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Abstract
The escalating prevalence of cannabis use, and as-
sociated cannabis-use disorder (CUD), poses a sig-
nificant public health challenge globally. With
a notably wide treatment gap, especially among
emerging adults (EAs; ages 18-25), addressing
cannabis use and CUD remains a pivotal objec-
tive within the 2030 United Nations Agenda for
Sustainable Development Goals (SDG). In this
work, we develop an online reinforcement learn-
ing (RL) algorithm called reBandit which will be
utilized in a mobile health study to deliver per-
sonalized mobile health interventions aimed at re-
ducing cannabis use among EAs. reBandit utilizes
random effects and informative Bayesian priors to
learn quickly and efficiently in noisy mobile health
environments. Moreover, reBandit employs Em-
pirical Bayes and optimization techniques to au-
tonomously update its hyper-parameters online. To
evaluate the performance of our algorithm, we con-
struct a simulation testbed using data from a prior
study, and compare against commonly used algo-
rithms in mobile health studies. We show that
reBandit performs equally well or better than all
the baseline algorithms, and the performance gap
widens as population heterogeneity increases in the
simulation environment, proving its adeptness to
adapt to diverse population of study participants.

1 Introduction & Motivation
Addressing at-risk substance use, including cannabis use, is
a pivotal objective within the 2030 UN Agenda for Sustain-
able Development Goals (SDG)1. Within this agenda, SDG
3 focuses on ensuring healthy lives and well-being across the
lifespan, yet, increasing use of cannabis, third in global preva-
lence after alcohol and nicotine, threatens this goal [Pea-
cock et al., 2018]. Hence, as highlighted in target 3.5 of
the agenda, strengthening the prevention and treatment of

1https://sdgs.un.org/2030agenda

cannabis use and cannabis use disorder (CUD) is crucial. Un-
fortunately, this coincides with a decreased public perception
of the risks associated with cannabis use, likely influenced
by ongoing decriminalization efforts and greater access to
cannabis products [Carliner et al., 2017], further worsened
by one of the largest treatment gaps of any medical condi-
tion, with one study showing only 5% of those with CUD
receiving treatment [Lapham et al., 2019].

In the US, the prevalence of cannabis use is highest among
emerging adults (EAs; age 18-25) [SAMHSA, 2023], mark-
ing it as a significant concern within the growing landscape of
cannabis use. Particularly worrisome is the fact that early ini-
tiation of cannabis use links to an array of physical and mental
health repercussions, as well as escalated risk for developing
CUD [Volkow et al., 2014; Hall, 2009; Chan et al., 2021;
Hasin et al., 2016]. Given that cannabis use frequently com-
mences during adolescence and peaks in emerging adulthood,
this is a critical developmental period for early intervention
strategies to prevent transitions into CUD.

Mobile health technologies, such as health apps and sen-
sors, can potentially serve as support tools to help individuals
manage their cannabis use. Using these tools, individuals can
track their cannabis consumption, receive personalized inter-
ventions, and provide objective data for early detection of is-
sues. These technologies enable the delivery of just-in-time
adaptive interventions (JITAIs) [Nahum-Shani et al., 2018],
which leverage rapidly changing information about a person’s
state and context to decide whether and how to intervene in
daily life. JITAIs have been successful for many domains of
behavioral health [Jaimes et al., 2015; Clarke et al., 2017;
Golbus et al., 2021], whilst JITAIs for cannabis use among
EAs are currently lacking evidence despite promising early
data [Shrier et al., 2018].

In this work, we develop an RL algorithm called reBan-
dit which will be utilized in the MiWaves pilot study (Sec-
tion 1.1). MiWaves focuses on developing a JITAI for reduc-
ing cannabis use among emerging adults (EAs) (ages 18-25).
This JITAI leverages reBandit to determine the likelihood of
delivering an intervention message.
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1.1 MiWaves Pilot Study
The MiWaves pilot study focuses on developing a personal-
izing Just-In-Time Adaptive Intervention (pJITAI), namely a
JITAI that integrates an RL algorithm. In this study, EAs are
randomized to receive a mobile-based intervention message
or no message, twice daily. The RL algorithm is designed
to learn from a participant’s history, and personalize the like-
lihood of intervention delivery based on a participant’s cur-
rent context. By combining technology, behavioral science,
and data-driven decision-making, MiWaves aims to empower
emerging adults with the digital tools to help reduce their
cannabis use. The MiWaves pilot study has been registered
on ClinicalTrials.gov (NCT05824754), and is scheduled to
start in March 2024. Figure 1 provides a visual overview of
the MiWaves pilot study.

1.2 Challenges, Contributions and Overview
Deploying RL algorithms in mHealth studies like MiWaves
present a multitude of challenges that must be addressed,
which include:
C1 Limited Data: Many sequential decision making prob-

lems in mHealth involve scarce data, forcing RL algo-
rithms to learn and perform well under strict data con-
straints [Trella et al., 2022].

C2 After-study analysis and evaluation: The RL algo-
rithms deployed in mHealth studies need to be devel-
oped in a way to facilitate after-study analysis and off-
policy evaluation.

C3 Autonomy and Stability: The intervention protocol in
clinical studies is pre-specified. Since the RL algorithm
is part of the intervention, scientists do not have the flex-
ibility to change the RL algorithm while the study is run-
ning. RL algorithms must exhibit robustness in the face
of noisy data, ensuring consistent and reliable perfor-
mance throughout the study [Trella et al., 2022].

C4 Explainability: It is imperative that RL algorithms are
interpretable and comprehensible to behavioral scien-
tists and medical professionals to enhance their ability
to critique RL performance and to enhance the possibil-
ity of larger scale implementation.

C5 Delayed Effects: In mobile health studies, each inter-
vention message sent to the user has a delayed effect.
Users may perceive burden upon receiving an interven-
tion message, which influences their future behavior.

C6 Reproducibility: Any algorithm used as part of the in-
tervention in a clinical study needs to be reproducible in
order for health scientists to evaluate and implement the
intervention package in practice. Hence, the decisions
taken by the RL algorithm must be reproducible, allow-
ing for scrutiny and verification of their effectiveness.

To that end, we introduce reBandit, an online RL algorithm
which utilizes random effects to address the challenges men-
tioned above. When used as part of an RL algorithm, random
effects allow the algorithm to learn quickly and efficiently by
making use of other participant’s data in the population while
simultaneously personalizing treatment for a given partici-
pant. Moreover, reBandit employs an informative Bayesian

prior formulated from pre-existing data to act as a warm-
start. Carefully designed priors incorporate previous (do-
main) knowledge, which help algorithms learn quickly and
efficiently. Both random effects and informative priors can
help reBandit to tackle challenge C1.

The most commonly used RL algorithms in mHealth set-
tings are bandit algorithms. In mHealth settings, predictions
of the value of next state (eg. using [Jiang et al., 2015]) can
be very noisy. Bandit algorithms are, thus, preferred due to
their performance in such noisy environments. Moreover,
they are computationally less complex, and hence are able
to run stably and reliably in an online environment. Further,
linear models are often considered interpretable due to their
simplicity of representing the role of various factors, and can
also be stably updated. reBandit utilizes both these concepts
- it uses a bandit framework, along with a linear model (with
random effects) to model the reward. We derive the formula
to update reBandit’s parameters and hyper-parameters online
(Sec 4.1). We show that we are able to autonomously update
these parameters and hyper-parameters within a reasonable
time-limit in an online environment. Moreover, to facilitate
after-study analysis, we utilize a smooth variant of posterior
sampling, and clip the probabilities of taking an action (Sec
4.2). This way, reBandit is able to overcome challenges C2,
C3 and C4.

To address delayed effects (C5), one can use RL algorithms
to model a full Markov Decision Process (MDP). However,
in mobile health settings, such approaches are not feasible
due to limited data and noisy outcomes [Trella et al., 2023].
On the other hand, the classical bandit framework alone is
also insufficient, as it is designed to optimize for immediate
reward, and thus, cannot account for the delayed effects of
actions. To that end, we engineer the reward used to update
reBandit’s parameters and hyper-parameters (Sec 4.3), to ac-
count for delayed effects of actions.

Finally, to tackle challenge C6, we have made our imple-
mentation of reBandit publicly available 2 To ensure repro-
ducibility, we employ a seeded pseudo-random number gen-
erator to make every stochastic decision in reBandit. Addi-
tionally, all intermediate results and values used to make deci-
sions are programatically stored in a database for reproducing
the results obtained during any run of the algorithm.

2 RL Framework and Notation
This section provides a brief overview of the Reinforcement
Learning (RL) [Sutton and Barto, 2018] setup used in this
work, and the specifics of the RL setup with respect to the
MiWaves pilot study.

We approximate the pilot study environment as a bandit
environment. We represent it as a Markov Decision Process
(MDP) where in the RL algorithm (eg. the mobile app) in-
teracts with the environment (eg. the user). The MDP is
specified by the tuple ⟨S,A, r, P, T ⟩, where S is the state-
space of the algorithm, A is the action-space, r(s, a) is the
reward function defined for a given state s ∈ S and action
a ∈ A, P (s, a, s′) is the transition function for a given state

2https://github.com/StatisticalReinforcementLearningLab/
miwaves rl service

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)
Special Track on AI for Good

7279

https://github.com/StatisticalReinforcementLearningLab/miwaves_rl_service
https://github.com/StatisticalReinforcementLearningLab/miwaves_rl_service


Figure 1: Summary of the MiWaves pilot study. m = 120 EAs are expected to be recruited through social media ads. Each EA will be in
the trial for 30 days, and will be asked to self-report twice daily - once in the morning and once in the evening. Upon completion or time
expiration of the self-reporting, the RL algorithm will decide whether to send or not send an intervention message.

s ∈ S , action a ∈ A and next state s′ ∈ S , and T is the
total number of decision times. A user trajectory is given by
H(T+1)

i = {S(t), a(t), R(t)}Tt=1, where S(t) denotes the state
at decision time t, a(t) the action assigned by the RL algo-
rithm at time t, and R(t) the reward collected after selection
of the action. In the case of MiWaves we have:
Actions Binary action space, i.e. A = {0, 1} - to not send
(0) or to send (1) an intervention message.
Decision points T decision points per user. The study is
set to run for D = 30 days, and each day is supposed to have
2 decision points per day. Therefore, we expect to have 60
decision points per user, i.e. T = 60.
Reward We denote the reward for user i at decision time t
by R

(t)
i . For the MiWaves pilot study, we have discrete re-

wards {0, 1, 2, 3}, which increase linearly with user engage-
ment. We utilize engagement as our reward because engage-
ment is critical to assess effectiveness of interventions after
the study is over [Nahum-Shani et al., 2022].
States Let us denote the state observation of the user i at
decision time t as S(t)

i . A given state S = (S1, S2, S3) is de-
fined as a 3-tuple of the following binary variables (omitting
the user and time index for brevity):

• S1: Recent engagement - set to 1 if the average of past
3 observed rewards is greater than or equal to 2 (high
engagement), and set to 0 otherwise (low engagement).
At decision point t = 1, we set S1 to 0, as there is no
engagement by the user at the start of the pilot study.

• S2: Time of day of the decision point - Morning (0) vs.
Evening (1).

• S3: Recent cannabis use - set to 0 if the participant re-
ported using cannabis during their self-monitoring, and
1 otherwise. If the user fails to self-report, we set S3

to be 0 because we expect the participant in the Mi-
Waves pilot study to be using cannabis regularly (at least
3 times a week).

Overall, we represent the favorable states as 1 (not using
cannabis, high engagement), and the unfavorable states as 0
(using cannabis, low engagement).
Number of users We expect m = 120 users to participate
during the RL-powered MiWaves pilot study.

3 Related Work
Random effects (and mixed-effects) models have been well-
studied in the statistical literature [Laird, 2004; Laird and
Ware, 1982; Robinson, 1991], mainly in the context of batch
data analysis. Mixed-effects models comprise of fixed and
random effects - hence termed mixed effects. Laird and Ware
introduce the notion of random-effects models for longitu-
dinal data, and describe an unified approach to fitting such
models using empirical Bayes and maximum likelihood esti-
mation using EM algorithm. Our work (which is in context
of streaming / real-time data) draws inspiration from Laird
and Ware to extend random-effects based models to real-time
decision making through RL in sequential decision making
problems.

There has been a myriad of works in optimizing inter-
vention delivery in mHealth settings in recent years [Gol-
bus et al., 2021; Kramer et al., 2019; Rabbi et al., 2019;
Trella et al., 2022; Walsh and Groarke, 2019]. Bandit al-
gorithms are the most commonly used RL algorithms used in
such high stakes online settings [Langford and Zhang, 2007;
Tewari and Murphy, 2017; Wang et al., 2005] due to their
simplicity and stability, and ability to perform in noisy en-
vironments. Such algorithms have mainly used one of two
approaches. The first approach is person specific (a.k.a.
fully personalized) [Forman et al., 2019; Jaimes et al., 2015;
Liao et al., 2019; Rabbi et al., 2015] where a separate model
is deployed for each user in the trial. This approach is
suitable when the population of users are highly heteroge-
neous, but suffers greatly when data is scarce and/or noisy.
Note that fully personalized approaches are not feasible for
the MiWaves pilot study, due to scarce data (the study runs
for only 30 days). The second approach completely pools
data (a.k.a. fully pooled) across all users in the population
[Clarke et al., 2017; Paredes et al., 2014; Trella et al., 2022;
Yom-Tov et al., 2017; Zhou et al., 2018]. Our algorithm,
reBandit, strikes a balance between the two approaches - it
adaptively pools data across users depending on the degree
of heterogeneity in the population. Section 4.1 describes how
we achieve that balance using random effects.

Tomkins et al. also use random effects in their Thompson-
Sampling [Russo and Van Roy, 2014; Thompson, 1933] con-
textual bandit algorithm [Li et al., 2010], IntelligentPooling.
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IntelligentPooling updates its hyper-parameters by modeling
the problem as a Gaussian Process (GP). However, Intelli-
gentPooling fails to run autonomously and stably in an online
environment (does not overcome C3) 3. Here we deal with
this problem by updating the hyper-parameters in reBandit
using empirical Bayes (similar to [Laird and Ware, 1982]),
and solve the optimization problem using projected gradient
descent. reBandit runs autonomously and stably in an online
environment while also having more users (12x) and more
features (8x) as compared to the environment described in In-
telligentPooling.

Recently, various approaches have been explored regard-
ing the application of mixed effects models within a bandit
framework [Zhu and Kveton, 2022a; Zhu and Kveton, 2022b;
Aouali et al., 2023]. However, these works primarily focus
on utilizing mixed effects to capture the dependence and het-
erogeneity of rewards associated with different actions, rather
than addressing the similarity and heterogeneity among mul-
tiple users. For example, [Zhu and Kveton, 2022a] consider a
(non-contextual) multi-arm bandit problem, where the agent
chooses one of the K arms at each time t with the goal of
maximizing cumulative reward. The authors assume that the
reward for the arms are correlated with each other and can
be expressed using a mixed-effects model, so that pulling an
arm gives some information about the reward of other arms as
well. A follow up work, [Zhu and Kveton, 2022b], adds con-
text into the reward model, and results in a linear mixed ef-
fects model for the rewards of the arms. [Aouali et al., 2023]
further generalizes the above works to a non-linear reward
setting. Our approach diverges from these studies by utiliz-
ing mixed-effects to model user similarity and heterogeneity,
while making decisions for each user at each time point.

In the broader RL literature, there has been much work
on Thompson Sampling based bandit algorithms [Basu et
al., 2021; Hong et al., 2022], especially in connection to
multi-task learning and meta learning [Peleg et al., 2022;
Simchowitz et al., 2021; Wan et al., 2021; Wan et al., 2023].
The multi-task learning based approaches quantify the sim-
ilarity between arms and/or users from their policies - the
extent to which one user’s data influences or contributes to
another user’s policy is a function of some similarity mea-
sure. reBandit can be connected to multi-task learning, as
it learns across multiple users (or tasks), and tries to max-
imize rewards across all users (or tasks). However, due to
its unique application in mobile health, reBandit adopts a
distinct set of assumptions on the structure of the similarity
measures in comparison to the works mentioned above. The
meta-learning based approaches exploit the underlying struc-
ture of similar tasks to improve performance on new (or un-
seen, but similar) tasks. While reBandit can be viewed as a
form of meta-learning, where shared population parameters
are learnt across users (or tasks), and user-specific parame-
ters are learnt to personalize to tasks, reBandit does not try to
improve performance on new or unseen users.

3We were unable to run their code published on GitHub, and
unable to parse the code or replicate it due to poor documentation

4 Bandit Algorithm: reBandit
This section details details the reBandit algorithm used in the
MiWaves pilot study. Being an online RL algorithm, reBan-
dit has two major components: (i) the online learning algo-
rithm; and (ii) the action-selection procedure. Going forward,
we describe reBandit’s online learning algorithm in Section
4.1, and it’s posterior sampling based action selection strat-
egy in Section 4.2. Finally, to address delayed effects, we de-
scribe its reward engineering procedure in Section 4.3. The
reBandit algorithm is summarized in Algorithm 1.

4.1 Online Learning Algorithm
This section details the online learning algorithm - specifi-
cally the algorithm’s reward approximating function and its
model update procedure.

Reward Approximating Function
One of the key components of the online learning algorithm is
its reward approximation function, through which it models
the participant’s reward. Recall that the reward function is the
conditional mean of the reward given state and action. We
chose a Bayesian Mixed Linear Model to model the reward.
Mixed models allow the RL algorithm to adaptively pool and
learn across users while simultaneously personalizing actions
for each user.

Let us assume that for a given user i at decision time t, the
RL algorithm receives the reward R

(t)
i after taking action a

(t)
i

Then, the reward model is written as:

R
(t)
i = g(S

(t)
i )Tαi + a

(t)
i f(S

(t)
i )Tβi + ϵ

(t)
i (1)

where ϵ
(t)
i is the noise, assumed to be gaussian i.e. ϵ ∼

N (0, σ2
ϵImt), and m is the total number of users who have

been or are currently part of the study. Also αi, βi, and γi

are weights that the algorithm wants to learn. g(S) and f(S)
are functions of the RL state defined in Section 2. To enhance
robustness to misspecification of the baseline reward model
when a

(t)
i = 0, g(S

(t)
i )Tαi, we utilize action-centering

[Greenewald et al., 2017] to learn an over-parameterized ver-
sion of the above reward model:

R
(t)
i = g(S

(t)
i )Tαi + (a

(t)
i − π

(t)
i )f(S

(t)
i )Tβi

+ (π
(t)
i )f(S

(t)
i )Tγi + ϵ

(t)
i (2)

where π(t)
i is the probability of taking action a

(t)
i = 1 in state

S
(t)
i for participant i at decision time t. We refer to the term

g(S
(t)
i )Tαi as the baseline, and f(S

(t)
i )Tβi as the advan-

tage (i.e. the advantage of taking action 1 over action 0).
We re-write the reward model as follows:

R
(t)
i = ΦT

itθi + ϵi,t (3)

where ΦT
it = Φ(S

(t)
i , a

(t)
i , π

(t)
i )T = [g(S

(t)
i )T , (a

(t)
i −

π
(t)
i )f(S

(t)
i )T , (π

(t)
i )f(S

(t)
i )T ] is the design matrix for given

state and action, and θi = [αi,βi,γi]
T is the joint weight

vector that the algorithm wants to learn. We further break
down the joint weight vector θi into two components:

θi =

[
αi

βi
γi

]
=

αpop + uα,i

βpop + uβ,i

γpop + uγ,i

 = θpop + ui (4)
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Here, θpop = [αpop,βpop,γpop]
T is the population level

term which is common across all the user’s reward mod-
els and follows a normal prior distribution given by θpop ∼
N (µprior,Σprior). On the other hand, ui = [uα,i,uβ,i,uγ,i]

T

are the individual level parameters, or the random effects, for
any given user i. Note that the individual level parameters are
assumed to be normal by definition, i.e. ui ∼ N (0,Σu), and
independent of ϵi. Refer to Appendix D 4 for more details.

Online Model Update Procedure
Posterior Update: We vectorize the terms across the m users
in a study, and re-write the model as:

R = ΦT θ + ϵ (5)

R =
[
RT

1 . . .RT
m

]T
, Ri =

[
R

(1)
i . . . R

(t)
i

]T
(6)

θ =
[
θT
1 . . . θT

m

]T
= 1m ⊗ θpop + u (7)

u =
[
uT
1 . . .uT

m

]T
(8)

ϵ =
[
ϵT1 . . . ϵTm

]T
, ϵi = [ϵi,1 . . . ϵi,t]

T (9)

ui ∼ N (0,Σu) (10)

ϵ ∼ N (0, σ2
ϵImt) (11)

As specified before, we assume a gaussian prior on the
population level term θpop ∼ N (µprior,Σprior). The hyper-
parameters of the above model, given the definition above,
are the noise variance σ2

ϵ and the random effects variance Σu.
Now, at a given decision point t, using estimated values of the
hyper-parameters (σ2

ϵ,t is the estimate of σ2
ϵ and Σu,t is the

estimate of Σu), the posterior mean and covariance matrix of
the parameter θ can be calculated as:

µ
(t)
post =

(
Σ̃−1

θ,t + σ−2
ϵ,t A

)−1(
Σ̃−1

θ,tµθ + σ−2
ϵ,t B

)
(12)

Σ
(t)
post =

(
Σ̃−1

θ,t + σ−2
ϵ,t A

)−1
(13)

where

A = BlockDiag
(
A1, . . . ,Am

)
, Ai =

∑t

τ=1
ΦiτΦ

T
iτ

(14)

BT = [BT
1 . . . BT

m], Bi =
∑t

τ=1
ΦiτR

(τ)
i (15)

µT
θ = [µprior

T . . . µprior
T ] (16)

Σ̃θ,t = Im ⊗Σu,t + Jm ⊗Σprior (17)

The action-selection procedure (described in Section
4.2) uses the Gaussian posterior distribution defined by the
posterior mean µ

(t)
post and variance Σ

(t)
post to determine the

action selection probability π(t+1) and the corresponding
actions for the next time steps.

Hyper-parameter Update: The hyper-parameters in the al-
gorithm’s reward model are the noise variance σ2

ϵ and random
effects variance Σu. In order to update these variance esti-
mates at the end of decision time t, we use Empirical Bayes

4https://arxiv.org/abs/2402.17739

[Morris, 1983] to maximize the marginal likelihood of ob-
served rewards, marginalized over the parameters θ . So, in
order to form Σu,t and σ2

ϵ,t, we solve the following optimiza-
tion problem:

Σu,t, σ
2
ϵ,t = argmax l(Σu,t, σ

2
ϵ,t;H

(t)
1:m) (18)

s.t. Σu,t ≻ 0, σ2
ϵ,t ≥ 0 (19)

where,

l(Σu,t, σ
2
ϵ,t;H) = log(det(X))− log(det(X + yA))

+mt log(y)− y
∑

τ∈[t]

∑
i∈[m]

(R
(τ)
i )2 − µT

θ Xµθ

+ (Xµθ + yB)T (X + yA)−1(Xµθ + yB) (20)

Note that, X = Σ̃−1
θ,t (see Eq. 17) and y = σ−2

ϵ,t . We solve
the optimization problem using gradient descent.

4.2 Action Selection Procedure
The action selection procedure utilizes a modified posterior
sampling algorithm called the smooth posterior sampling al-
gorithm. Recall from Section 4.1, our model for the reward
is a Bayesian linear mixed model with action centering (refer
Eq. 2) where π

(t)
i is the probability that the RL algorithm se-

lects action a
(t)
i = 1 in state S

(t)
i for participant i at decision

point t. The RL algorithm computes the probability π
(t)
i as

follows:

π
(t)
i = E

β̃∼N (µ
(t−1)
post,i ,Σ

(t−1)
post,i )

[ρ(f(S
(t)
i )T β̃)|H(t)

1:m,S
(t)
i ]

(21)
Notice that the last expectation above is over the draw of β
from the posterior distribution parameterized by µ

(t−1)
post,i and

Σ
(t−1)
post,i (see Eq. 12 and Eq. 13 for their definitions).
Classical posterior sampling sets ρ(x) = I(x > 0). In

this case, the posterior sampling algorithm sets randomization
probabilities to the posterior probability that the treatment ef-
fect is positive. However, when using a pooled algorithm,
Zhang et al. showed that between study statistical inference
is enhanced if ρ is a smooth i.e. continuously differentiable
function. Using a smooth function ensures that the random-
ization probabilities formed by the algorithm concentrate.
Concentration enhances the replicability of the randomiza-
tion probabilities if the study is repeated. Without concentra-
tion, the randomization probabilities might fluctuate greatly
between repetitions of the study [Deshpande et al., 2018;
Kalvit and Zeevi, 2021; Zhang et al., 2022]. In MiWaves ,
we choose ρ to be a generalized logistic function, defined as
follows (details in Appendix E 4) :

ρ(x) = Lmin +
Lmax − Lmin

1 + c exp(−bx)
(22)

where c = 5, and b = 21. We set the lower and upper clipping
probabilities as Lmin = 0.2 and Lmax = 0.8 (i.e., 0.2 ≤
π
(t)
i ≤ 0.8). The probabilities are clipped to facilitate after-

study analysis and off-policy evaluation [Zhang et al., 2022].
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Algorithm 1: reBandit

Input : m, D, µ(0)
post = µprior, Σ

(0)
post = Σprior, Σu,0, σ2

ϵ,0,
ρ(x)

for d = 1 to D do
for j = 0 to 1 do

Compute timestep τ = ((d− 1)× 2) + j
for i = 1 to m do

Observe state S
(τ)
i ;

Get posteriors µ(d−1)
post,i and Σ

(d−1)
post,i for user i

from µ
(d−1)
post and Σ

(d−1)
post ;

Compute action selection probability π
(τ)
i

using Eq. 21
Sample action a

(t)
i = Bern(π

(τ)
i )

Collect reward R
(τ)
i

end
end
Update Σu,d and σ2

ϵ,d using Eq. 18, with engineered
rewards from Eq. 23;

Update posteriors µ(d)
post and Σ

(d)
post using Eq. 12 and Eq.

13, with engineered rewards from Eq. 23
end

4.3 Reward Engineering
To account for delayed effects in the bandit framework, we
engineer the reward for the RL algorithm. Note that this en-
gineered reward is only utilized to update the RL algorithm’s
parameters and hyper-parameters. We are still interested in
maximizing the reward defined in Sec. 2, and use it to evalu-
ate the algorithm’s performance. The engineered reward R̂

(t)
i

for user i at decision time t is defined as:

R̂
(t)
i = R

(t)
i − a

(t)
i cost(a(t)i ) (23)

cost(a(t)i ) = λ · σi,obs (24)

where σi,obs is the standard deviation of the observed re-
wards for a given user i, and λ is a tuned non-negative
hyper-parameter. Note that the reward is not penalized when
a
(t)
i = 0. Intuitively, the cost function is designed to allow

the RL algorithm to optimize for user engagement, while si-
multaneously accounting for the delayed effect of sending an
intervention message, i.e. a(t)i = 1.

5 Experimental Results
In this section, we detail the design of a simulation testbed
(Sec. 5.1) to help evaluate the performance of our algorithm.
Our experimental setup and the corresponding results are dis-
cussed in Sec 5.2.

5.1 Simulation Testbed Design
We leverage data from the SARA [Rabbi et al., 2018] study,
which trialed an mHealth app aimed at sustaining engage-
ment of substance use data collection from participants. Since
the SARA study focused on a similar demographic of EAs as
the MiWaves pilot study, it appears ideal for constructing a
simulation testbed. However, note that this data is impover-
ished. SARA had only 1 decision point per day, as compared

to 2 per day in MiWaves . The goal of the messages sent to
the participants in SARA was to increase survey completion
in order to collect substance use data. In contrast, the goal of
sending intervention messages in MiWaves pilot study is to
reduce the participant’s cannabis use through self-monitoring
and mobile health engagement. Moreover, the daily cannabis
use data in SARA was collected retro-actively at the end of
each week, which often resulted in participant’s noisy rec-
ollection of their cannabis use, and had missing cannabis
use data if the participant chose to not respond. In contrast,
participants in MiWaves are asked to self-report twice daily,
which reduces the amount of missing data if they fail to self-
report once. We construct a base dataset of 42 users after
cleaning and imputing the SARA data (please refer to ap-
pendix A.14 for more details).

Base Model For the base model of the environment, we fit
Multinomial Logistic Regression (MLR) models on each of
the 42 users in the base dataset. The learnt weights include
weights for the baseline (when action is 0), and the advantage
(added to the baseline when action is 1). These user models
are overfit to learn the user behavior as well capture the noise
in the environment. We choose MLR for our user models,
as it is interpretable, and performs similar in comparison to a
generic neural network (see Appendix A.6 4) .

Varying Treatment Effects (TE) The effect of the inter-
vention message on a particular user is measured by their
unique treatment effect size. Given that the intervention mes-
sages in SARA had minimal treatment effect [Nahum-Shani
et al., 2021], we introduce higher levels of treatment effect
into the user models by augmenting their weights. Higher
levels of treatment effect increase the likelihood of obtaining
higher rewards when taking action 1. To that end, we con-
struct TE = low and TE = high treatment effect variants for
each MLR user model. Refer to Appendix A.9 4 for more
details.

Modeling Habituation (HB) To account for delayed ef-
fects in the environment, we introduce user habituation to
repeated stimuli (multiple intervention messages sent to the
user in a short span of time) by adding a negative effect in
the baseline weights of the MLR user models. To that end,
we define dosage for each user at each decision point as the
weighted average of the number of intervention messages re-
ceived in the previous six decision points. The weights are
decreased with each past decision point, reflecting a dimin-
ishing impact of older intervention messages received by the
user. Next, we impute baseline weights for dosage in the
MLR user models in a way that higher dosage (more mes-
sages received) leads to higher likelihood of generating low
rewards, and vice-versa. Note that this procedure simulates
how the user may experience habituation; if the RL algorithm
does not send many interventions to a user experiencing ha-
bituation, the user may dis-habituate and recover their base-
line behavior. We construct two environment variants - HB =
low and HB = high habituation effect - by varying the baseline
weights for dosage. Additionally, we simulate the proportion
of users who can experience habituation within a population
- set at either P = 50% or P = 100%. Please refer to Ap-
pendix A.9 4 for more details.
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Minimal Treatment Effect Low Treatment Effect
HB=Low HB=High HB=Low HB=HighAlg. HB=None P=50% P=100% P=50% P=100% HB=None P=50% P=100% P=50% P=100%

reBandit 128.54±0.18 127.23±0.18 126.01±0.18 123.22±0.19 119.55±0.20 129.44±0.17 128.11±0.17 126.80±0.18 123.74±0.19 120.12±0.20
BLR 127.78±0.16 126.60±0.18 125.78±0.18 123.23±0.19 119.60±0.20 129.10±0.17 127.85±0.17 126.53±0.18 123.75±0.19 120.16±0.20

random 127.83±0.16 126.52±0.18 125.22±0.18 119.03±0.21 110.29±0.23 128.97±0.17 127.70±0.17 126.45±0.18 120.49±0.20 112.06±0.22

Table 1: Average total reward per user per simulated trial, averaged across 500 simulated trials and 120 users per trial, along with their 95%
confidence intervals (CI) for minimal and low treatment effect settings. HB refers to the level of habituation in the environment, while P is
used to denote the proportion of the population who can experience habituation.

HB=Low HB=HighAlg. HB=None P=50% P=100% P=50% P=100%
reBandit 132.25±0.16 130.95±0.17 129.71±0.17 124.70±0.19 121.19±0.20

BLR 132.21±0.16 130.94±0.17 129.63±0.17 124.70±0.19 121.22±0.19
random 131.05±0.17 129.88±0.17 128.71±0.17 123.19±0.20 115.39±0.22

Table 2: Average total reward per user per simulated trial along with
their 95% CIs for the high treatment effect settings.

5.2 Simulation Results
We construct 15 simulation environment variants using a
combination of techniques described in Sec. 5.1. For each en-
vironment, we simulate 500 studies with m = 120 users each,
over a period of D = 30 days (T = 60). The m = 120 users
are drawn with replacement from the 42 MLR user models
learnt using SARA data.

We compare the performance of our algorithm to two com-
mon approaches in mobile health studies. First, is a full
pooling algorithm called BLR. BLR utilizes Bayesian Lin-
ear Regression [Liao et al., 2019] to pool data and learn a
single model across all the users in a study, and select ac-
tions according to the action selection procedure mentioned
in Sec. 4.2. We use engineered rewards (Sec. 4.3) to up-
date BLR’s parameters and hyper-parameters. We also up-
date BLR hyper-parameters using Empirical Bayes, similar
to the approach described in Sec. 4.1, for a fair comparison.
For both reBandit and BLR, we update the posteriors at the
end of each simulated day (every 2 decision points), and the
hyper-parameters at the end of each week (every 14 decision
points). We refer the reader to Appendix B4 for more details
about BLR’s implementation. In addition to BLR, we also
compare against the random algorithm, which utilizes an ac-
tion selection probability of π(t)

i = 0.5.
For each algorithm and simulation environment pair, we

calculate the average total reward per user per simulated trial,
averaged across the 500 simulated trials and 120 users in each
trial. We also compute their 95% confidence intervals (CIs).
We summarize our findings in Table 1 and 2. In all the sim-
ulation environments, reBandit performs no worse than the
baseline algorithms. We highlight the environments where
reBandit significantly outperforms other algorithms (CIs do
not overlap) in green. In the environments where the CIs for
the average total reward overlap for reBandit and BLR, we in-
dividually compare each of the 500 seeded simulations, and
count the number of times reBandit achieved an average to-
tal reward per user as compared to BLR. If this number is
greater than 50% of the simulations, i.e. greater than 250, we
highlight those environments in yellow, otherwise they are
highlighted in blue.

The primary takeaway from our simulation results in Ta-

bles 1 and 2 is that reBandit is impactful - it performs better
than BLR in most environments, and even in the blue high-
lighted environments where it performs slightly worse than
BLR, the performance is still comparable. It is important to
note that our procedures to artificially introduce treatment ef-
fects and user habituation into the user models reduces the
heterogeneity among the user models. This is due to the fact
that our procedure to artificially inject treatment effect estab-
lishes a non-negative effect of taking an action across all the
users in the user models. The same applies to the procedure
for introducing user habituation, as it establishes a clear neg-
ative effect with respect to dosage across all users in the user
models. However, in practice, higher levels of treatment ef-
fect or user habituation effect may lead to more heterogene-
ity in the population. Given that limitation, it is easy to ob-
serve that in our simulations, as levels of treatment effect or
user habituation effect are increased, the performance gap be-
tween reBandit and BLR decreases. In simulation environ-
ments characterized by more pronounced heterogeneity due
to lower levels of treatment and/or habituation effects, reBan-
dit excels by adeptly identifying and leveraging the hetero-
geneity within the user population to personalize the likeli-
hood of intervention message delivery and accrues greater re-
wards.

6 Conclusion

In this paper, we introduced reBandit, an online RL algo-
rithm which will be a part of the upcoming mobile health
study named MiWaves aimed at reducing cannabis use among
emerging adults. We addressed the unique challenges inher-
ent in mobile health studies, including limited data, and re-
quirement for algorithmic autonomy and stability, while de-
signing reBandit. We showed that reBandit utilizes random-
effects and informative Bayesian priors to learn quickly and
efficiently in noisy environments which are common in mo-
bile health studies. The introduction of random effects allows
reBandit to leverage the heterogeneity in the study population
and deliver personalized interventions. To benchmark our al-
gorithm, we detailed the design of a simulation testbed using
prior data, and showed that reBandit performs equally well
or better than two common approaches used in mobile health
studies. In the future, we aim to analyze the effectiveness of
the interventions in the MiWaves pilot study. In addition, we
aim to investigate the contribution of an individual’s data and
the study population data towards learning the individual’s
parameters in the random effects model (see Appendix F4).
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heer, and Csaba Szepesvári. No regrets for learning the prior
in bandits. Advances in neural information processing systems,
34:28029–28041, 2021.

[Carliner et al., 2017] Hannah Carliner, Qiana L Brown, Aaron L
Sarvet, and Deborah S Hasin. Cannabis use, attitudes, and legal
status in the us: A review. Preventive medicine, 104:13–23, 2017.

[Chan et al., 2021] Gary CK Chan, Denise Becker, Peter Butter-
worth, Lindsey Hines, Carolyn Coffey, Wayne Hall, and George
Patton. Young-adult compared to adolescent onset of regular
cannabis use: A 20-year prospective cohort study of later con-
sequences. Drug and Alcohol Review, 40(4):627–636, 2021.

[Clarke et al., 2017] Shanice Clarke, Luis G Jaimes, and Miguel A
Labrador. mstress: A mobile recommender system for just-in-
time interventions for stress. In 2017 14th IEEE annual consumer
communications & networking conference (CCNC), pages 1–5.
IEEE, 2017.

[Deshpande et al., 2018] Yash Deshpande, Lester Mackey, Vasilis
Syrgkanis, and Matt Taddy. Accurate inference for adaptive lin-
ear models. In International Conference on Machine Learning,
pages 1194–1203. PMLR, 2018.

[Forman et al., 2019] Evan M Forman, Stephanie G Kerrigan,
Meghan L Butryn, Adrienne S Juarascio, Stephanie M Manasse,
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