankar et al., 2023]. Initially,
we selected the 12 most frequently occurring negative words
in financial news (default, bankruptcy, decline, etc.) as seed
words. Then, we utilized a semantic analyzer framework, to
extract risk features causally related to these seeds.

For instance, in the news item, “Small and medium-sized
processing firms are facing bankruptcy massively due to de-
clining sales and rising rents”, the semantic analyzer ex-
tracted “declining sales” and “rising rents” as the risk fea-
tures causally linked to seed “bankruptcy”. We applied this
methodology to the entire news stream, ultimately identify-
ing 126 high-frequency risk features that consistently appear
each quarter. In addition, to capture financial terminology, we
applied the same approach to 24 academic finance articles,
resulting in the identification of 27 additional risk features.
In total, 153 different risk features were identified. Subse-
quently, we partition the news set by month, compute propor-
tion P t

w of news mentioning risk features w ∈ {1, ..., 153}
during month t, and merge features frequency to obtain the
monthly public media influence vector Rp:

Rp =

{ ⋃
w=1,...,153

P t
w

}T

t=1

(2)

However, authoritative research reports published by enter-
prises and financial institutions, filled with complex data and
specialized terminology, require strong comprehension skills
to understand. Traditional semantic statistical methods often
fail in this area. Therefore, we utilize GPT-4’s capabilities
in logical reasoning and professional common sense to assess
the impact of these reports on the financial environment of
SMEs. The prompt flow we used is shown in the Figure 4.

The Large Language Model (LLM) simulates various fi-
nancial experts to provide a comprehensive evaluation of the
report’s impact on SMEs, following the gradient of risk out-
lined by the Standard & Poor’s (S&P) Short-Term Issuer
Credit Rating Criteria, which progresses from low to high
risk levels: A-1 (lowest risk), A-2, A-3, B, C, to D (highest
risk). This model incorporates a self-optimization prompt-
ing, wherein the LLM provides feedback to its generated
candidates, ensuring comprehensive and robust evaluations.
Subsequently, we partition the rating outcomes by month and
compute the frequency P t

l of each rating level l ∈ {1, ..., 6}
during month t. These frequencies are aggregated to con-
struct monthly expert media influence vector Re:

Re =

 ⋃
l=1,...,6

P t
l


T

t=1

(3)
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Figure 3: Overall structure of RisQNet. (a) Multisource Risk Learning Module analyzes media influence by using news data and financial
research reports, and assesses the network’s cascading risk with a risk matrix. (b) Graph Attention Learning Module extracts key features and
structural information from the networked-loans using Graph Attention Network. (c) Default Prediction Module chronologically processes
graph embeddings and risk aggregation vectors, and outputs a series of node representations, which are then integrated with downstream
learning objectives to establish an end-to-end model.

Figure 4: Process of our prompt, incorporating a self-optimization prompting for financial experts role-playing.

3.3 Cascading Risk Learning
The analysis of default records reveals that defaults within
networked-loans often exhibit explosive behavior. As shown
in Figure 2, a pronounced peak in defaults is observed in June
2015. This volatility stems from cascading failures triggered
by the default of critical network nodes, leading to the swift
collapse of the network [Elliott et al., 2014]. Existing GNNs,
limited by their receptive fields, struggle to capture the health
index of the entire network [Alon and Yahav, 2020], hence
we incorporated a cascading risk learning module.

To quantify the network’s cascading risk, we adopted a risk
matrix commonly utilized in financial assessments. We em-
ployed two key metrics: the node default rate L(Likelihood)
and the default amount ratio I(Impact). These metrics are
computed as follows:

Lt =
|Vi (Vi ∈ V, V t

i y = 1)|
|V |

(4)

It =

∑
|ei,k (ei,k ∈ Et, V t

k y = 1)|∑
|ei,j (ei,j ∈ Et)|

(5)

L and I can be segmented into five distinct categories (Pass
(0%), Special Mention (0-5%), Substandard (5- 15%), Doubt-
ful (15-50%) and Loss (more than 50%)) based on standard
credit assessment thresholds [Van Gestel and Baesens, 2009].

Figure 3 demonstrates how the risk matrix cells are divided
into three risk levels: low, medium, and high. By correlat-
ing the Lt and It categories, one can pinpoint a specific cell
in the risk matrix to ascertain the network’s risk level label
Kt. Combining metrics generates the network’s cascading
risk vector Rc:

Rc =
{
Lt ⊕ It ⊕Kt

}T

t=1
(6)

3.4 Graph Attention Learning
We utilize a graph attention module to capture the struc-
tural information and behavioral characteristics of each node.
This process creates a spatial representation for each node
and ultimately integrates this information with risk learn-
ing. For each given node, we need to update its attention
weights for its incoming nodes. We compute ht

i,j as follows:
ht
i,j = φ

[
Wϕ1X

t
i ∥ Wϕ1X

t
j

]
, j ∈ N t

i . Here, N t
i is Vi neigh-

borhood at t time, Wϕ1 ∈ RF ′×Fv is the weighted matrix of
node features, and φ [·] → R is the shared attention mapping
mechanism. We normalize ht

i,j using the Softmax function:

αt
i,j =

exp
(
LeakyReLU

(
ht
i,j

))
∑

k∈Nt
i
exp

(
LeakyReLU

(
ht
i,k

)) (7)
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After normalizing the attention coefficient, we use it to cal-
culate the weighted summary of the node’s potential embed-
ding. To capture diverse combinations of attention and graph
structure features, we utilize a multi-head attention mecha-
nism which enhances model flexibility by employing K in-
dependent attention mechanisms for summarizing features:

X
′t
i = σ

 1

K

K∑
k=1

∑
j∈Nt

i

αt
i,jW

k
ϕ2X

t
j

 (8)

3.5 Default Prediction
Incorporating graph embeddings with risk quantification vec-
tors, we construct joint risk time series to predict defaults. We
utilize the advanced iTransformer [Liu et al., 2023] model.
By using a transpose strategy, we transform temporal tokens
into variable tokens, enable the attention mechanism to better
understand correlations between variables, producing a com-
prehensive risk representation for each node over period T ,
denoted as Hi:

Hi = iT ransformer
{
X

′t
i ⊕

(
Rt

p ⊕Rt
e ⊕Rt

c

)}T

t=1
(9)

As mentioned above, we formalize the SMEs default pre-
diction task into a classification problem for nodes, and for
a given labeled point set Dgt = {v, y}, we employ a cross-
entropy loss based on the final embedding Hi as follows:

L = − 1

|Dgt|

|Dgt|∑
i=1

[yilog (ŷi) + (1− yi) log (1− ŷi)] (10)

ŷi = pred (Hi : θ) (11)

Where pred (Hi : θ) is the prediction function that sets Hi to
a real-valued score and we use two layers of MLP and a layer
of Sigmoid to realize the pred function.

4 Experiments
4.1 Experimental Settings
Datasets
Our dataset from a major East Asian commercial bank spans
SME loans from January 2010 to December 2016. It includes
around 480,000 SMEs with 760,000 guarantee contracts with
a total loan volume of about USD 3 trillion. Besides detailed
information on borrowers and guarantors, it contains data on
loan amounts, maturity dates, and basic firm-level informa-
tion like assets, liabilities, and registered capital. Our anal-
ysis of the dataset reveals that the majority of loans adhere
to a monthly repayment schedule. This finding has led us to
concentrate on monthly behavioral patterns to enhance our
comprehension of financial trends. Furthermore, we have es-
tablished monthly ground-truth labels to facilitate a compre-
hensive evaluation of our methods.

Additionally, we meticulously gathered external media in-
formation, comprising 226,146 public financial news and
5,783 professional financial research reports, from Sina
Weibo (https://weibo.com/) and the Wind database. The col-
lection, aligned with the time period of the networked-loan

dataset, underwent thorough cleansing. The processed media
data provided critical insights into the macro business envi-
ronment and the prevailing financial default risks.

During our experiments, we used data spanning 2010 to
2013 for the training set, and employed 2014 to 2016 data
for the test set. The intervals of T were set to one month,
mirroring the typical monthly repayment schedule of most
loan systems.
Baselines
To substantiate the efficacy of RisQNet on the networked-
loans, we consider three categories of methods as baselines:

(1) Standard Financial Methods: Scorecard, the most pop-
ular loan rating approach in commercial banking [Thomas et
al., 2017]. GBDT, a decision tree-based gradient boosting
method, processes mixed-type data [Ke et al., 2017]. XG-
Boost is a more efficient and flexible one and is widely used
in quantitative finance [Chen and Guestrin, 2016].

(2) Graph-based Methods: Node2vec, an algorithm for
learning node representations in a network through biased
random walks [Grover and Leskovec, 2016]. GCN is a graph
neural network that uses convolutional processes on graph
data to capture relationships [Kipf and Welling, 2016]. GAT,
a neural network for graph data, uses attention layers to focus
on important parts of the graph [Velickovic et al., 2017].

(3) Temporal Graph Neural Networks: EvolveGCN, a
dynamic GNN using RNN to evolve the GCN parame-
ters [Pareja et al., 2020]. Informer [Zhou et al., 2021] &
PatchTST [Nie et al., 2023] are efficient time series forecast-
ing models, with GAT capturing graph structure.

To assess the impact of individual components within our
framework, we conducted five ablation studies. Each study
involved removing a specific component to understand its
contribution to the overall effectiveness. The configura-
tions tested were: GAT-iTransformer, which operates with-
out the multisource risk learning module; RisQNet-noMedia,
complete removal of the media influence learning module;
RisQNet-noPublic, deletion of the public news learning mod-
ule; RisQNet-noExpert, excluding the professional research
reports learning module; and RisQNet-noCascade, without
the cascading risk learning module. These experiments were
designed to isolate and evaluate the significance of each com-
ponent in enhancing our framework’s performance.

All models were trained end-to-end using the Adam opti-
mizer, we set the learning rate to 0.001, and the batch size to
200. The effectiveness of our methodology was evaluated us-
ing classification metrics, including the AUC (Area Under the
ROC Curve), F-Score, and Kolmogorov-Smirnov (KS) score.

4.2 Result
Table 1 presents the values of AUC, F-Score, and KS. It is ob-
served that GBDT surpasses the conventional logistic regres-
sion model, Scorecard, indicating that corporate default pre-
diction necessitates the consideration of complex interactions
and nonlinear relationships. Furthermore, Node2vec outper-
forms the most powerful decision tree model, XGBoost, high-
lighting the significance of graph network structural informa-
tion in forecasting within financial networks. The outstanding
performance of GCN illustrates the efficacy of graph neural
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networks in graph feature learning, with GAT providing su-
perior results due to the advantages of the attention mecha-
nism. The efficacy of EvolveGCN, as a dynamic graph neu-
ral network, underscores the critical importance of temporal
dynamics in this domain.

Model AUC F-Score KS
Scorecard 0.677 0.552 0.271
GBDT 0.713 0.604 0.337
XGBoost 0.718 0.613 0.342

Node2vec 0.726 0.625 0.368
GCN 0.741 0.637 0.374
GAT 0.751 0.656 0.395

EvolveGCN 0.783 0.677 0.458
GAT-Informer 0.814 0.692 0.517
GAT-PatchTST 0.820 0.715 0.533

GAT-iTransformer 0.823 0.719 0.540
RisQNet-noMedia 0.838 0.730 0.562
RisQNet-noPublic 0.847 0.736 0.572
RisQNet-noExpert 0.853 0.741 0.579
RisQNet-noCascade 0.855 0.749 0.596
RisQNet 0.871* 0.768* 0.621*

Table 1: Test set performance of defaulted firm prediction

Consequently, GAT was chosen as the primary graph neu-
ral network, augmented by a time series prediction model,
leading to significant improvements. Among the transformer-
based models evaluated, iTransformer was selected for its
superior ability to capture multivariate correlations, outper-
forming both Informer and PatchTST. The ablation study
confirmed the utility of incorporating public news, research
reports, and cascading risk learning modules, underlining
the value of external information and cascading risk assess-
ment. The final model, RisQNet, which integrates all finan-
cial risk quantification modules, achieved the highest perfor-
mance across all metrics.

4.3 Risk Learning Modules Analysis
To further affirm the robustness and broad applicability of our
risk quantization modules, we incorporated the media influ-
ence learning module into various Temporal Graph Neural
Networks used as baselines. Figure 5a illustrates the signifi-
cant annual performance enhancements of these networks fol-
lowing the integration of media influence vector (Rp ⊕Re).
Remarkably, all models demonstrated their maximum im-
provement in 2015.

To explain this phenomenon, we manually categorized
news containing risk features from the test year and displayed
their proportion compared to the total annual news in Figure
5b. The data from 2015 indicated an increased presence of
news containing risk features related to macroeconomics and
corporate management. Further analysis linked this rise to
the mid-2015 stock market crash in mainland China, leading
to diminished confidence in the financial sector and subse-
quent effects on the real economy, resulting in several debt

defaults. This illustrates the media influence learning mod-
ule’s ability to detect market anxiety through public media
and foresee potential financial disturbances.

Figure 5: (a) Annual AUC Improvement of Temporal Graph Neural
Networks after adding media influence learning module. (b) Annual
proportion of news with risk features in different categories, where
“Dis & Pol” stands for “Disasters & Politics”.

In contrast, we applied the same test to the cascading risk
learning module. Figure 6a illustrates the improvement in
baseline performance following the integration of cascading
risk vectors (Rc), notably a substantial increase in 2014. To
understand this phenomenon, we analyzed the systemic risk
levels within the test set. Figure 6b illustrates the annual dis-
tribution of systemic risk levels, revealing a notably higher
proportion of networks classified at medium and high risk
levels in 2014. This elevated proportion is attributed to the
collective defaults in the bond market that occurred in 2014.
These findings demonstrate that the cascading risk learning
module effectively identifies cascade failures and accurately
evaluates systemic risks.

Figure 6: (a) Annual AUC Improvement of Temporal Graph Neural
Networks after adding cascading risk learning module. (b) Annual
distribution of systemic risk levels.

In summary, our experiment substantiated the efficacy
of the multisource risk learning module. RisQNet signif-
icantly enhances the accuracy of default prediction within
networked-loan by integrating network structure, media en-
vironment, and financial expertise.

5 Case Study
We have developed an interactive system for the dynamic pre-
sentation of RisQNet predictions, by adopting a “risk island”
layout that clusters entities according to business situation
without disrupting the network’s topological structure [Niu et
al., 2021]. The system substantially enhances the efficiency
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Figure 7: Empirical study on a real-world networked-loan. (a) In the earliest default state, only two firms in the G1 group default. (b)
Intermediate state, early risk propagates through the guarantee chain. (c) Final state, systemic cascade failure occurred, with 62 companies
defaulting, forming four default clusters and two security clusters. (d) RisQNet predicted high-risk nodes aligned with the default clusters.
(e) RisQNet predicted low-risk nodes aligned with the secure clusters. (f) Presenting an overview of our risk visualization system.

of detecting and analyzing risk patterns, outperforming tra-
ditional force-directed graphs. We demonstrate the system’s
effectiveness with a real-world networked-loan case, featur-
ing a network of 123 companies, 187 guarantee contracts, and
$2.3 billion in loans. In our system, the financial status of en-
tities within a network is color-coded: dark red nodes have
defaulted, while white nodes represent solvent entities.

Figure 7a illustrates the network’s earliest default state, in-
dicating that only two firms, denoted as G1, have defaulted.
As time progresses, the risk of default propagates along the
network’s guarantee chains, with Figure 7b displaying early
signs of widespread default. This progression culminates in
Figure 7c, where the default has extended across the network,
with 62 firms defaulting, which accounts for 71% of the to-
tal loans. The network’s nodes can ultimately be divided into
four default clusters (D1 to D4) and two secure clusters (S1
and S2). Our analytical objective is to pinpoint the inception
points of these default clusters, enabling preemptive interven-
tions to curb the escalation of defaults.

We utilize the RisQNet to predict the default probability
for each node in Figure 7a at the subsequent moment. Con-
sidering the different impacts of defaults on loans of varying
sizes, we use a financial risk matrix with two axes for a com-
prehensive assessment of the risk severity of each node: the
vertical axis is the node default probability, and the horizontal
axis represents the loan size involved with the node. In this
study, we focus on default group G1, limiting our risk matrix
analysis to 25 nodes that provide direct guarantees to firms
within G1. The analysis reveals that 6 of these nodes fall
into the high-risk (red) region, 13 into the medium-risk (yel-
low) region, and 6 into the low-risk (green) region. Notably,
our detailed examination of the nodes in the red region, as
shown in Figure 7d, indicates that all high-risk nodes cluster

in the final default clusters (D1-D4). Conversely, Figure 7e
displays the low-risk nodes in the green region, all situated in
secure clusters (S1-S2). The correlation between our predic-
tions and the nodes’ final states significantly substantiates the
efficacy of our model. As depicted in Figure 7f, our compre-
hensive system provides an interactive visualization of risk
patterns. This functionality enables users to access vital in-
formation on network entities, cluster risks, and the financial
consequences of isolating nodes. Financial experts who have
assessed our system provide positive feedback, underscoring
its swift integration into financial practices and its critical role
in promoting financial sustainability.

6 Conclusion
In our study, we introduced RisQNet, a novel framework that
revolutionizes financial risk assessments by integrating graph
neural networks with advanced risk quantification methods.
This approach not only advances AI’s role in financial analy-
sis but also supports the UN SDGs. Through rigorous scien-
tific validation, RisQNet has proven to significantly enhance
loan default predictions, supporting the stability and growth
of globally SMEs and demonstrating AI’s potential to impact
social and economic structures positively.

Furthermore, the development of RisQNet benefited from
collaboration with financial experts, policymakers, and non-
profit organizations, emphasizing its adaptability across var-
ious financial scenarios. We are actively working to expand
the scope of collaboration and enhance the functionality of
RisQNet, aiming to deploy it in critical sectors including sup-
ply chain finance and banking risk management. This re-
search is anticipated to notably enhance regional financial sta-
bility and aid in the global economic recovery.
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Jaramillo, Omar Pérez Pérez, Fernando Avila Embriz,
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