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Abstract
Inland water quality monitoring is vital for clean
water access and aquatic ecosystem management.
Remote sensing machine learning models enable
large-scale observations, but are difficult to train
due to data scarcity and variability across many
lakes. Multi-task learning approaches enable learn-
ing of lake differences by learning multiple lake
functions simultaneously. However, they suffer
from a trade-off between parameter efficiency and
the ability to model task differences flexibly, and
struggle to model many diverse lakes with few
samples per task. We propose Multi-Task Hyper-
networks, a novel multi-task learning architecture
which circumvents this trade-off using a shared hy-
pernetwork to generate different network weights
for each task from small task-specific embeddings.
Our approach stands out from existing works by
providing the added capacity to leverage task-level
metadata, such as lake depth and temperature, ex-
plicitly. We show empirically that Multi-Task Hy-
pernetworks outperform existing multi-task learn-
ing architectures for water quality remote sens-
ing and other tabular data problems, and leverages
metadata more effectively than existing methods.

1 Introduction
Inland water quality has deteriorated globally, primarily due
to excessive nutrient loading and global warming, leading to
issues such as harmful algal blooms [Hou et al., 2022]. Water
quality is a critical factor influencing the health of aquatic
ecosystems, the safety of drinking water supplies, and the
sustainability of agriculture and industry. Traditional meth-
ods for monitoring water quality involve in-situ sampling and
laboratory analysis, which are expensive, offer poor spatial
and temporal coverage, and are limited by site accessibility.
Remote sensing provides large-scale, continuous, and non-
invasive observations, motivating research into water qual-
ity remote sensing models [Pahlevan et al., 2020]. Effective
monitoring aligns with the United Nations Sustainable De-
velopment Goals 6 and 14 [United Nations, 2015], aiming
for universal access to clean water and promoting the Leave
No One Behind principle [United Nations, 2016].
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Figure 1: Left: Photo of Algal Bloom, Lake Waikare, New Zealand.
Middle: Satellite image of lake. Right: Water quality estimation.

Remote sensing models aim to estimate chlorophyll-a con-
centration in lakes to use as an indicator of water quality,
given multispectral satellite data that represent water colour
(Figure 1). These models make pixel-level predictions, based
on single-point ground truth samples corresponding to a sin-
gle satellite pixel. This problem is, therefore, formulated
as a regression task with tabular features. Training accurate
models is challenging as datasets contain dozens or hundreds
of lakes with varied relationships between water colour and
chlorophyll-a concentration, due to differences in biological
and geological conditions [Neil et al., 2019]. Furthermore,
training data is scarce due to expensive ground truth labels,
with as few as five data points per lake, motivating data-
efficient methods [Graffeuille et al., 2022].

Multi-Task Learning (MTL) approaches can enable learn-
ing of lake differences, by modelling lake functions as distinct
but related tasks and jointly learning these tasks with knowl-
edge transfer to improve generalisation performance. MTL
neural network architectures can be broadly categorised into
hard parameter sharing and soft parameter sharing [Ruder,
2017]. Hard parameter sharing, which shares most parame-
ters across tasks, offers parameter efficiency but limited flex-
ibility due to a shared feature representation [Long et al.,
2017]. In contrast, soft parameter sharing allows for flexi-
ble representations by learning unique weights for each task,
constrained by mechanisms like regularization, at the cost of
reduced parameter efficiency [Misra et al., 2016]. This high-
lights a trade-off between parameter-efficient task scaling and
learning flexible task networks. As such, MTL approaches
struggle to learn problems with many diverse tasks from few
samples, such as water quality remote sensing. This neces-
sitates the development of MTL architectures which are both
parameter efficient and flexible.

An opportunity to enhance learning for water quality re-
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mote sensing is in auxiliary data sources which describe the
lakes themselves, such as depth, temperature and weather.
These task-level features, which we refer to as metadata,
are informative of the environmental processes within lakes,
indicating that lakes with similar features are likely to be
highly related tasks. For example, a warm, shallow lake is
likely to be similar to another lake of similar characteris-
tics, but different from a cold, deep lake [Yang et al., 2022].
When available, metadata may help the model learn between-
task relationships, particularly as lakes have insufficient data
to accurately learn task relationships implicitly during train-
ing [Zheng et al., 2019; Zamir et al., 2018]. However, ex-
isting MTL algorithms cannot leverage task metadata effec-
tively because they are designed to learn from data only at
the sample level, whereas metadata is task-level data and is
therefore invariant across all samples within a task. This ne-
cessitates the development of MTL architectures that can ef-
fectively leverage metadata to improve learning.

To address these gaps, we propose Multi-Task Hypernet-
works, a novel MTL architecture which learns flexible task
networks with substantially fewer parameters per task than
other soft parameter sharing approaches, and can effectively
leverage task metadata. We achieve this by learning a unique
low-dimensional embedding vector of each task, which cap-
tures task differences and relationships. Our architecture can
generate flexible task networks and enable abstract knowl-
edge transfer using task embeddings as the only task-specific
parameters; in our experiments, we use only ten parameters
per task. This task-level parameter framework also allows us
to naturally inject task metadata into the model.

Our approach accomplishes this by utilising hypernet-
works [Ha et al., 2017] for soft parameter knowledge transfer
across tasks. Notably, this represents the first attempt within
the research area to explore this methodology. Hypernet-
works are neural networks that generate the weights of an-
other neural network. Instead of directly learning the weights
of a “target” network, which models the task of interest, hy-
pernetworks produce them dynamically based on some input.
Our proposed Multi-Task Hypernetwork uses a hypernetwork
to generate a different set of weights for multiple target net-
works which each model a different task. Network weights
for all target networks are generated by the same hypernet-
work, but use task-specific embeddings as input to the hyper-
network to generate entirely distinct weights (Figure 2). The
use of a shared deep hypernetwork enables abstract knowl-
edge transfer between tasks, while the task embeddings cap-
ture task differences and relationships. This is a concep-
tual departure from previous soft parameter sharing methods,
which share knowledge at the parameter level. Additionally,
by inputting metadata to the shared hypernetwork with the
task embedding, the target network weights become a func-
tion of their metadata. This allows our architecture to learn
task relationships and task functions explicitly from task-level
metadata, as well as implicitly by joint task optimisation.

We show that our architecture can improve the accu-
racy of water quality estimation and other tabular MTL
datasets compared to existing approaches, both with and
without available metadata. Code and datasets are available at
https://github.com/OGraffeuille/Multi-Task-Hypernetworks.
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Figure 2: Multi-Task Hypernetwork conceptual diagram.

2 Related Work
2.1 Multi-Task Learning Architectures
Hard sharing MTL architectures [Caruana, 1997; Lopes et
al., 2023] have been adapted to share knowledge in task spe-
cific layers using a tensor normal distribution which learns
task similarities [Long et al., 2017], to learn task differ-
ences in hard sharing layers by learning task masks [Pascal
et al., 2021], to reduce generalisation error with an adversar-
ial loss to encourage similar task latent distributions [Shui et
al., 2019], and to use architecture search [Guo et al., 2020;
Sun et al., 2020]. However, hard sharing approaches have
limited flexibility. Some soft parameter sharing architec-
tures [Liu et al., 2019; Sun et al., 2021] instead transfer
knowledge across tasks by linearly combining intermediate
representations of each task [Misra et al., 2016; Ruder et
al., 2019], or using multiple expert networks [Ma et al.,
2018]. However, these approaches are parameter-inefficient
as they require learning of entire network weights for each
task. Transferring knowledge by factorising model weights
across tasks can improve parameter efficiency but has lim-
ited expressiveness [Yang and Hospedales, 2017]. By instead
transferring knowledge through a deep hypernetwork weight
generator, our approach can learn abstract task relationships
and is substantially more parameter efficient than these archi-
tectures as it only learns a small embedding vector for each
task.

Multi-task learning with metadata. Leveraging natural
language task descriptions has been explored in natural lan-
guage processing [Ye and Ren, 2021; You et al., 2016] and
reinforcement learning [Sodhani et al., 2021]. One prior
study leverages metadata for MTL, by clustering tasks on
their metadata and then modelling task groups with hard pa-
rameter sharing [Zheng et al., 2019]. However, it is incom-
patible with continuous metadata and therefore not applica-
ble to the problem of water quality remote sensing. Further,
this unsupervised metadata approach cannot learn metadata
feature importances, interactions, or relationships with task
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functions, and is limited by its hard parameter sharing archi-
tecture.

Task embeddings. In a setting with many available histor-
ical models, task embeddings are used to select a model for
a new MTL problem [Zhang et al., 2018]. Task embeddings
are also used to condition task-specific decoders [Sun et al.,
2021]; while this approach is limited to dense image predic-
tion tasks, by using a hypernetwork our work is able to con-
dition general network architectures on task embeddings.

2.2 Hypernetworks
Another field of neural architecture research is hypernet-
works, originally introduced as a method to compress model
weights [Ha et al., 2017], but since applied to diverse do-
mains [Littwin and Wolf, 2019; Shamsian et al., 2021].
Transformer-based architectures use hypernetworks to con-
dition task-specific prompts and adapters [Ye and Ren, 2021;
Üstün et al., 2022; Liu et al., 2022].

Hypernetworks can inject model-level information into
deep learning systems, such as our motivation of exploit-
ing task-level metadata. In continual learning, frozen task-
specific embeddings are a memory-efficient way to store pre-
vious task models [von Oswald et al., 2020]. In MTL, hy-
pernetworks can incorporate user-defined task preferences
and compute requirements in a hard parameter sharing ar-
chitecture search [Raychaudhuri et al., 2022], or learn the
pareto front of multi-objective task optimisation [Navon et
al., 2020]. These works generate weights for an entire hard
parameter sharing MTL network conditioned on a model-
level input of interest. In contrast, our work generates the
weights for a single task network conditioned on task fea-
tures, using a hypernetwork as a method for soft parameter
sharing between tasks by generating multiple target networks.

3 Multi-Task Hypernetwork
Problem formulation. We define the multi-task learning
problem as follows. Consider a set of T related tasks
{Tt}Tt=1 = {(Dt, ft)}Tt=1. Each task Tt has a deep learn-
ing function {ft : X 7→ Y}Tt=1, and a set of training
data {Dt}Tt=1 which contains nt training instances Dt =
{xt

i, y
t
i}

nt
i=1 where xt

i ∈ X , yti ∈ Y . The aim of MTL is
to jointly learn each task function {ft}Tt=1 from the training
data of all tasks {Dt}Tt=1.

Metadata. Metadata is data that describes and gives infor-
mation about other data [Zheng et al., 2019]. In the context
of MTL, we define metadata as task-level data, that is, data
describing the tasks themselves. For example, lake attributes
in a problem where each lake is associated with a different
task, or mechanical information about robot arms when mod-
elling each arm’s movements as its own task. Metadata may
come from auxiliary datasets or from domain knowledge. We
note that for some MTL applications, metadata is unavailable
or undefined. Consider the learning of semantic segmenta-
tion and surface normal of an image as a multi-task prob-
lem [Misra et al., 2016]; no relationship between these two
tasks exists which can be expressed with task-level features.

Problem formulation with metadata. When metadata is
available, we modify the multi-task learning problem for-
mulation as follows. Each task Tt additionally has an as-
sociated metadata feature vector mt of size dm, such that
Tt = (Dt,mt, ft). The aim of MTL with metadata is
therefore to jointly learn the task functions {ft}Tt=1 from the
metadata {mt}Tt=1 as well as from the task training data
{Dt}Tt=1. When metadata is unavailable, we use the origi-
nal MTL problem formulation. If this metadata feature vec-
tor is informative with regards to task functions, leveraging
this additional source of knowledge may improve the per-
formance of MTL models. However, current approaches are
not designed to effectively leverage metadata. A naive ap-
proach to learn from metadata with existing techniques would
be to append it as supplementary features to training data
{x̂t

i}
nt
i=1 = {(xt

i,mt)}nt
i=1. This may not be an effective way

to exploit this data as the appended features are constant for
all data within a task.

3.1 Method Overview
The foundation of our MTL architecture is a hypernetwork
h, which is shared by all tasks. The network weights θt of
target function ft are not trained directly. Instead, they are
generated by h according to θt = h(et), where et is a de
dimensional embedding vector associated with task t.

The hypernetwork generates the weights for each task’s tar-
get network. Task-specific embeddings provide the flexibility
for the hypernetwork to generate different weights for each
target network. The learnt embeddings are a low-dimensional
representations of target functions, allowing our model to ef-
ficiently learn task similarities and relationships.

Multi-Task Hypernetworks are therefore parameterised by
the weights θh that define h, and T task-specific embedding
vectors {et}Tt=1. Most model parameters are shared between
all tasks since |θh| ≫ Tde. Despite this, our approach is best
classified as soft parameter sharing, as the target networks are
generated with flexible weights at all network layers. To per-
form inference on task t, we compute the weights of ft with
h then predict x with ft. This is performed for all tasks in
parallel. During training, loss gradients are backpropagated
through the target networks, then pass through the hypernet-
work weights and task embeddings, such that the entire ar-
chitecture can be trained directly with any gradient optimizer.
Task embeddings are trained identically to other parameters.

When metadata mt is available, Multi-Task Hypernet-
works can naturally leverage it by appending it to the task
embeddings as input to the hypernetwork θt = h(et,mt).
Unlike task embeddings, metadata are treated as constants
and are frozen during training. Considering that task-specific
embeddings allow Multi-Task Hypernetworks to learn task
differences and relationships, by appending static metadata
to the embeddings, the metadata acts as pre-learnt embedding
priors from an auxiliary source. Including informative meta-
data may therefore improve the model’s ability to learn task
relationships. Further, under the hypernetwork framework,
the weights that define a task’s target network are a function
of that task’s metadata. As our model is trained with metadata
over multiple tasks, the hypernetwork will directly learn the
relationship between the metadata and the task functions. Our
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Figure 3: Multi-Task Hypernetwork architecture for a single task.
The input to the hypernetwork (task embeddings and optionally task
metadata) passes through the hypernetwork feature extractor layers.
The resulting dh dimensional latent vector passes through the hy-
pernetwork weight generator layers to generate the target network
weights. The weight generator layers use compressed weight ten-
sors to reduce model parameters. The target network then makes
predictions for that task.

architecture is therefore able to leverage metadata in learning
both task relationships and task functions explicitly.

3.2 Hypernetwork Architecture
The hypernetwork maps from a low-dimensional input task
embedding (and optionally task metadata) to the weight ma-
trices that define a task network. Our hypernetwork archi-
tecture, displayed in Figure 3, achieves this with two compo-
nents: a feature extractor and a weight generator.

To model the water quality remote sensing problem, the
hypernetwork architecture described in this section gener-
ates linear target networks. Our approach can model differ-
ent target network architectures by modifying the hypernet-
work weight generator to instead generate different weight
tensors, such as the convolutional layer generation in the
original hypernetwork implementation [Ha et al., 2017]. We
note that hypernetworks are used for efficient weight genera-
tion of various target network architectures [Ha et al., 2017;
Lin et al., 2020; Ye and Ren, 2021], indicating that our ap-
proach would be viable in diverse settings.

The hypernetwork takes as input a task embedding (and
optionally task metadata) of dimension de (or de + dm). The
feature extractor is a feedforward neural network with lh lin-
ear layers of dh neurons, allowing our model to learn abstract
representations of task embeddings and metadata. Similarly
to features in a typical neural network, metadata is normalised
to unit mean and variance.

The weight generator consists of linear layers mapping
from the resulting dh dimensional latent space to weight ma-
trices which each define a layer in the target network. Let
layer n of the target network be a linear layer with dnin in-
puts and dnout outputs. This layer has a weight matrix of size
dnin×dnout and a bias of size dnout, for a total of (dnin+1)×dnout
parameters. For simplicity, let dn∗in = dnin + 1, such that
layer n has dn∗in × dnout parameters. To generate these pa-
rameters, the hypernetwork requires a linear mapping from

dh to dn∗in × dnout. This can be achieved with a hypernetwork
weight matrix W of size dh × dn∗in × dnout and a bias b of
size dn∗in × dnout. However, W contains dh times as many pa-
rameters as the target network layer, which is generally pro-
hibitively large.
Weight compression. To reduce the number of parameters
in the hypernetwork weight generator, we implement a simple
tensor compression technique for hypernetworks generating
linear layers. This technique is analogous to the convolution
chunking technique in the original hypernetwork implemen-
tation [Ha et al., 2017]. Instead of learning W directly, we
learn three smaller weight matrices, WA,WB ,WC , of size
dh × dn∗in , dh × dnout, d

n∗
in × dnout respectively. These matrices

expand into W as follows: W ijk = WA
ijW

B
ikW

C
jk. This

weight compression substantially reduces the total number
of model parameters while remaining trainable via standard
backpropagation. These three matrices each learn interaction
terms between two of the three dimensions of W : task fea-
tures, target network layer input features and target network
layer output features.
Complexity. The total number of parameters in our Multi-
Task Hypernetwork is given by:

P = (de + dm + dh(lh − 1))(dh + 1)︸ ︷︷ ︸
hypernetwork feature extractor

+
∑lt

i=1

(
2di∗ind

i
out + dhd

i∗
in + dhd

i
out

)︸ ︷︷ ︸
hypernetwork weight generator

+ Tde︸︷︷︸
task embeddings

where lt is the number of layers in the target network. Note
that a single target network has

∑lt
i=1 d

i∗
ind

i
out total parame-

ters, or half of the first term representing the hypernetwork
weight generator parameters. Despite having more parame-
ters than a single target network, the hypernetwork weights
are shared for all tasks, such that our approach requires only
de additional parameters per task. This is substantially fewer
than other soft parameter sharing MTL architectures, and in
practice, our method has fewer parameters when modelling
more than a few tasks. An experimental analysis of compu-
tational complexity validates that our method is suitable for
training large target networks, but is omitted due to space con-
straints.

4 Experiments
We evaluate the effectiveness of our approach by comparing
its performance to baseline methods, in the typical MTL set-
ting without metadata, and with metadata. We include meta-
data in baseline methods naively as described in Section 3.
Experimental setup. Experiments were repeated across 50
seeds for each combination of hyperparameters. Data was
partitioned into training, validation, and test sets in a 60/20/20
ratio. Performance on the validation set was used for hyper-
parameter selection and early stopping. Hyperparameter se-
lection was performed independently with and without meta-
data. Regarding general hyperparameters, all methods used
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Dataset N T Task represents Data features Data label Task metadata

Water Quality 796 88 a lake multispectral lake
colour (D = 16)

concentration of
chlorophyll-a (D = 1)

features of lake
e.g. depth, weather (D = 11)

Cubic 200 20 a cubic function x
(D = 1)

y
(D = 1)

polynomial coefficients
i.e. a, b, c, d (D = 4)

Algorithms 422 24 an ML algorithm dataset statistics
(D = 11)

performance on
dataset (D = 1)

algorithm labels
e.g. is tree, is kernel (D = 8)

Robot Arm 400 20 a robot arm arm end position
(D = 2)

arm joint angles
(D = 3)

arm joint lengths
(D = 3)

Table 1: Summary of datasets used in experiments. N represents total training instances, D represents data dimensionality. All datasets other
than Water Quality have equal task sizes.

the learning rate η ∈ {10p|p = −3,−3.5,−4,−4.5} and
random batches of size 64. All models used a network ar-
chitecture of three fully connected layers of 32 neurons with
ReLU activations. We empirically found that networks of
this size had sufficient representation capacity to effectively
model the test datasets. Regarding Multi-Task Hypernetwork
hyperparameters, we tuned the number of layers in the hyper-
network feature extractor lh ∈ {0, 1, 2} where each layer had
32 neurons with ReLU activations. Task embeddings used
de = 10 parameters and were initialised with a uniform dis-
tribution and variance 1, using identical initialisations across
tasks. All experiments are implemented in PyTorch with a
GeForce RTX 3080 GPU.
Water Quality dataset. This dataset was produced in col-
laboration with local council. We combined the GLORIA
dataset for hyperspectral remote sensing reflectance measure-
ments and co-located water quality attributes [Lehmann et al.,
2023] with the LakesATLAS dataset for global lake attribute
data [Lehner et al., 2022]. Lakes with at least five data points
were included, resulting in 88 diverse lakes spanning glacial,
riverine, volcanic origins, and artificial reservoirs, with mean
chlorophyll-a concentrations ranging 0.7 to 290 mg/m3.
Other datasets. To analyse the general effectiveness of our
approach, we include three additional multi-task tabular re-
gression datasets with metadata and limited data instances
(Table 1). Cubic is a synthetic dataset which we design to
have a simple and complete relationship between task meta-
data and the task functions. Each task is a third order 1D poly-
nomial defined over x ∈ [−1, 1] with random coefficients,
where the goal is to estimate y given x. Polynomial coef-
ficients are task metadata. The Algorithms dataset [Brazdil
et al., 1994] aims to estimate the performance of traditional
ML algorithms on datasets, given dataset summary statistics,
where each algorithm is a task. Metadata is not from auxil-
iary sources but manually constructed from domain knowl-
edge by naively categorising algorithms across binary labels
e.g. “is tree”, “is kernel”. The Robot Arm dataset [Duka,
2014] aims to estimate robot arm joint angles given the end
arm position. Each task is highly nonlinear and represents an
arm with different joint lengths, which are the task metadata.
Baseline methods. We include Hard sharing [Caruana,
1997], MRN (Multilinear Relational Networks) [Long et al.,
2017], MaxRoam (Maximum Roaming Networks) [Pascal et
al., 2021], Cross-stitch networks [Misra et al., 2016], Sluice
networks [Ruder et al., 2019], DMTRL (Deep Multi-Task

Representation Learning) [Yang and Hospedales, 2017]. Re-
garding traditional approaches, STL-naive is a single task
learning network with no task information. STL is a sin-
gle task learning network which is given task information
to learn task differences, as metadata if available or as one-
hot task embeddings otherwise. We exclude methods which
use domain-specific components rendering them incompati-
ble with tabular problems, from computer vision [Liu et al.,
2022; Sun et al., 2021; Liu et al., 2019; Bhattacharjee et
al., 2022; Lopes et al., 2023] and natural language process-
ing [Tay et al., 2021; Üstün et al., 2022; Ye and Ren, 2021].

4.1 Overall Performance
Results are displayed in Table 2 as mean ± standard error. To
estimate the overall difference in performance between the
methods for all datasets, we use a Friedman test with Ne-
menyi post-hoc test on the results, displayed in Figure 4.

Without metadata. On the Water Quality dataset, Multi-
Task Hypernetworks achieve RMSE 20% lower than all other
methods. STL achieved the second lowest RMSE, indicating
that other MTL algorithms struggle to model problems with
many diverse tasks, and highlighting the benefits of model
flexibility and parameter efficiency for this application. In
this setting, our approach also achieves the lowest RMSE
for Algorithms and Robot Arm. The Friedman-Nemenyi test
shows that overall, our method outperforms all baseline meth-
ods other than Sluice networks on these datasets, indicating
that our architecture can outperform many existing MTL ar-
chitectures in this setting.

With metadata. Multi-Task Hypernetworks again outper-
form other methods by 20% on Water Quality. Overall, prac-
titioners using our algorithm and leveraging lake metadata
can substantially increase the accuracy of their chlorophyll-a
estimations compared to existing modelling approaches. Our
approach also achieves the lowest RMSE for all datasets. The
Friedman-Nemenyi test shows that overall, our method sub-
stantially outperforms all baseline methods. Interestingly, de-
spite not being designed for multi-task problems, STL overall
outperforms all the multi-task learning methods except sluice
networks. This indicates that current MTL architectures are
not able to leverage metadata effectively.

Effects of Metadata
To analyse the impact of metadata on model performance, we
consider the completeness, noisiness and complexity of the
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Method Water Quality Cubic Algorithms Robot Arm Pavg

No Metadata

STL-naive 0.521 ± 0.007 0.624 ± 0.001 1.950 ± 0.062 0.559 ± 0.001 2.5k
STL 0.512 ± 0.010 0.132 ± 0.007 1.465 ± 0.045 0.547 ± 0.002 3.7k
Hard sharing 0.851 ± 0.041 0.040 ± 0.002 1.553 ± 0.052 0.596 ± 0.004 4.0k
MRN 0.911 ± 0.045 0.053 ± 0.003 1.488 ± 0.052 0.565 ± 0.003 7.3k
MaxRoam 0.783 ± 0.042 0.036 ± 0.002 1.505 ± 0.051 0.585 ± 0.004 9.2k
Cross-stitch 0.554 ± 0.020 0.057 ± 0.005 1.387 ± 0.049 0.624 ± 0.001 105.5k
Sluice 0.534 ± 0.018 0.064 ± 0.007 1.447 ± 0.052 0.540 ± 0.003 126.0k
DMTRL 0.535 ± 0.017 0.038 ± 0.001 1.342 ± 0.044 0.625 ± 0.001 20.0k
MT Hypernet (ours) 0.411 ± 0.004 0.122 ± 0.008 1.397 ± 0.048 0.485 ± 0.002 10.1k

Metadata

STL 0.489 ± 0.008 0.030 ± 0.001 1.607 ± 0.049 0.469 ± 0.002 2.7k
Hard sharing 0.973 ± 0.045 0.034 ± 0.001 1.520 ± 0.050 0.598 ± 0.004 4.2k
MRN 0.938 ± 0.056 0.041 ± 0.003 1.479 ± 0.055 0.575 ± 0.005 7.6k
MaxRoam 0.781 ± 0.031 0.036 ± 0.001 1.489 ± 0.048 0.589 ± 0.003 9.5k
Cross-stitch 0.543 ± 0.015 0.032 ± 0.001 1.325 ± 0.045 0.624 ± 0.001 115.9k
Sluice 0.559 ± 0.020 0.038 ± 0.003 1.403 ± 0.049 0.546 ± 0.005 136.4k
DMTRL 0.560 ± 0.016 0.034 ± 0.001 1.344 ± 0.046 0.630 ± 0.001 16.0k
MT Hypernet (ours) 0.395 ± 0.004 0.023 ± 0.000 1.307 ± 0.046 0.467 ± 0.001 14.4k

Improvement

STL 0.023 ± 0.012 0.102 ± 0.007 -0.142 ± 0.033 0.078 ± 0.002 -
Hard sharing -0.122 ± 0.051 0.006 ± 0.001 0.033 ± 0.036 -0.001 ± 0.004 -
MRN -0.026 ± 0.065 0.012 ± 0.002 0.009 ± 0.024 -0.010 ± 0.004 -
MaxRoam 0.002 ± 0.049 0.001 ± 0.001 0.015 ± 0.021 -0.004 ± 0.003 -
Cross-stitch 0.011 ± 0.020 0.024 ± 0.005 0.062 ± 0.021 0.000 ± 0.001 -
Sluice -0.026 ± 0.018 0.027 ± 0.006 0.043 ± 0.020 -0.006 ± 0.003 -
DMTRL -0.025 ± 0.017 0.004 ± 0.001 -0.002 ± 0.026 -0.005 ± 0.001 -
MT Hypernet (ours) 0.015 ± 0.005 0.099 ± 0.008 0.090 ± 0.028 0.019 ± 0.001 -

Table 2: Average task performance (RMSE) of our approach and baseline methods: with metadata, without metadata, and improvement in
performance (reduction in RMSE) from using metadata. Pavg represents the average number of network parameters across the four datasets
with optimal hyperparameters, displayed in thousands.
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Figure 4: Critical difference diagram for Nemenyi significance test on all datasets. A higher score indicates better overall performance.

metadata. The metadata of the Water Quality dataset are in-
sufficient to entirely represent lake task functions, as lakes
have many bio-geo-optical factors which cannot be entirely
represented by 11 features, so we describe this metadata as
incomplete. The metadata is sensor data, and hence contains
noise. The metadata is also complicated, as these metadata
features have abstract interactions. We observe that this meta-
data improves the performance of Multi-Task Hypernetworks
and STL, but not other methods. This indicates that our ap-
proach can extract knowledge even from complex metadata,
whereas other MTL approaches cannot.

Regarding the Cubic dataset, the metadata is complete as
the metadata features define the task functions, is generated
without noise, and is simple since features represent coeffi-
cients which are linearly related to the task function. We ob-
serve that this straightforward metadata improves the perfor-
mance of all methods except MaxRoam, but that Multi-Task
Hypernetworks outperform other methods by 25%. Robot
Arm metadata is also complete and generated noiselessly,
but is complicated, as the relationship between the robot arm
lengths and the task functions is highly nonlinear. Similar
to Water Quality, we observe that this complicated meta-

data only improves the performance of Multi-Task Hyper-
networks and STL, further indicating that our approach can
extract knowledge from complex metadata while other MTL
approaches cannot. Algorithms metadata is manually labelled
and therefore noiseless. It is simple, but incomplete as algo-
rithm outcomes cannot be entirely represented by high-level
categorical descriptions. Despite this, metadata improves the
performance of Multi-Task Hypernetworks, Cross-stitch and
Sluice networks. This demonstrates the utility of metadata in
enhancing model performance, even when naively labelled.

Model parameters. In our experiments, our architecture
has fewer network parameters than other soft sharing ap-
proaches of equal capacity, with an order of magnitude fewer
parameters than Cross-stitch and Sluice networks, and fewer
than DMTRL despite this method being designed to minimise
network parameters.

4.2 Ablation Study
We carry out an ablation study to provide insight into the con-
tributions of the different components in our architecture with
and without metadata, displayed in Table 3.
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Method Water Quality Cubic Algorithms Robot Arm
N

on
e MT Hypernet 0.411±0.004 0.122±0.008 1.421±0.040 0.485±0.002

no compression 0.493±0.007 0.103±0.013 1.555±0.052 0.656±0.014
no feature extractor 0.413±0.005 0.122±0.008 1.421±0.040 0.485±0.002

M
et

ad
at

a

MT Hypernet 0.395±0.004 0.023±0.000 1.322±0.040 0.467±0.001
no compression 0.619±0.024 0.025±0.001 1.935±0.058 0.528±0.003
no feature extractor 0.470±0.007 0.023±0.000 1.342±0.034 0.474±0.002
no embeddings 0.434±0.006 0.024±0.000 1.460±0.046 0.467±0.001
random metadata 0.406±0.006 0.066±0.004 1.506±0.050 0.517±0.005

Table 3: Ablation study of Multi-Task Hypernetworks (RMSE).

Weight matrix compression reduces overparameterisa-
tion. Using full-sized weight matrices in the hypernetwork
weight generator without the matrix compression technique
described in Section 3.2 substantially reduces performance
for all datasets except Cubic without metadata. Without com-
pression, our architecture has many more parameters and is
more flexible, indicating that the weight matrix compression
reduces overparameterisation and increases generalisability.

Feature extractor learns metadata representations. Re-
moving the feature extractor layers from the hypernetwork
decreases performance for Water Quality and Robot Arm
with metadata. This may be because these datasets have com-
plicated metadata, and so benefit from a non-linear feature
extractor to learn abstract metadata representations. Datasets
with simple metadata, or with learnt task embeddings but no
metadata, may not benefit from this deep learning compo-
nent. An optimal Multi-Task Hypernetwork architecture for
each dataset can be found by tuning the depth of the feature
extractor lh, as is done in experiments in Section 4.1.

Task embeddings provide flexibility. Using only meta-
data as input to the hypernetwork without task-specific em-
beddings decreases performance in all datasets except Robot
Arm. This may be because trainable embeddings give the hy-
pernetwork degrees of freedom between tasks, to learn task
relationships and differences more flexibly than with only
static metadata. As Robot Arm has complete metadata which
captures all task differences, this dataset may not require the
additional flexibility from learnable task embeddings. We ex-
perimentally demonstrate that task embeddings learn “mean-
ingful” task representations which are predictive of task-level
knowledge, but omit this due to space constraints.

Metadata is informative. Randomising metadata by in-
dependently shuffling metadata features between tasks de-
creases performance in all datasets, indicating that our archi-
tecture can extract knowledge from informative metadata.

Dataset size affects metadata performance gain. The re-
lationship between dataset size and the benefits of leverag-
ing metadata is examined through sensitivity analysis on Cu-
bic and Robot Arm datasets, which can be produced in var-
ious sizes. We vary the number of training instances per
task (Figure 5) and the number of tasks in each dataset (Fig-
ure 6). Increasing the number of training instances per task
decreases the gain in performance from leveraging metadata.
Intuitively, as the task size increases, the model is better able
to learn task functions and relationships implicitly from joint
optimisation without metadata. This indicates that metadata
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Figure 5: Multi-Task Hypernetwork performance vs. training in-
stances per task with and without metadata.
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Figure 6: Multi-Task Hypernetwork performance vs. number of
tasks for datasets with and without metadata.

is most useful for small datasets. Increasing the number of
tasks increases the gain in performance from leveraging meta-
data for Robot Arm and for Cubic with fewer than ten tasks.
Intuitively, more tasks provide the hypernetwork with more
metadata samples to learn the relationship between meta-
data and task functions. Cubic, with simpler metadata, may
need fewer tasks to learn this relationship, while the complex
Robot Arm metadata benefits from more tasks.

5 Conclusion
We propose Multi-Task Hypernetworks, a novel architecture
for multi-task learning, which learns flexible task functions
with fewer parameters than existing soft parameter sharing
approaches. We formalise task-level data, called metadata,
into the MTL problem. Uniquely, our architecture can lever-
age metadata to learn task functions and relationships explic-
itly. We reveal the potential for metadata to enhance perfor-
mance on MTL problems, particularly with few data samples,
but show that existing methods cannot effectively leverage
it. We show that our architecture is effective for multi-task
learning and effectively extracts knowledge from informa-
tive metadata. Our approach substantially improves the accu-
racy of remote sensing water quality estimation, a challeng-
ing problem which contains many diverse tasks with few sam-
ples, enabling more accurate global water monitoring without
additional expensive data collection. A limitation of our work
is the current lack of understanding on evaluating whether
metadata will improve learning. Future research could ex-
plore the potential of transfer learning to lakes with no train-
ing data, generating task networks from metadata alone.
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Émile Robitaille, Boyu Wang, and Christian Gagné. A
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