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Abstract
New Zealand’s unique ecosystems face increas-
ing threats from climate change, impacting bio-
diversity and posing challenges to safety, liveli-
hoods, and well-being. To tackle these complex
issues, advanced data science and artificial intel-
ligence techniques can provide unique solutions.
Currently in its fourth year of a seven-year pro-
gram, TAIAO focuses on methods for analyzing
environmental datasets. Recognizing this urgency,
the open-source TAIAO platform was developed.
This platform enables new artificial intelligence re-
search for environmental data and offers an open-
access repository to enhance reproducibility in the
field. This paper will showcase four environmen-
tal case studies, artificial intelligence research, plat-
form implementation details, and future develop-
ment plans.

1 Introduction
The evolving climate landscape presents a pressing motiva-
tion for New Zealand to prioritize environmental data sci-
ence, as it becomes a strategic imperative in understanding
and mitigating the impacts of climate change. Against a pre-
dominantly stable climate over the past 10,000 years, New
Zealand has fostered unique species and ecosystems that de-
fine its natural environment [Ogden, 1995]. However, the
stability enjoyed for millennia is now under threat due to hu-
man activities, both historical and current, which exert pres-
sure on the environment and challenge its capacity to adapt
to rapid changes. The repercussions are becoming increas-
ingly evident, with conditions changing faster than ecosys-
tems can naturally adjust, challenging restoration efforts. One
of the prominent consequences of human-induced factors is
the rapid increase in atmospheric greenhouse gas emissions,

resulting in a warming Earth. The global mean surface tem-
perature has escalated by 1.1 degrees Celsius above pre-
industrial levels, and projections indicate a likely exceedance
of 1.5 degrees Celsius by early 2030 [Pörtner et al., 2023].
Despite the seemingly incremental nature of these tempera-
ture changes, they have already triggered substantial and far-
reaching impacts.

Environmental data science is vital for research, adapta-
tion, and conservation in this climate-induced context. The
New Zealand government’s ambitious objectives to enhance
freshwater quality and achieve carbon neutrality by 2050 un-
derscore the pivotal role of effective data science in address-
ing the complex challenges posed by climate change. Envi-
ronmental time series or data streams, integral components of
this scientific approach, play a ubiquitous role across diverse
applications in New Zealand. These encompass monitoring
observations or modeling outputs related to various environ-
mental parameters, including flow (such as wind, current, wa-
ter level, ice flow, and ice height), concentration (covering
suspended sediment, nutrients, and contaminants), physical
properties (spanning temperature, density), and external forc-
ing factors (encompassing gravity and solar radiation).

The unique characteristics of environmental time series
data necessitate specific processing techniques, considering
evolving information of dynamic processes, the decision-
making process over time-based on incomplete information,
the historical or spatial context that can enhance predictive
power, the significance of rare extreme events, the scarcity
of data in some applications, and the multi-scale attributes of
the information. Environmental data relevant to a particular
problem is often diverse and multi-modal, presenting further
challenges in modelling and data management. For example,
a flood forecasting tool may require integration from many
datasets, including meteorological data, hydrological data, to-
pographic data, and soil moisture data, while a water quality
monitoring system may benefit from remote sensing measure-
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ment and manual sample collection datasets.

Problem Statement. There is a need for a centralized plat-
form tailored to deal with environmental data problems in
the New Zealand environment. A standardized platform fa-
cilitates collaboration between machine learning researchers,
data scientists, and environmental scientists by managing
data, notebooks, and software related to these problems.

The following will introduce the TAIAO program, its team,
current case studies, implementation, and future milestones.

2 TAIAO Programme

TAIAO is a seven-year data science programme (2020 - 2027)
funded by the Ministry of Business, Innovation, and Employ-
ment (MBIE) New Zealand. It will advance the state-of-the-
art in environmental data science by developing new machine
learning methods for time series and data streams that are
able to deal with large quantities of data in real-time, and
are tailored to deal with data collected in the New Zealand
environment. The programme aims to build a new open-
source framework to implement machine learning on time se-
ries data, provide an openly available repository with datasets
to improve reproducibility in environmental data science, and
build capability in fundamental and applied data science ac-
cessible to all New Zealanders.

Data are essential for research, understanding, and setting
policies to manage New Zealand’s environment. Still, en-
vironmental data presents many challenges that require new
data science methods to overcome. This programme is cur-
rently developing new methods and building the required ca-
pability. In particular, the programme will focus on devel-
oping methods to deal with environmental datasets collected
in large volumes over time. It must, therefore, be dealt with
as streams that are analyzed incrementally, as they are mea-
sured, rather than as collections of data that can be analyzed
all at once. These methods will address underlying character-
istics of the data that evolve over time (e.g. due to climatic
or ecological changes) and data that are collected at a range
of time intervals and spatial scales ranging from broadscale
satellite images to single-point measurements on the ground
in the water or air. The methods we develop will be inter-
pretable and explainable (to help users understand why an
algorithm produces some particular output), identify and un-
derstand anomalies (to distinguish ‘normal’ from ‘unusual’
measurements) and quantify uncertainty in algorithm output
(to help decision-makers understand how confident they can
be in conclusions drawn from the data science methods). We
will further discuss the research carried out in the programme
in Section 4.

To deliver the methods we develop in a form that envi-
ronmental scientists and managers can use, we build a new
open-source framework, the TAIAO platform, to carry out
machine learning on time series data and provide an open-
access repository of environmental datasets to improve repro-
ducibility in environmental data science.

2.1 TAIAO Platform
TAIAO is an online platform1 designed to facilitate collab-
oration, resource-sharing, and community engagement for
environmental scientists, data scientists, academics, and the
broader scientific community. TAIAO is a research hub, pro-
viding access to datasets, Jupyter Notebooks, software, and
tutorials, fostering a culture of collaboration and knowledge
exchange [Lim et al., 2023].

Figure 1: TAIAO Platform

Users can benefit from a user-friendly interface, allow-
ing efficient downloading and exploring resources curated to
meet their research needs, as shown in Figure 1. To navigate
TAIAO effectively, users can leverage the search function and
metadata filtering options for datasets and notebooks. This
ensures a targeted approach to accessing relevant informa-
tion. The commitment to open licenses for all shared data
and notebooks ensures accessibility and promotes an ethos of
collaboration.

For contributors, TAIAO offers a structured process for ac-
cessing datasets or notebooks. Beyond that, TAIAO extends
its support with the tutorials page, offering insights into using
Jupyter Notebooks, Python, and other tools, especially in ap-
plications for machine learning. The dataset page showcases
the links to available open datasets, creating a unified location
for data access. Table 1 provides information on the current
datasets available. The software page provides free access
to various data science software and packages, enriching the
scientific toolkit.

2.2 United Nations Sustainable Development
Goals (UNSDGs)

The platform’s role addresses several UNSDGs [2015].
These include climate change impacts and supporting conser-
vation research positions within Climate Action (UNSDG 13)
and Sustainable Cities and Communities (UNSDG 11). Addi-
tionally, TAIAO directly contributes to Life Below Water and
Life on Land (UNSDGs 14 and 15) by supporting research
that can influence terrestrial ecosystems and promoting open
licenses for responsible sharing of scientific resources. Be-
yond that, we contribute to the sustainable management of
water (UNSDG 6). In promoting innovation in data science

1https://taiao.ai/
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Domain Dataset Data Format

Ocean GPATS Oceania Lightning
Feed

JSON

LINZ tidal gauge data CSV

Freshwater Bay of Plenty Water Quality
and Discharge Data

CSV, JSON,
Other, XLS

Coromandel River and Rain
Gauge Time Series

CSV

Biodiversity Mt Karioi Predator Project CSV, Other
Kahikatea aerial imagery Other
Crown-of-Thorns Starfish JPG

Atmosphere Moana hydrodynamic hind-
cast

netCDF

Sentinel-3 netCDF

Climate McMurdo Dry Valley Foehn
Wind Dataset

CSV

MetService weather stations CSV

Land LCDB and Waikato Re-
gional Aerial Photography

Other

Sentinel Satellite snapshot
of Waikato region

Other

Table 1: Sample datasets linked on the TAIAO platform

and environmental research, TAIAO supports Industry, Inno-
vation, and Infrastructure (UNSDG 9).

2.3 Project Team
The program fosters a robust collaborative team, uniting data
science researchers with key partners such as Beca, MetSer-
vice, the University of Waikato, the University of Auckland,
the University of Canterbury, and regional council environ-
mental scientists throughout New Zealand. This collective
effort is characterized by bidirectional collaborations, where
the expertise of data scientists is enriched through a deepened
understanding of the datasets, opportunities, and challenges
specific to environmental research. Simultaneously, environ-
mental scientists actively engage with data science method-
ologies, gaining insights into how these tools can illuminate
data and test hypotheses related to underlying environmen-
tal processes. This collaborative synergy creates a strong and
harmonious team where both groups’ collective knowledge
and skills contribute to the program’s success.

3 Case Studies
Here, we describe four examples of case studies that the pro-
gramme has mounted. Table 2 summarizes the current case
studies active in the programme.

3.1 River Flood Forecasting in the Coromandel
Peninsula, Waikato Region

Floods are one of the most common natural disasters and
probably the most affected by climate change. The accelera-
tion of warming temperatures increases atmospheric moisture
levels, leading to more severe heavy rainfall and associated
extreme weather events [Douville et al., 2022].

In New Zealand, the cost of flooding has steadily increased
over the last five years, peaking in 2023 with the Auckland

Figure 2: The region of study, The Coromandel Peninsula, Waikato,
New Zealand

floods in January and cyclone Gabrielle in February, with
over thirty times the average cost, according to the Insurance
Council of New Zealand [ICNZ, 2023]. Regional councils
oversee rainfall and water levels, issue flood alerts, and main-
tain flood protection infrastructure. Civil defence planning
is the responsibility of district councils. The initial signs of
impending floods typically come from severe weather warn-
ings provided by meteorologists. Moreover, regional coun-
cils maintain independent networks of rain gauges and river
levels, which can prompt automatic alerts when a rapid in-
crease in rainfall or river levels occurs [Potter et al., 2021].
In 2021, the National Institute of Water and Atmospheric Re-
search (NIWA) in New Zealand developed the first national-
scale streamflow forecasting system. Still a proof-of-concept,
the forecasting tool is a physics-based model that provides
hourly forecasts with 48 hour lead time [Cattoën et al., 2022].
However, the forecast uses a weather model (NZCSM), which
needs heavy computational resources and runs only every 6
hours.

Accurate and timely warnings are critical for mitigating
flood risks. Forecasting the magnitude and timing of floods
in real-time is a challenging problem for planning how to re-
spond quickly in emergencies. In recent years, using machine
learning for flood forecasting has gained traction as a growing
area of research [Mosavi et al., 2018]. The main advantage of
machine learning over traditional techniques is its capability
to handle high-dimensional and complex non-linear datasets.

Our case study examined the Coromandel Peninsula on
New Zealand’s North Island (Figure 2), an area prone to se-
vere storms and flooding due to its diverse hydrometeoro-
logical and topographic features. Our initial focus was on
predicting the water levels of the three main rivers in the re-
gion with a lead time of 12 hours, using only the river stage
data from the past decade. As we delved into the project, we
aimed to minimise forecast errors and lag time. After evalu-
ating various neural network architectures, we found signifi-
cant improvement using Long Short-Term Memory (LSTM)
networks, as suggested by [Kratzert et al., 2019], along with
incorporating additional datasets. Given the limited cover-
age of just two rain gauge stations across the expansive area,
we used rain radar images provided by MetService. The rain
radar data is updated every 7.5 minutes and covers a 50x70
km2 region over three elevation intervals (sea level, 500 m,
1000 m). Access to these data through several APIs allowed
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Project Description Stakeholders UNSDG

Develop accurate water quality remote sensing machine learn-
ing models to improve water quality monitoring capabilities.

Waikato Regional Council 6, 14

Develop air quality prediction for wood smoke pollution in
towns in the South Island, NZ

National Institute of Water and Atmo-
spheric Research (NIWA)

13

Develop reliable and accurate flood forecasting in the Coroman-
del Peninsula, New Zealand

Waikato Regional Council 6, 11

Develop accurate forecasts of water usage and tree growth in
plantation forests in New Zealand.

New Zealand Forest Research Insti-
tute Limited (SCION research) and
Forest Flows project

6, 13, 15

Develop a video-based inventorying and classification system
for benthic habitats in New Zealand

Department of Conservation 14

Develop a satellite and aerial imagery-based classification and
segmentation system for land use inventorying in New Zealand

Waikato Regional Council 15

Table 2: Case-studies from the TAIAO programme

Rain Radar API

River Level + 
Rain Gauge API

Radar 
Processor

CSV 
Merger

Predict.py

Train.py

Visualizer

Figure 3: Data flow and design of the river-stage predictions
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Figure 4: Visualization of the 95% predictive interval

for an automated real-time forecasting process. We devel-
oped a dashboard to visualise the neural network’s output, is-
sue warning messages, and evaluate performance (Figure 3)
[Mourot et al., 2022].

To estimate the uncertainty of river stage predictions, we
employed Bayesian LSTM techniques, finding that the pre-
dictive intervals aligned well with theoretical 95% intervals
(Figure 4). Ongoing efforts are directed towards refining
these predictive intervals while preserving accuracy in mean
predictions. Additionally, we explore model explainability
techniques to gain deeper insights into how rivers respond to
meteorological activity.

3.2 Forest Flows

Forests are important for several tasks, such as biodiversity
conservation and regulating water, carbon, energy and nu-
trient cycling [Bar-On et al., 2018; Keenan and Williams,
2018]. However, extreme events and changes in societal de-
mand pose a challenge to the maintenance of such tasks [Bo-
nan, 2016]. Therefore, understanding how the complex eco-
logical processes inside the forests interact with the surround-
ing environment due to unforeseen climate conditions has re-
ceived increased research attention [Bennett et al., 2009].

The main goal in such a situation is to acquire valuable
forecast information regarding the behaviour of the forest
and its connected systems that enable stakeholders to re-
spond accordingly. However, the amount of data generated
by the many sensors and the sheer size of the forests create
a challenging data-intensive situation. Thus, efficiently us-
ing this data is important to provide the knowledge required
to achieve the full potential that forests have to act as a bio-
based solution for global climate change [Seddon, 2022].

The creation and deployment of the infrastructure to col-
lect and store data was performed by Forest Flows, NIWA,
and SCION. We have collaborated in this process by guiding
the tools that would facilitate the data analysis. Since then, we
have been closely collaborating with the Forest Flows project
to provide insights into how such systems work through the
exploration of model explainability and the deployment of
several ML techniques to accurately forecast forest growth
and future water usage.

The forest growth forecast uses dendrometer readings as a
proxy (Figure 5), which, coupled with soil and weather data,
provides a powerful method to predict the growth of the for-
est. We measure the error in the forecast by comparing the
forecast value against the reading whenever it becomes avail-
able. The model explainability is being used to understand
what drives the growth of the trees and compare the findings
with the forestry literature to make sure it is biologically ac-
ceptable.
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Figure 5: Diagram and data sample of a dendrometer sensor.

3.3 Marine Heatwaves
Marine heatwaves (MHWs) are observed around the world
and have strong impacts on marine ecosystems. Such im-
pacts include shifts in species ranges, local extinctions, and
can have a follow-on economic impact on seafood indus-
tries [Hobday et al., 2016]. The devastating impact on ma-
rine ecosystems caused by MHWs could bring irreversible
loss of species or foundation habitats [Oliver et al., 2019],
for example, mass coral bleaching and substantial declines in
kelp forests and seagrass meadows [Holbrook et al., 2020].
MHWs also affect aquaculture businesses and area-restricted
fisheries because of the change in the distribution of sea life
with follow on effects on production [Hobday et al., 2018],
such as mussel, oyster and salmon farms.

In this case study, we aimed to advance global monthly to
seasonal MHW forecasts by proposing a unified deep learn-
ing approach encompassing anomaly, spatial, and temporal
aspects. First, we viewed MHW prediction, characterized
by sea surface temperature anomalies (SSTAs), as an imbal-
anced regression task, where instances above the 90th per-
centile are underrepresented. We evaluated regression loss
functions with fully-connected networks, including the MSE,
MAE, Huber, focal-R [Yang et al., 2021], balanced MSE
[Ren et al., 2022], and a custom weighted MSE, to identify
the most effective one in improving performance metrics like
the critical success index [Schaefer, 1990]. We integrated the
selected loss functions with advanced neural network archi-
tectures and used the symmetric extremal dependence index
(SEDI) [Ferro and Stephenson, 2011] for a comprehensive
evaluation of MHW prediction [Jacox et al., 2022].

Second, we examined graph re-sampling and graph neural
networks (GNNs) to address spatial pattern learning. Graphs,
representing a more generalized data structure than the com-
monly used grids, offer advantages in modeling global cli-
mate teleconnections, handling missing values, and avoiding
issues related to receptive fields [Luo et al., 2016] and the
Earth’s spherical properties [Defferrard et al., 2019]. We de-
veloped tools to convert the ERA5 SST reanalysis [Hersbach
et al., 2020] into graph structures. Then we evaluated several
GNN classes [Ning et al., 2023] and found that the Graph-
SAGE model [Hamilton et al., 2017] provided robust SST
and SSTA forecasts. Furthermore, we specifically concen-
trated on forecasting at historical MHW hotspots [Oliver et
al., 2021].

Third, while short-term SSTA and MHW forecasts could
be obtained using the sliding window method, long-term fore-
casts are challenging, and models usually have underfitting

Figure 6: A four-month-ahead global MHW forecast produced by a
suite of GraphSAGE models trained via a temporal diffusion process
with a custom weighted MSE loss function, applied to SSTA graphs
derived from the ERA5 SST reanalysis. Forecast performance at
each node is evaluated for the test years (2011-2022) using the SEDI,
where red indicates a positive SEDI, blue a negative SEDI, and white
an undefined SEDI.

issues, especially when predicting anomalies. We studied re-
current methods and a temporal diffusion method to improve
longer-lead forecasts. The recurrent approaches included us-
ing the LSTM aggregator within the GraphSAGE and adding
LSTM layers. The diffusion method was analogue to conven-
tional diffusion networks for image learning, where one or
several interpolators with stochasticity and one forecaster are
trained iteratively [Cachay et al., 2023]. In summary, by inte-
grating anomaly, spatial, and temporal aspects into a unified
deep learning framework, our models have been able to pro-
vide MHW forecasts with reasonable goodness-of-fit at most
locations worldwide, up to five months ahead. Figure 6 shows
an example forecast.

3.4 Algal Bloom Monitoring in Lakes
Harmful algal blooms are the rapid increase in algae in wa-
ter bodies, often caused by excess nutrients from fertilizer or
wastewater runoff. Certain algae are toxic and can be harmful
to local ecosystems, aquaculture and human health (UNSDG
6). Manual data collection is expensive, with low spatial and
temporal resolution. Remote sensing algorithms instead es-
timate the concentration of chlorophyll-a pigment in lakes
from the water colour to be used as an indicator of water qual-
ity and better monitor these events (Figure 7).

We have collaborated with the Waikato Regional Coun-
cil and other local governments to combine and process data
records into high-quality datasets. In partnership with fresh-
water scientists from Xerra Earth Observation Institute, we
have defined practical outcomes in water quality monitoring
and developed algorithms that achieve these outcomes.

To tackle the limited ground-truth data scarcity associ-
ated with this task due to data collection costs, we devel-
oped a semi-supervised learning algorithm that leverages un-
labelled remote sensing data to improve algorithmic perfor-
mance. Specifically, we use abundant satellite data without
co-situated in-situ sample measurements to improve the per-
formance of Mixture Density Networks (MDNs), a neural
network architecture which captures uncertainty in predic-
tions and is useful for water quality remote sensing due to
the ill-posed nature of this task [Graffeuille et al., 2022]. Our
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Figure 7: Water Quality Remote Sensing in Lake Waikare.

work is the first to leverage unlabelled data with MDNs, and
this improves model performance equivalently to a 50% in-
crease in the quantity of gathered labelled data. In a case
study on Lake Waikare, Waikato, our model detected a se-
quence of algal blooms over the summer of 2021. Perfor-
mance improvement and cost reduction in remote sensing
technologies will allow for more universal and accurate mon-
itoring of these environmental risks.

4 Contribution to Current Research
Our research initiative is driven by the recognition that tack-
ling contemporary environmental challenges requires ma-
chine learning advancements.

Environmental Solutions through Novel ML Research.
In the area of research focused on Machine Learning for
Data Streams and Time Series, we aim to develop novel tech-
niques specifically tailored for dynamic data streams. The
goal is to address current challenges and lay the groundwork
for new ML methodologies that can effectively handle real-
world environmental data, incorporating advancements such
as anomaly detection, clustering, and event detection. For ex-
ample, consider the work on online continual learning within
our wider team, led by Zhang et al. [2022]. This method aims
to train neural networks incrementally from a non-stationary
data stream with a single pass-through data, revisiting re-
hearsal dynamics in online settings. The team provides theo-
retical insights into the inherent memory overfitting risk from
the biased and dynamic empirical risk minimization view-
point. This example showcases our commitment to explor-
ing innovative approaches and pushing the boundaries of ML
methodologies.

Contribution to Predictive Capabilities for Environmen-
tal Extremes. In the research on Weak Signals and Extreme
Events, we acknowledge the urgency of embedding predictive
capabilities into existing ML algorithms. We aim to solve
current environmental challenges and pave the way for more
effective, adaptive ML models capable of addressing the es-
calating frequency of extreme environmental events.

As an example, our wider team [Milz et al., 2023] has
delved into understanding and predicting Foehn winds, such
as those impacting the McMurdo Dry Valleys in Antarc-
tica. Foehn winds are accelerated, warm, and dry winds
with significant environmental impacts, including ice and
glacial melt and the destabilization of ice shelves, potentially
leading to rising sea levels. Conventional automatic detec-
tion methods rely on rule-based methodologies with static
thresholds, which struggle to define the complex and varied
patterns of Foehn winds in different alpine valleys world-
wide. The research introduces and compares the first un-

supervised machine-learning approaches for detecting Foehn
wind events. Most existing machine learning approaches to
this problem follow a supervised learning paradigm, relying
on labels generated by imprecise static rule-based algorithms.
The proposed unsupervised approaches overcome this limi-
tation, providing a more dynamic definition of Foehn wind
events independent of the location. The first approach is
based on multivariate time-series clustering, while the second
utilizes a deep autoencoder-based anomaly detection method.
Remarkably, our best model achieves an f1-score of 88%,
matching or surpassing previous machine-learning methods.
This approach enhances accuracy and provides a more flexi-
ble and inclusive definition of Foehn events, showcasing the
potential of unsupervised machine learning in advancing our
understanding of complex meteorological phenomena.

Environmental Data Science with Deep Learning. In the
area of research focused on Deep Learning, recognizing its
increasing role in environmental data science, we delve into
the challenges of explainability, modeling evolving interac-
tion networks, and quantifying predictive uncertainty. This
research is not just about solving immediate issues; it is about
advancing ML methodologies to provide more accurate, in-
terpretable, and adaptable tools for addressing the complex
and evolving landscape of environmental problems. As an ex-
ample, ongoing investigations by Jia et al. [2021], we evaluate
explanations using a metric based on the area under the ROC
curve (AUC). This evaluation treats expert-provided image
annotations as ground-truth explanations and quantifies the
correlation between model accuracy and explanation quality
during image classifications with deep neural networks. The
experiments span two diverse image datasets: the CUB-200-
2011 dataset and a newly introduced Kahikatea dataset [Jia et
al., 2021]. They compare and evaluate seven neural networks
paired with four explainers for each dataset, considering ac-
curacy and explanation quality. Furthermore, they delve into
how explanation quality evolves with changes in loss metrics
throughout the training iterations of each model. The com-
pelling findings from these experiments highlight a robust
correlation between model accuracy and explanation quality.
This example underscores our commitment to advancing the
explainability of deep learning models. It showcases the ex-
ploration of diverse datasets and model-explainer combina-
tions, contributing to a deeper understanding of the interplay
between accuracy and interpretability in environmental data
science applications.

5 Implementation
In this section, we describe the data policies and procedures
for the platform. We also discuss the annual workshops, in-
cluding partnership and outreach.

5.1 Data Policies and Procedures
The TAIAO programme is dedicated to establishing robust
data policies and procedures, outlining a comprehensive
framework for collecting, storing, using, re-using, accessing,
and retaining data with potential impact on various partners,
stakeholders, and communities. These policies aim to advo-
cate and adopt sound data management and governance prac-
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tices, thereby fortifying engagement, trust, and collaboration
with all entities involved.

The core values guiding the TAIAO programme encompass
a commitment to developing new and innovative data science
methodologies and empowering environmental researchers
and practitioners to utilize data science effectively. Addition-
ally, the project focuses on practical accessibility, ensuring
that data science is made available and useful to communi-
ties for the betterment of the environment. Openness is a key
value, emphasizing the inclusivity of a wider community and
the appropriate sharing of data, tools, and methods. Collab-
orative co-design of data science with input from the broader
community is also highly valued.

These values, along with the ongoing refinement of asso-
ciated policies and procedures, are underpinned by the fol-
lowing principles, specifically the Principles of Māori Data
Sovereignty (MDSov) and adherence to the FAIR principles
(Findable, Accessible, Interoperable, Reusable) and CARE
principles (Collective Benefit, Authority to Control, Respon-
sibility, Ethical).

5.2 Annual Workshops
The programme runs an annual workshop with an open invi-
tation to disseminate and encourage collaboration. The work-
shop objectives:

• Ignite engaging conversations and collaborations as we
delve into the latest and future trends in data science.

• Discover the TAIAO’s innovative environmentally
driven use cases, sparking connections with potential or-
ganizations and stakeholders.

• Unleash knowledge and insights, establish network and
valuable relationships.

In 2023, the annual workshop was held in Tauranga, New
Zealand. The workshop has participants from researchers
from academia, AI and environmental science, local coun-
cils, and Crown Research Institutes. The 2023 event sched-
ule is available at2. Some of the key highlights of the 2023
workshop include 11 case studies, an open discussion and a
panel. We provide several examples as follows. First, Pro-
fessor Karin Bryan addressed the pressing challenge of plan-
ning for climate changes in coastal environments. Coastal
managers grappled with complex and detailed modeling sys-
tems, often unsuitable for projections at relevant timescales.
Prof Bryan proposed using classification and neural networks
to augment numerical modeling results, specifically focus-
ing on Ōhiwa Harbour as a case study. Second, Dr Varvara
Vetrova shed light on the significance of anomaly detection
in environmental contexts. From biosecurity to climate mon-
itoring, timely anomaly detection was crucial. Dr Vetrova
discussed applying deep learning methods, emphasizing their
role in preventing invasive species in urban areas and under-
standing climate system extremes, such as those observed in
Antarctica. Her talk underscored the diverse scales at which
anomaly detection could play a vital role in environmental
management.

2https://taiao.ai/pages/taiao-workshop-2023.en/

The open panel discussion within the community entitled
“Growing Capabilities in Environmental Data Science”, is di-
vided into three categories; opportunities and people, data,
and emerging trends and future. A sample of questions dis-
cussed included:

• How has the evolution of technology transformed the
landscape of environmental data science, and what new
opportunities does it offer for addressing pressing envi-
ronmental challenges?

• What strategies can be employed to bridge the gap be-
tween academia, industry, and policy circles to ensure
that environmental data science research leads to practi-
cal and impactful outcomes?

• What innovative strategies are employed to ensure the
quality, reliability, and interoperability of environmental
datasets collected from various sources?

6 Future Timeline
The programme aims to build more collaboration and mount
new collaborative projects every year. The plans include:

• Expanding Collaborative Projects: Building on the new
discussions with future partners such as wildlife.ai and
Maungatautari, the program intends to initiate new col-
laborative projects each year. The aim is to mount two
new collaborations every year.

• Capacity Building and Training: Recognizing the im-
portance of skill development in AI and environ-
mental science, the program aims to provide training
and capacity-building opportunities for stakeholders in-
volved in collaborative projects similar to those at-
tempted in the first four years.

• Scaling Up and Replication: As successful collabora-
tive models emerge from the program, there will be a
focus on scaling up successful interventions and repli-
cating them in different geographical regions or ecosys-
tems. This could involve partnerships with government
agencies, NGOs, and local communities to leverage re-
sources and expand the reach of conservation efforts.

7 Conclusion
The TAIAO program represents a strategic response to the
urgent need for advanced environmental data science in the
face of accelerating climate change. By developing new ma-
chine learning methods tailored for real-time analysis of large
environmental datasets, TAIAO aims to provide actionable
insights for research, adaptation, and conservation efforts.
Through the TAIAO platform, researchers can collaborate
and access resources, accelerating progress toward achieving
the United Nations Sustainable Development Goals related
to climate action, partnerships for sustainable development,
and environmental conservation. The program’s case stud-
ies demonstrate its real-world impact, showcasing its ability
to provide predictive capabilities for environmental extremes,
improve water quality monitoring, and enhance understand-
ing of ecological processes.
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