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Abstract
Traditional traffic prediction, limited by the scope
of sensor data, falls short in comprehensive traf-
fic management. Mobile networks offer a promis-
ing alternative using network activity counts, but
these lack crucial directionality. Thus, we present
the TeltoMob dataset, featuring undirected telecom
counts and corresponding directional flows, to pre-
dict directional mobility flows on roadways. To ad-
dress this, we propose a two-stage spatio-temporal
graph neural network (STGNN) framework. The
first stage uses a pre-trained STGNN to process
telecom data, while the second stage integrates di-
rectional and geographic insights for accurate pre-
diction. Our experiments demonstrate the frame-
work’s compatibility with various STGNN mod-
els and confirm its effectiveness. We also show
how to incorporate the framework into real-world
transportation systems, enhancing sustainable ur-
ban mobility.

1 Introduction
Effective traffic management is crucial for intelligent trans-
portation systems [Xie et al., 2020; Lv et al., 2021]. Tra-
ditional methods rely on costly detectors with limited cov-
erage [Sen et al., 2012; Li et al., 2018; Guo et al., 2019].
With over 71% of the global population connected to mo-
bile networks [Cisco, 2021], cellular traffic activities [Jiang,
2022] offer valuable insights. The count of cellular traffic
(i.e., cellular traffic flow) can proxy traffic conditions [Lin
et al., 2021a]. However, the lack of directionality in cellular
traffic flows from road areas limits understanding commuting
patterns and easing congestion, thus reducing their utility.

To extract directionality for traffic management, we present
a task utilizing cellular traffic flows from selected road areas
to predict user mobility counts (i.e., mobility flows) along
routes (as Figure 1). This enhances the utility of undirected
telecom data by providing directional insights, reducing costs
and environmental impact associated with sensor deploy-
ment, and aligning with the Sustainable Development Goals
(SDG)1 for urban sustainability. To support this task, we pro-

1https://sdgs.un.org/goals/goal11

Figure 1: Overview of the task and framework. Network activi-
ties collected at road areas (points 1 to 3) act as proxies for traffic
conditions but lack crucial directionality for accurate traffic manage-
ment. Our framework leverages non-directional telecom data from
past time steps to predict future directional mobility flows, enhanc-
ing its utility for urban computing.

pose the Tel-to-Mob dataset, including undirected telecom-
based flows from 34 roads and directed mobility flows for 84
routes, with analysis to exhibit its relevance to road structure.

We identified two main challenges: Magnitude Dispar-
ity, where cellular traffic flows capture all users in an area,
unlike mobility flows that reflect specific directional move-
ments; and Amount Disparity, where a single road area be-
ing part of multiple routes leads to misalignments, hinder-
ing direct mapping from cellular traffic to mobility flows, a
gap not addressed by current models (e.g., [Li et al., 2023;
Lin et al., 2024]). To tackle these, we propose a Spatio-
Temporal Graph Neural Network (STGNN) Framework
with two stages. Stage 1 employs a pre-trained STGNN to
extract features from cellular traffic flows. Stage 2 transforms
these features to integrate directionality and enhances them
with geographical insights, using another STGNN to capture
spatio-temporal dynamics and predict future mobility flows.

Overall, our main contributions:
• What Addressed: We use telecom-based flows to forecast

directional mobility flows, overcoming traffic sensor limita-
tions and advancing sustainable urban living.

• Who Involved: We use anonymous data from extensive
mobile users provided by a cooperating telecom operator.

• How Evaluated: Our framework’s effectiveness is evalu-
ated based on prediction accuracy. All related data and code
are accessible at: https://github.com/cy07gn/TeltoMob.
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2 TeltoMob Dataset
Related Tasks. As cellular traffic is collected from mobile
users moving across adjacent areas [Zhang et al., 2018], it
exhibits spatial correlations [Wang et al., 2018; Wang et al.,
2022]. However, the primary goal usually focuses on en-
hancing network resource allocation in specific areas [Yao et
al., 2021; Zhao et al., 2021] or at base stations [Wang et al.,
2018], as well as inducing energy savings [Lin et al., 2021b]
and improving resource scheduling [He et al., 2020].

However, as we aim to utilize cellular traffic for transporta-
tion evaluation, the lack of directionality reduces its practical-
ity for traffic management. Thus, we introduce the TeltoMob
dataset, which contains undirected telecom-based flow and
directed mobility flow among road sections.

2.1 Definitions
• Geographical Cellular Traffic (GCT). A cellular traffic
record with its originating GPS coordinates, as Table 1A.
• Road Segment. A 20m x 20m road area, based on the av-
erage road size in the Proof-of-Concept area, as Figure 2(a).
• Route. A directional pathway from start road segment i to
end segment j, denoted as ij.
• GCT Flow. The count of GCT records on a road segment,
accumulated over a fixed time interval, as Figure 2(b).
• GCT Pairing. An entry by associating two GCT records
from consecutive segments of the same user, as Table 1B.
• Mobility Flow. The count of GCT pairings along routes,
recorded over fixed time intervals (see Figure 2(c)), offers an
alternative to physical detectors, aligning with SDG aims.

A. Examples of GCT Records

IMEI1 Date Latitude Longitude

...
524edbbd5122 2022-09-06 18:02:17 24.801066 120.987103
a63cc2cc752e 2022-09-06 18:02:23 24.801219 120.987091
f4f79deaff0c 2022-09-06 18:02:30 24.801246 120.987090
...

B. Examples of GCT Pairings

Pairing2 Start Time End Time

...
524edbbd5122 2022/09/06 18:02:17 2022/09/06 18:04:02
a63cc2cc752e 2022/09/06 18:02:23 2022/09/06 18:11:52
f4f79deaff0c 2022/09/06 18:02:30 2022/09/06 18:11:51
...
1IMEI, or International Mobile Equipment Identity, is hashed for user privacy.
2 Pairings indicate mobility along a route.

Table 1: Examples of GCT Records and GCT Pairings.

2.2 Data Collection and Processing
Location Selection. In collaboration with City Authorities,
we selected 34 road segments based on criteria like daily
commutes, and congestion-prone areas. The segments are
near areas with distinct environments, including universities,
shopping centers, and science parks.

After identifying road segments, we determined 84 direc-
tional routes based on the road network structure, facilitating
GCT record pairing to capture mobility. Each route connects
a start and end road segment.
GCT Records Sourcing. All GCT records are stored in the
telecom company’s Geographical Cellular Traffic Database.
We extracted GCTs from 34 road segments, focusing on
essential data fields—IMEI, recording time, and coordi-
nates—for time efficiency, as shown in Table 1A.
GCT Pairings. We match two GCT records with the same
IMEI number (i.e., the same user) across adjacent road seg-
ments, originating from the start and end road segments, re-
spectively. The time difference between these records is kept
within a 15-minute window to exclude pedestrian or non-
vehicular traffic, thus focusing on vehicle movements. Table
1 displays the pairing results for route 30 31.
Processing. GCT and mobility flows denote the cumulative
counts of GCT records and GCT pairings at 15-minute inter-
vals, respectively, revealing unique temporal patterns for each
road segment and route over time.

Figure 2: Overview of data collected from 34 road segments, in-
cluding 84 directional routes in Hsinchu City. (a) The map depicts
GCTs sourced from user activity, while mobility (i.e., GCT pairing)
is determined by associating GCT records appearing in adjacent seg-
ments along routes. Color intensity represents the average volumes
of GCT and mobility flows. (b) Sample daily GCT flow pattern. (c)
Sample daily mobility flow pattern.

2.3 Data Privacy Protection
Data privacy is paramount in telecom data. Here’s how we
protect user anonymity and privacy for our task:
Location Constraints. We restrict data collection to road
segments, avoiding sensitive areas like commercial or resi-
dential districts. We focus on GCTs from these segments,
preventing tracking of journeys or user pattern identification.
Data Aggregation. GCT flow is the cumulative count of
GCT records that masks individual identities, securing user
information for telecom data use.
International Standards. Our partner telecom company fol-
lows ISO 27001 standards, ensuring sensitive data manage-
ment and access are rigorously controlled.
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2.4 Data Analysis
Descriptive Statistics. Table 2 summarizes the descriptive
statistics of our dataset from 2022/08/28 to 2022/09/27 with
2,976 samples from 34 road segments and 84 routes. No-
tably, segment 31 near a hospital has the highest GCT flow
with 400.58 entries per 15 minutes, and Route 30 31, linking
downtown to the freeway, records the highest mobility flow
with 57.82 movements per 15 minutes.

Type #Samples #Amount Interval Avg. STD1 Max Avg.

GCT 2976 34 15-min. 159.9 116.59 400.5
Mobility 2976 84 15-min. 12.9 11.03 57.8
1 Standard deviation.

Table 2: Descriptive Statistics of the Dataset.

Magnitude Discrepancy. Table 2 shows that the av-
erage GCT flow markedly exceeds that of the mobility
flow. This difference is due to the GCT flow including all
users—stationary and pedestrians—without considering di-
rection, while mobility flow counts directional movements
between segments, typically vehicular. Thus, GCT flow re-
flects broader user activity, and mobility flow precisely indi-
cates directional vehicular traffic.
Flow Distribution Analysis. Figure 3 shows the distribu-
tion of average GCT and mobility flows for road segments
and routes. The right skew indicates low traffic in most
locations, with few experiencing high volumes. This re-
flects the typical urban network structure [Peng et al., 2016;
Babu and Manoj, 2020] where arterials carry main traffic,
while local streets have less flow. The dataset accurately re-
flects real-world traffic trends, proving valuable for urban.

Figure 3: Histograms showing average GCT and mobility flow dis-
tribution in our dataset. The x-axis indicates flow intervals, and the
y-axis counts road segments and routes. The right-skewed distribu-
tion highlights low traffic on most routes, with a few experiencing
high volumes, typical of urban road network hierarchies.

Relationships Between Mobility and GCT Flows. We ana-
lyzed the correlation between mobility flow on route 5 4, con-
necting residential areas to Hsinchu Science Park, and GCT
flow on overlapping segment 5. The weekly trends (Figure
4a) show generally similar patterns, but with some distinct
variations during evening commutes. Mobility flow peaks in
the morning for work commutes on 5 4 and declines in the
evening as commuters use the opposite route 4 5. In contrast,

GCT flow, which represents all user activities on segment 5,
peaks during both morning and evening commutes, thus di-
verging from mobility flow. Figure 4b depicts this varying
correlation, although typically positive, with some weaken-
ing (as blue ovals) due to lower evening mobility on 5 4 de-
spite high GCT flows. These findings highlight the interplay
between these flows, influenced by time and direction.

(a) (b)

Figure 4: Relationships between GCT and mobility flows. (a)
Weekly patterns show morning peaks in mobility flow for work com-
mutes, with less evening traffic, unlike GCT flow, which reflects all
directional activities. (b) Although correlations are generally pos-
itive, reduced evening mobility compared to persistent high GCT
flows leads to lower correlations (indicated by blue ovals).

Interactions Between Route’s Neighbors. Acknowledging
that the mobility flow of a route is influenced by upstream
movements as users transition from upstream to downstream
areas, we analyzed its correlation with upstream neighbors.
Focusing on route 5 4 and its upstream routes on 2022/9/05
as an example, we employed Pearson correlation coefficients
[Cohen et al., 2009] to assess daily patterns. Figure 5 reveals
strong correlations (above 0.8) with direct upstream routes
(8 5 and 30 5), signifying their significant impact. Conversely,
2-hop upstream routes exhibit weaker correlations (0.3 to
0.6), suggesting a reduced impact with increased distance.
This chart highlights the critical role of the nearest upstream
routes in ensuring traffic flow continuity, which informs the
geographical insights incorporated in our framework.

Figure 5: Pearson correlation analysis of daily mobility flow for
route 5 4 and its upstream routes on 2022/09/05 reveals strong corre-
lations with 1-hop upstream routes and weaker ones with 2-hop up-
stream routes, indicating a diminishing impact from distant routes.
This finding directs our framework’s emphasis on 1-hop upstream
route correlations for understanding traffic continuity.
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3 Methodology
3.1 Task Definition
Using undirected N GCT flows from past steps (Tin) to fore-
cast directional M mobility flows for future steps (Tout).

3.2 Framework Overview
As Figure 6, our framework functions in two stages to address
the magnitude disparity among GCT and mobility flows, and
the amount disparity among 32 segments and 84 routes:

• Stage 1. We pre-train the first STGNN on GCT flows
for feature extraction, separate from the framework’s train-
ing. This enables the model to focus on the attributes of GCT
flows, thus mitigating the impact of magnitude disparity.

• Stage 2. We transform the features extracted in Stage
1 to align with the amount of mobility flows, addressing the
amount disparity. The secondary STGNN is then used to pro-
cess them and predict the mobility flows.

3.3 Stage 1 of the Framework
Motivations. The first STGNN model on GCT flows, sep-
arately from the framework, enhances focus on capturing
spatial-temporal patterns, thus yielding enriched features.
This distinct training approach simplifies the learning process
and reduces the risk of overfitting [Lin et al., 2023b].
Notations. The following are the notations for this stage:

• X: GCT flows of size [N,D], regarded as N road seg-
ment with D observations.
• Ggct: The graph structure representing connections

among road segments collecting GCT flows.
• hi: Multi-channel feature of GCT flow i, sized [C,D],

representing D dimensions across C channels.
•H: The set of all hi, denoted H = {hi}, sized [N,C,D].
• STGNN1st: The pre-trained STGNN in Stage 1, used

for feature extraction.
Implementation. The following are the details for this stage:
Training. We utilize existing STGNNs (e.g., [Li et al., 2023;
Lin et al., 2024]) trained for feature extraction. Following
the traffic prediction [Wu et al., 2019], we train the STGNN
to predict N GCT flows in the future D′ steps, based on X
(sized [N, D]). Details on the data setup are available2.
Extracted Feature. STGNN models often encode the input
X into multi-channel features H (sized [N,C,D]) to enrich
the representation, with each channel encapsulating distinct
spatial-temporal dynamics. Once trained, we regard the out-
put of the STGNN as the extracted feature, denoted as:

H = STGNN1st(X,Ggct), (1)

where STGNN1st is the pre-trained STGNN in Stage 1, and
H = {h1, h2, . . . , hN} ∈ RN×C×D, with each hi represent-
ing the multi-channel feature of GCT flow of segment i.

3.4 Stage 2 of the Framework
Stage 2 uses the extracted feature H from Stage 1 to generate
mobility flow predictions, comprising three steps as follows:

2https://github.com/nnzhan/Graph-WaveNet

Transformation Step
Motivations. Due to the misalignment between the amounts
of GCT and mobility flows, the extracted feature H cannot
be directly mapped to individual mobility flows. Thus, we
transform H into representations that align with the amounts
of mobility flows, integrating directionality within each route.
Notations. The following are the notations for this step:

• hij : The representation for the mobility flow of route ij.
• H: The set of all hij , as H = {hij}, sized [M,C,D].

Implementation. To incorporate directionality, we denote
ij as the result of subtracting the extracted feature hi of the
starting segment i from hj of the ending segment j, as:

hij = σ(hj − hi), (2)

where σ(·) is a nonlinear function. After process for all M
routes, we obtain the initial representation set:

H = {hij}, (3)

where ij ∈ RM and H ∈ RM×C×D.

Enhancement Step
Motivations. While the derived hij corresponds to the mo-
bility flow ij, it may not capture correlations with neighbor-
ing routes, potentially overlooking factors such as conges-
tion propagation from upstream routes [Saberi et al., 2020;
Yidan et al., 2021]. Thus, we enrich these representations by
integrating interactions among a route’s upstream neighbors.
Notations. The following are the notations for this step:

• ki: The 1-hop upstream neighbor of route ij, where seg-
ment k leads directly into the start segment i of route ij.

• {hki}: The set of representations for all 1-hop upstream
neighbors of route ij.

•Hij : The set of representations comprised of route ij and
its upstream neighbors {ki}.

• hc
ij

: c-th channel representation of the mobility flow ij.

• h′

ij
: The enhanced representation of route ij after fusion.

• H
′

: The set of all h
′

ij
, denoted H

′

= {h′

ij
}.

Implementation. The following are the details for this step:
Preliminary. While Graph Attention Networks (GAT)
[Veličković et al., 2018] are adept at exploring interactions
among features and adaptively adjusting weights [Zhao et al.,
2020], current GATs fall short in exploring correlations be-
tween multi-channel features as they apply uniform weights
across all channels. This process may potentially overlook
channels that are critical for prediction [Brody et al., 2022].
Solution. We employ the concept of Multi-Channel GAT
(MGAT) [Lin et al., 2023a], which is simple but effectively
handles multi-channel representations. Below, we briefly out-
line how we applied MGAT in the fusion process:

1. We concatenate each hij with its upstream neighbors
{hki}, as Hij with size [Z,C,D], Z = 1 + |{hki}|.

2. We explore the interactions among entities in Hij . To
determine channel-specific weights, MGAT employs C
independent GATs, each focusing on the c-th channel
representation H

c

ij ∈ RZ×D.
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Figure 6: Overview of the proposed two-stage STGNN framework. Stage 1 employs a pre-trained STGNN (STGNN1st) to extract features
from GCT flows (as blue shapes). Stage 2 comprises three steps: transformation step derives initial representations (as dotted orange
arrows) aligned with the amount of mobility flow while incorporating directionality. The enhancement step integrates each mobility flow
representation with its upstream neighbors using the Multi-Channel Graph Attention (MGAT), resulting in enhanced representations (as solid
orange arrows). prediction step utilizes a secondary STGNN (STGNN2nd) to generate mobility flow predictions.

3. Specifically, for c-th channel representation H
c

ij , the
attention coefficient in [Veličković et al., 2018], de-
noted as: e(hc

ij
, hc

ki
), is employed to calculate the

importance of route ki to route ij. These coeffi-
cients are normalized by the Softmax function across all
neighbors of node i, denoted as the attention function:
αc
ij,ki

= softmax(e(hc
ij
, hc

ki
)). MGAT then computes

a weighted sum of the features for node i and its neigh-
bors, and concatenates results from C independent at-
tention mechanisms: h

′

ij
= ∥Cc=1(σ(

∑
k α

c
ij,ki

hc
ki
)).

We denote the above process (steps 1-3) as

h
′

ij
= MGAT (Hij ,Gij), (4)

where Gij is the graph structure among routes ij and ki.
After processing all M routes with Equation 4 to integrate

insights from neighbors, we obtain the enhanced sets:

H
′

= {h
′

ij
}, (5)

where H
′

∈ RM×C×D.

Prediction Step
Motivations. Given that the enhanced representations H

′

align with the amounts of mobility flows, we further apply a
secondary STGNN to capture the spatial-temporal dynamics
within these representations and generate predictions.
Notations. The following are the notations for this step:

• STGNN2nd: The STGNN in Stage 2 for generating mo-
bility flow predictions.

• Gmob: The graph structure of connections among routes.
• Y : The output of mobility flow prediction, sized [M,D

′
],

representing M mobility flows and D
′

future steps.
•MLP : A multilayer perception, is a fully connected neu-

ral network.
Implementation. We employ a secondary STGNN
(STGNN2nd), denoted as:

Ĥ = STGNN2nd(H
′

,Gmob), (6)

Following STGNN2nd, an MLP is employed to transform
Ĥ into the prediction output format:

Y = MLP (Ĥ). (7)

Here, the MLP achieves nonlinear transformations to map the
high-level features of STGNN2nd to the desired output.

Framework Training
We fix the hyperparameters of the pre-trained STGNN1st

in Stage 1 to ensure consistency. The feature extracted
in Stage 1 is fed forward through Stage 2 to gener-
ate mobility flow predictions. We adopt the Mean Ab-
solute Error (MAE) as our loss function, evaluating the
accuracy of predictions against the ground truth in our
dataset. The MAE is minimized by tuning the hyperpa-
rameters of the transformation, enhancement, and prediction
steps to achieve optimal accuracy. Details are provided at:
https://github.com/cy07gn/TeltoMob/tree/main/Model

4 Experiments
4.1 Experimental Setup
Data Setups. We collected data at 15-minute intervals from
2022/8/28 to 2022/9/27, yielding 2,976 samples of GCT and
mobility flows across 34 road segments and 84 routes. Se-
quences for the Train/Test/Valid were formed from these sam-
ples, each comprising 12 steps: the initial 8 steps (Tin) as
historical GCT flows and the next 4 steps (Tout) as future
mobility flows. Following [Li et al., 2018], we divided these
sequences into Train/Test/Valid sets in a 70%-20%-10% ratio.
Each experiment runs for 180 epochs with early stopping.
Baselines. We chosen representative STGNN baselines inte-
grated into our framework for this new task: DMGCN [Han
et al., 2021]: Leverages time-specific spatial dependencies
with a multi-faceted fusion. ESG[Ye et al., 2022]: Employs
evolutionary and multi-scale graph structures. DGCRN [Li
et al., 2023]: Models the dynamic graph with a seq2seq ar-
chitecture. MFGM[Lin et al., 2024]: Captures multivariate,
temporal, and spatial dynamics with a GNN-based approach.
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15 min. 30 min. 60 min. Overall3

STGNN models1 MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

DMGCN(w/o1) 3.99 7.21 39.9% 4.05 7.38 40.7% 4.39 8.35 42.7% 4.14 7.65 41.1%
DMGCN(w) 3.61 6.26 36.6% 3.65 6.31 37.1% 3.80 6.89 38.9% 3.69 6.49 37.5%
IR2 9.5% 13.2% 8.3% 9.9% 14.5% 8.8% 13.4% 17.5% 8.9% 11.0% 15.2% 8.7%

ESG(w/o) 3.87 6.63 39.7% 4.01 7.28 41.1% 4.21 7.89 43.2% 4.03 7.27 41.3%
ESG(w) 3.59 6.27 37.3% 3.65 6.33 37.7% 3.76 6.56 38.4% 3.67 6.39 37.8%
IR 7.2% 5.4% 6.0% 9.0% 13.1% 8.3% 10.7% 16.9% 11.1% 9.0% 12.1% 8.5%

DGCRN(w/o) 3.86 7.09 39.4% 3.92 7.22 39.9% 4.10 7.69 42.2% 3.96 7.33 40.5%
DGCRN(w) 3.58 6.25 37.4% 3.61 6.30 37.6% 3.74 6.46 38.1% 3.64 6.34 37.7%
IR 7.3% 11.9% 5.1% 7.9% 12.7% 5.8% 8.8% 16.0% 9.7% 8.0% 13.6% 6.9%

MFGM(w/o) 3.72 6.41 38.3% 3.84 6.66 38.9% 4.01 7.41 40.6% 3.86 6.83 39.27%
MFGM(w) 3.45 5.69 34.7% 3.54 5.89 34.9% 3.69 6.41 36.2% 3.56 6.00 35.29%
IR 7.3% 11.2% 9.4% 7.8% 11.6% 10.2% 8.0% 13.5% 10.7% 7.68% 12.10% 10.11%

Average IR 7.8% 10.4% 7.2% 8.6% 13.0% 8.3% 10.2% 16.0% 10.1% 8.9% 13.2% 8.6%
1The model is used for prediction without (w/o) integration into our framework.
2IR (Improvement Ratio) = ((score(w/0) - score(w)) / score(w/o)) * 100%.
3Average results from 15 min to 60 min.

Table 3: Performance Comparisons With/Without Framework.

Metrics. We use Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Mean Absolute Percentage Error
(MAPE) to assess our predictions against ground truth mobil-
ity flows from 15 (1 step) to 60 minutes (4 steps).

4.2 Prediction Performance
Performance Improvement with Framework. We eval-
uated the integration of various STGNN models with our
framework, focusing on prediction intervals ranging from 15
to 60 minutes. Each model was examined under two set-
tings: without the framework integration (w/o) and with our
framework integration (w). For the w/o setting, we used the
STGNN, inputting the GCT flow from each route’s starting
segment, to output the predicted mobility flows.

Table 3 presents the performance of all models in both set-
tings, with each reported result representing the average of
10 individual runs. We use the Improvement Ratio (IR) to
measure the enhancement achieved by integrating STGNN
models into our framework. The results reveal that this inte-
gration boosts performance, with overall average IRs of 8.9%,
13.2%, and 8.6% for MAE, RMSE, and MAPE, respectively,
and up to a 17.5% RMSE improvement for long-term pre-
dictions. This underlines the compatibility of our framework
across different STGNN models and its effectiveness.

Notably, as the prediction interval lengthens, perfor-
mance typically declines due to the increased complexity of
long-term dependencies. However, models enhanced with
our framework consistently improve in prediction accuracy,
achieving progressively larger IRs as the forecast duration
extends. Specifically, the average IR for MAE, RMSE, and
MAPE grew from 7.8%, 10.4%, and 7.2% at 15 minutes
to 10.2%, 16.0%, and 10.1% at 60 minutes, respectively.
These findings underscore our framework’s capability for
more complex, long-term predictions, which is practical for
real-world applications [Tian and Chan, 2021].
Computational Efficiency Table 4 presents the computa-

tional efficiency of various STGNN models within our frame-
work on a Nvidia Tesla T4 GPU, with each value representing
the average of 10 runs. DMGCN and MFGM show promis-
ing inference times (0.73 and 0.79 seconds respectively), suit-
able for near real-time applications, while ESG and DGCRN
are slightly slower. Regarding training times, MFGM is most
efficient at 13.53 seconds, suggesting an advantage in envi-
ronments requiring rapid model updates, whereas DMGCN
and ESG were slower, which might impact their adaptability
in environments with rapidly changing data. This assessment
indicates that our framework is capable of providing efficient
inference, supporting its potential for integration within real-
time transportation systems, as depicted in Section 4.4.

STGNN models Inference Time Training Time
DMGCN 0.73 sec 16.58 secs/epoch
ESG 1.65 secs 15.93 secs/epoch
DGCRN 1.58 secs 14.56 secs/epoch
MFGM 0.79 secs 13.53 secs/epoch

Table 4: Comparisons for Inference and Training Times.

4.3 Ablation Study of Our Framework
We assessed the contributions of framework’s components
by comparing the framework with four ablated settings:
without the Pre-trained STGNN (w/o STGNN1st), without
the Transformation step (w/o Trans.), without the Enhance-
ment step (w/o Enhan.), and without Stage 2’s STGNN (w/o
STGNN2nd). Table 5 shows the average results for prediction
length 15 min to 60 min, ordered by performance impact:
Impact of w/o STGNN1st. This setting omits the pre-trained
STGNN1st from Stage 1, using raw GCT flows instead of
the extracted features that capture spatio-temporal dynam-
ics. Without these extracted implicit features within the GCT
flow, this configuration demonstrates the worst performance
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15min. 30min. 60min.
Ablation models MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

w/o STGNN1st 3.77 7.18 37.2% 3.91 7.41 38.2% 4.42 8.61 40.1%
w/o Enhan. 3.65 6.53 36.3% 3.78 6.87 36.9% 4.13 7.69 39.4%
w/o STGNN2nd 3.58 6.27 35.9% 3.67 6.43 36.4% 3.97 7.32 37.9%
w/o Trans. 3.52 6.09 35.4% 3.62 6.16 35.6% 3.82 6.94 37.5%
Full Framework 3.45 5.69 34.7% 3.54 5.89 34.9% 3.69 6.41 36.2%

Table 5: Ablation Study of Our Framework.

metrics across all intervals, indicating a significant decrease
in accuracy. This suggests that the pre-trained STGNN to
capture the underlying patterns in GCT flows is very crucial.
Impact of w/o Enhan. This setting excludes the Enhance-
ment step, thereby omitting the incorporation of correlations
between each route and its upstream neighbors. This omis-
sion leads to the second-largest performance decrease. We
argue that, given the spatial dependencies among routes as
shown in our dataset (see Figure 5), overlooking these corre-
lations might miss crucial insights, such as congestion propa-
gation from upstream, thus decreasing the performance.
Impact of w/o STGNN2nd. This setting omits STGNN2nd

in the Prediction step, opting for MLPs to generate the pre-
dictions. Although this removal is not as severe as omitting
the STGNN1st, it still consistently increases prediction errors
across all intervals. This validates that capturing implicit dy-
namics with STGNN2nd contributes to the outcomes.
Impact of w/o Trans. This setting omits the Transformation
step, directly using the extracted GCT flow feature as a repre-
sentation of mobility flow, without integrating the direction-
ality among routes. Although excluding the transformation
step leads to slightly worse metrics, it still leads to increased
errors across the 15 to 60 minutes, confirming that incorpo-
rating directionality can enhance mobility flow prediction.

Figure 7 presents the predictive performance as measured
by MAE across time intervals. As the interval lengthens, the
error for all settings increases. However, it is observed that
the full framework consistently outperforms the other ablated
settings at all prediction lengths, with the MAE gap widening
over time. This not only demonstrates the superior perfor-
mance of the full framework but also highlights its stability
for complex, long-term tasks.

Figure 7: Ablation study of MAE across 15 to 60-minute intervals.
As prediction lengths extend, performance declines for all settings,
while the full framework (red line) not only consistently outperforms
ablated versions but with a growing MAE gap against them, proving
the essentiality of all components.

4.4 Applications and Impact on Transportation
As our framework achieves promising inference times from
GCT flow to mobility flow predictions (as Table 4), we are
collaborating with city authorities to integrate this framework
into the transportation system, as illustrated in Figure 8:

• Traffic Monitoring: Predicted mobility flows offer in-
sights for authorities to monitor potential congestion.

• Traffic Indicator: The system employs these forecasts
in a threshold-based alert mechanism, serving as a new indi-
cator of traffic conditions. When pre-set thresholds are ex-
ceeded, it triggers various strategies: sending notifications to
authorities, suggesting alternative routes through Changeable
Message Signs (CMS) to redirect commuters, and dynami-
cally adjusting traffic signal plans to optimize flow.

Figure 8: Integrating our framework with the city’s transportation
system, by utilizing GCT flow for predictive mobility insights, acti-
vates a threshold-based alert system for optimal traffic management.
This achieves practical convergence of telecom data and transporta-
tion needs through driver notifications, CMS for alternative routing,
and optimized traffic signal control.

Beyond the above, our work can contribute further impact:
• Reconstruction of Road Networks: Our framework’s

predictions provide city authorities with better insights into
congestion points, leading to the expansion or reconstruction
of road networks to better accommodate traffic demands.

• Public Transport Improvement: By understanding mo-
bility flows, public transport routes can be optimized to match
demand, potentially increasing the use of multi-passenger
transport options.

5 Conclusion
We leverage undirected telecom data to forecast directional
mobility flows along routes, enhancing the utility of tele-
com data in transportation and reducing the deployment and
maintenance costs of detectors, thus advancing sustainable
cities (SDG 11). To tackle the challenge, we propose a
two-stage STGNN framework, facilitated by our TeltoMob
dataset, to assess its effectiveness. Our experiments confirm
the framework’s compatibility with various STGNN mod-
els and its effectiveness in enhancing their performance, with
up to a 17.5% improvement in long-term prediction. We
also demonstrate the integration of the framework into the
transportation system as a traffic indicator. This work un-
derscores the potential of telecom data in transportation and
contributes to the enhancement of sustainable urban mobility.
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