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Abstract
Machine learning (ML) bias in mental health de-
tection and analysis is becoming an increasingly
pertinent challenge. Despite promising efforts in-
dicating that multimodal methods work better than
unimodal methods, there is minimal work on mul-
timodal fairness for depression detection. We pro-
pose a causal multimodal framework which con-
sists of two modules. Module 1 performs causal
interventional debiasing via backdoor adjustment
for each modality to achieve group fairness. Mod-
ule 2 adaptively fuses the different modalities us-
ing a referee-based individual fairness guided fu-
sion mechanism to address individual fairness. We
conduct experiments and ablation studies on three
depression datasets, D-Vlog, DAIC-WOZ and E-
DAIC, and show that our framework improves clas-
sification performance as well as group and individ-
ual fairness compared to existing approaches.

1 Introduction
Mental health disorders (MHDs) are becoming increasingly
prevalent [Wang et al., 2007]. Despite its severity, there
is currently no effective clinical characterization of MHDs
which makes their diagnosis difficult, time-consuming and
subjective [Maj et al., 2020]. A substantial body of litera-
ture focuses on depression detection using text mining [Dalal
et al., 2023]. However, as humans typically display and in-
terpret affective states through a multitude of channels, non-
verbal signals such as audio-visual cues [He et al., 2022;
Yoon et al., 2022] are just as important for depression de-
tection. Machine learning (ML) methods have been applied
to many health-related areas [Sendak et al., 2020]. The nat-
ural extension of using ML for multimodal non-verbal be-
havioural MHD analysis and detection has proven promising
[Yoon et al., 2022; Zheng et al., 2023; Cheong et al., 2022].

Concurrently, ML bias is becoming a growing source of
concern [Bolukbasi et al., 2016; Cheong et al., 2021]. Given
the high stakes involved in MHD analysis, it is crucial to in-
vestigate and mitigate the ML biases present. Research in-
dicated the high prevalence of gender bias across a variety
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Figure 1: (a) Different individuals and groups manifest depression
in different ways, causing vanilla approaches to have bias. (b) Our
novel multimodal fusion approach targets both group and individual-
level differences to obtain better group and individual fairness.

of tasks ranging from automated video interviews [Booth et
al., 2021] and image search [Feng and Shah, 2022]. How-
ever, research in gender fairness for MH has been limited
with only a handful of studies investigating the problem of
unimodal bias in ML methods when deployed on MHD ap-
plications [Bailey and Plumbley, 2021; Zanna et al., 2022;
Cheong et al., 2023c]. None of the existing works have ad-
dressed gender fairness in MHD within a multimodal setting,
despite the evidence that multimodal methods often work bet-
ter than unimodal approaches in terms of predictive perfor-
mance [Yoon et al., 2022]. In order to address this gap, we
have two main motivations in this paper:

Addressing Group Differences (M1). Literature indicates
that females and males tend to show different behavioural
symptoms when depressed [Barsky et al., 2001; Ogrodniczuk
and Oliffe, 2011]. As an example, as illustrated in Fig. 1,
both males and females are expressing depressive symptoms.
However, there are gender-specific latent representation dif-
ferences in depression manifestation. For instance, certain
acoustic features (e.g. MFCC) are only statistically signifi-
cantly different between depressed and healthy males [Wang
et al., 2019]. On the other hand, compared to males, de-
pressed females are more emotionally expressive and willing
to reveal distress via behavioural cues [Barsky et al., 2001;
Hall et al., 2000; Jansz and others, 2000]; i.e., group dif-
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Approach Evaluation Fairness Measures
Study Task Modality Causal FF GF IF ND SP EOpp EOdd EAcc IF-Cons

Alasadi et al. [2020] Cyberbullying Detection VT N ✓ ✓ N 1 ✓ ✓
Schmitz et al. [2022] Emotion Detection AVT N N ✓ N 1 ✓ ✓
Yan et al. [2020] Personality Assessment AV N N ✓ N 1 ✓ ✓
Kathan et al. [2022] Humour Recognition AV N N ✓ N 1 ✓
Chen et al. [2023] Recommendation AVT N N ✓ N 2 ✓ ✓
Janghorbani et al. [2023] Vision-Language Models VT N N ✓ N 1
Pena et al. [2023] Automatic Recruitment VT N N ✓ N 1 ✓
FAIRREFUSE Depression AV ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓

Table 1: Comparative Summary with existing Multimodal Fairness studies. Abbreviations (sorted): A: Audio. EAcc: Equal Accuracy. EOdd:
Equalised Odds. EOpp: Equality of Opportunity. FF: Fairness-aware Fusion. IF-Cons: Individual Fairness (Consistency). N: No. ND:
Number of Datasets. SP: Statistical Parity. T: Text. V: Visual.

ferences in depression manifestation. Gap: No existing ML
for MHD detection approaches have considered this from a
causal perspective. Regular depression detection models typ-
ically aim to approximate P (Y |X) (X and Y denotes input
and target variables respectively). P (Y |X) may lead to bias
since it may learn gender-specific representations that are not
shared by new samples (Fig. 1). Contribution: This suggests
that gender is a confounder which misleads a depression de-
tection model to learn gender-specific latent representation in
the training data, thus leading to prediction bias when tested
on a subject of a different gender (Fig. 1). We adopt a causal
approach as it provides a more principled way of represent-
ing and removing the effect of a confounder. Thus, we pro-
pose a method which approximates P (Y |do(X)) instead of
P (Y |X). The do-operation [Pearl, 2009] denotes intervening
on X in order to remove the confounding relationship of gen-
der on X . To achieve group-level gender fairness, we imple-
ment causal interventional debiasing (CID) using backdoor
adjustment [Pearl, 2009] in order to achieve fairer represen-
tational learning for each modality.

Addressing Individual Differences (M2). Individual-level
differences in depressive symptoms [Kendler et al., 1994] are
not accounted either in existing ML for MHD detection and
analysis. Contribution: We propose to address this gap by
taking into account individual-fairness when combining pre-
dictions across different modalities. First, we measure indi-
vidual fairness using the individual consistency scores for
each sample across the different modalities. Subsequently,
we fuse the different modalities using a referee network
that takes into account the individual fairness scores of each
modality. To the best of our knowledge, we are the first to use
and consider individual fairness in ML for MHD analysis.

Real-world Implication. Gender difference in depression
manifestation has long been studied and recognised within
fields such as medicine [Barsky et al., 2001] and psychol-
ogy [Hall et al., 2000]. Anecdotal evidence have also of-
ten supported this view [Hall et al., 2000]. However, exist-
ing ML research is unable to account for this innate group
and individual subjectivity. We present the first attempt to-
wards addressing this problem by motivating our proposed
method, FAIRREFUSE, which builds on existing research on
depression findings rooted in literature adjacent to traditional
ML. To the best of our knowledge, ours is the first work
that attempts to address the well-recognised gender and in-
dividual difference in depression manifestation. These aims
align with the United Nations Sustainable Development Goal

(SDG) 31 and SDG 52 respectively. The main contribution
of this work is a dynamic referee-guided causal framework
(FAIRREFUSE) that mitigates bias with causal intervention
and individual fairness-guided fusion. We run experiments
on three depression detection datasets, D-Vlog, DAIC-WOZ
and E-DAIC. We demonstrate that our method was able to
provide significant improvement in group and individual fair-
ness across all datasets. The improvements are especially pro-
nounced for D-Vlog. Results obtained on DAIC-WOZ and E-
DAIC were better compared to the baseline and other existing
methods. We identify three key challenges: dataset curation
(C1), appropriate evaluation (C2) and ethics and privacy (C3)
as central topics that need to be tackled via collective efforts
in order to promote real-world advancement in using ML to
address the challenge of MHD in a fair and impactful manner.

Comparative Summary. In this work, we focus on mul-
timodal gender fairness in MHD prediction on audio-visual
datasets. To overcome the limitations in existing multimodal
methods (see Table 1), we propose a referee network which
dynamically learns how to fuse the different modalities. None
of the current methods have combined this framework with
causal intervention nor leveraged it to achieve multimodal
fairness. Our work is distinct from existing work in several
ways. First, we propose leveraging multimodal causal inter-
vention to achieve multimodal fusion. Second, we use a indi-
vidual fairness-guided referee network to adaptively learn the
best way to fuse the different modalities. Third, we explore
how the different modalities and fusion strategies impact gen-
der fairness using both group and individual fairness mea-
sures to address the specific task of depression detection.

2 Related Work
Fairness in unimodal and multimodal ML. Fair ML can
generally be categorised into group or individual fairness
[Hort et al., 2022]. Group fairness metrics typically en-
force some statistical constraints across groups while individ-
ual fairness metrics seek for similar individuals to be treated
similarly. Most existing works typically consider a unimodal
setup which may not map to a multimodal setting. There has
been minimal literature which examines ML fairness in the
context of multiple modalities. Booth et al. [2021] demon-
strated how using multiple modalities marginally improves
prediction at the cost of reducing fairness for automated video

1“Ensure healthy lives and promote well-being for all at all ages.”
2“Achieve gender equality and empower all women and girls.”
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interviews. Schmitz et al. [2022] studied how different multi-
modal approaches affect gender bias in emotion recognition.
Janghorbani et al. [2023] presented a visual-textual bench-
mark dataset to assess the bias present in existing multimodal
models. Mandhala et al. [2023] summarised the tools and
frameworks available to mitigate bias in multimodal datasets.
Pena et al. [2023] presented a new dataset of synthetic re-
sumes to evaluate how multimodal ML is affected by demo-
graphic bias. All of the above studies did not propose any mit-
igation strategies. Kathan et al. [2022] proposed a weighted
fusion approach to achieve fairness in audiovisual humour
recognition. Yan et al. [2020] focused on adversarial bias
mitigation for multimodal personality assessment. Alasadi et
al. [2020] proposed a fairness-aware fusion framework for
cyberbullying detection using a weighted approach. Chen et
al. [2023] proposed a fairness-aware method for multimodal
recommendations. No existing work has investigated fairness
in multimodal fusion for depression detection.
Gender Fairness in ML for MHD. Only a few stud-
ies investigated gender fairness in ML-based MHD analysis
[Zanna et al., 2022; Bailey and Plumbley, 2021; Cheong et
al., 2023c]. Cheong et al. [2023d] proposed a data augmenta-
tion method to address the bias present within a small dataset
of wellbeing coaching. Zanna et al. [2022] proposed an
uncertainty-based approach to address the bias present in the
TILES dataset. Bailey et al. [2021] used data re-distribution
to mitigate the gender bias present in the DAIC-WOZ dataset.
Cheong et al. [2023c] highlighted how existing bias mitiga-
tion methods do not fully address gender bias but did not
propose any further mitigation strategies. Efforts have been
partially hampered by the lack of datasets. Publicly avail-
able datasets are often in the form of extracted features to
preserve the privacy of the subjects [Yoon et al., 2022]. Re-
search suggests that the extracted features may contain bias
due to the underlying training data [Bolukbasi et al., 2016;
Garg et al., 2018].

3 Preliminaries and Background
3.1 Notation and Problem Definition
We have a dataset D = {(xi, yi)}i for a supervised classi-
fication problem, where xi ∈ X is the input representing
information about an individual Ii ∈ I and yi ∈ Y is the
classification target (e.g., depressed vs. non-depressed). Dis-
tinct from conventional classification settings, each input xi is
composed of multiple modalities: i.e., xi = {xm

i ∈ Xm}m,
where m can be e.g., “image” or “audio”. Each input xi is
associated (through an individual Ii) with a sensitive attribute
si ∈ S where, e.g., S = {male, female}. We are interested in
finding a parameterised function f : X → Y . The function
f( · ; θ) estimates the probabilities for all outcomes (classes)
P (Y |xi). We use P (yi|xi) to denote the predicted probabil-
ity for the correct class, yi, and ŷi ← argmaxy P (y|xi) to
denote the predicted class. Finally, the pre-Softmax activa-
tions, i.e., logits, will be denoted by ϕi = ϕ(xi; θ).

3.2 Individual Fairness
Based on the principle of “similar individuals should have
similar predictions”, Dwork et al. [2012] defined individual
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Figure 2: Overview of FAIRREFUSE. First, each modality network
attempts to learn a fairer representation with the help of Causal In-
terventional Debiasing (Section 4.1). Second, the Referee Net-
work (Section 4.2) learns to combine the predictions of the modali-
ties dynamically using the individual fairness scores (Eqn. 2).

fairness as the L-Lipschitz continuity of f :

dy(f(x1), f(x2)) ≤ Ldx(x1,x2), ∀x1,x2 ∈ X. (1)

where the notion assumes suitable distance metrics dy(·, ·)
and dx(·, ·) to be available for the predictions and the inputs
respectively. Aligned with existing work [Zemel et al., 2013;
Mukherjee et al., 2020], we use consistency as a measure of
individual fairness. Concretely:

Mindv(xi) =

∣∣∣∣∣∣ŷi − 1

k

∑
xj∈kNN(xi)

ŷj

∣∣∣∣∣∣ , (2)

where kNN(xi) denotes the k nearest neighbours of xi.

4 Proposed Method: FAIRREFUSE
We introduce FAIRREFUSE for fairer predictions in a multi-
modal classification setting. As outlined in Fig. 2, for each
modality m, we employ causal intervention via back-door ad-
justment to remove the bias caused by the sensitive attributes.
Then, individual fairness score of a sample (Mm

indv – Eq. 2)
is used to dynamically fuse the predictions of each modality
(Module 2). The pseudocode is shown in Algorithm 1. FAIR-
REFUSE mitigates bias with two novel modules:
Module 1: Causal Multimodal Interventional Debias-
ing for Group Fairness: Predictions made by individual
modalities can have group-level biases (Fig. 1). To mitigate
such modality-specific group-level bias, we adapt the uni-
modal work by Chen et al. [2022] to our multimodal setting.

Algorithm 1 FAIRREFUSE: a referee-guided fusion ap-
proach for multimodal causal fairness.

1: Input: Dataset D = {(xi, yi)}i
2: Output: Networks for each modality (fm) and RefNet. # Mod-

ule 1 - Causal Multimodal Interventional Debiasing (CMID):
3: - Train each modality fm with causal debiasing (Eq. 9)
4: - Calculate Mm

indv , individual fairness scores (Eq. 2) # Module
2 - Referee Network:

5: - Train RefNet to maximize PRN with Cross-Entropy (Eq. 10)
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Figure 3: The causal model (a) and backdoor intervention across
M modalities (b). We remove the spurious effects caused by the
sensitive attributes S in order for the network to learn a debiased
latent representation R independent of the sensitive attributes.

We attempt to remove the spurious confounding effect (see
Fig. 3) of all modalities by intervening on the latent space
of each modality, which is akin to attempting to remove the
group-level modality-specific biases.
Module 2: Referee Network for Individual Fairness
Guided Fusion for Individual Fairness: Module 1 ad-
dresses modality-specific group-level biases. As different
modalities may have biases for different individuals (Fig. 1),
we propose to estimate the modality-specific individual fair-
ness (Eq. 2) and use these scores to fuse the different modal-
ities. Note that, although Figs. 1 and 2 as well as the exper-
iments focus on a bi-modal setting (with audio and vision),
FAIRREFUSE can be applied to more than two modalities.

4.1 Module 1: CID
For each modality, we use causal intervention via back-door
adjustment to remove the bias from the sensitive attributes.

Structural Causal Diagram
As shown in Fig. 3, there are four main variables involved.
{Xm1 , ..., XmM } represents the data input across M modal-
ities, S represents the sensitive attribute associated with the
data input, R = ϕ represents the latent representation learnt
by the classifier and Y represents the probability outcome.
The causal relationships between variables are as follows:
S → {Xm1 , ..., XmM } : The sensitive attribute of the sam-
ple is bound to lead to attribute-specific features. For in-
stance, in our setup where s represents gender, females are
more likely to have higher pitched voice compared to males.
{Xm1 , ..., XmM } → R ← S : R is the latent representa-
tion of X and this causal relationship is captured by X → R.
This latent representation R will also be determined by the
sample’s sensitive attribute S captured via R← S.
{Xm1 , ..., XmM } → Y ← R : The final outcome Y is
affected by the input sample X and latent representation R as
captured by X → Y and Y ← R respectively.

Interventional Debiasing via Backdoor Adjustment
Since interventional debiasing is performed for each modal-
ity, to simplify notation, we drop m from all variables in this
section. With reference to Fig. 3, for each modality, we at-
tempt to model P (Y |do(X)) instead of P (Y |X) in order to
remove the bias introduced by the confounder sensitive at-
tribute s ∈ S. Using backdoor adjustment [Pearl, 2009],

we model P (Y |do(X)) by removing the causal relationship
of S → X by marginalising over the confounder (S) for
all modalities. For each modality, the debiased network can
therefore be represented by:

P (Y |do(X = x)) =
∑
s∈S

P (Y |X = x, R = g(x, s))P (s),

(3)
where g(x, s) is a function, as defined later in Eq. 5, which

generates the latent representation R from X and s. We de-
note P (Y |do(X = x)) of each modality m using Pm to sim-
plify subsequent notation.

We adopt a similar approach to Chen et al. [2022] to esti-
mate R from X and s. This involves a confounder dictionary,
confounder attention and confounder priors. Given a con-
founder dictionary for each of the gender, male and female,
and rs ∈ R is the prototype of gender s, there is one feature
memory bank for each gender to store the latent features of
training samples of a specific gender s. Thus,

rs =
1

Ns

∑
xj∧s(xj)=s

ϕ(xj), (4)

where ϕ(xj) is the feature for a sample with sensitive at-
tribute s and Ns is the number of samples for gender s. R
is approximated as a weighted aggregation of all the proto-
types of the specific gender s:

R = g(x, s) =
∑
s∈S

αsrsP (s), (5)

where P (s) is the ratio of the number of gender s samples to
the total number of training samples and αs is the confounder
attention for gender s in the confounder dictionary, calculated
using scaled dot-product attention [Vaswani et al., 2017]:

αs = Softmax
(
(WQϕ(x)

T (WKrs)√
dm

)
, (6)

where ϕ(x) represents the extracted features for the current
sample x and WQ ∈ Rdm×din and WK ∈ Rdm×din are
weight parameters are learned.

4.2 Module 2: Referee Network for Individual
Fairness Guided Multimodal Fusion

The Referee Network (Fig. 2) takes in Pm from each modal-
ity as features and attempts to learn to dynamically fuse the
predictions using their individual fairness scores. We define
individual fairness for a modality m by a simple extension of
Mindv (Eq. 2):

Mm
indv(x

m
i ) =

∣∣∣∣∣∣ŷmi − 1

k

∑
xm
j ∈kNN(xmi )

ŷmj

∣∣∣∣∣∣ . (7)

There are many ways to combine Pm and Mm
indv(x

m
i ),

which can be explored through experimental analysis. We
observe that a linear layer provides the best results:

PRN (Y |xi) = Softmax (FC([Pm;Mm
indv(x

m
i )]m)) , (8)

where xi = {xm
i }m; [; ]m represents the concatenation over

M modalities and FC denotes a linear layer.
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4.3 Loss Functions
We use the Cross Entropy loss while causally-debiasing each
modality m:

LCID(xm
i , yi) = LCE(yi, P

m(Y |do(Xm = xm
i ))). (9)

The Referee Network (RefNet) is trained also with the Cross
Entropy loss (with xi = {xm

i }m):

LRN (xi, yi) = LCE(yi, PRN (Y |X = xi)). (10)

5 Experiment Setup and Details
5.1 Datasets
We performed our experiments using the following datasets.

D-Vlog DAIC-WoZ E-DAIC
Y0 Y1 T Y0 Y1 T Y0 Y1 T

M 0.15 0.19 0.34 0.45 0.08 0.53 0.49 0.13 0.62
F 0.28 0.39 0.66 0.36 0.11 0.47 0.27 0.11 0.38
T 0.42 0.58 1.00 0.81 0.19 1.00 0.76 0.24 1.00

Table 2: Dataset distribution and target attribute breakdown across
datasets by percentage. Abbreviations: F: Female. M: Male. T: To-
tal. Y0: Non-depressed. Y1: Depressed. Red highlights imbalanced
splits. Green denotes relatively balanced splits.

D-Vlog [Yoon et al., 2022] consists of Youtube vlog data.
DAIC-WOZ [Valstar et al., 2016] and E-DAIC [Ringeval et
al., 2019] contain audio recordings, extracted visual features
and transcripts. For all datasets, we work with the extracted
features and followed the train-validate-test split provided.
Dataset Challenges: We identify three dataset challenges:
small dataset sample size (C1a), class imbalance (C1b) and
inconsistency in dataset distribution (C1c) which will be dis-
cussed in further detail in Section 7.

5.2 Implementation Details
We adopt Yoon et al.’s [2022] implementation to facilitate
comparison. We train the model with the Adam optimizer
[Kingma and Ba, 2014] at a learning rate of 0.0002 and a
batch size of 32 for D-Vlog as stated in Yoon et al. For DAIC-
WOZ and E-DAIC, we use a learning rate of 0.0005 and a
batch size of 64. Weights are randomly initialised for all.

5.3 Baseline Models
For Module 1, we use the unimodal transformer encoder from
Yoon et al. [2022] as the baseline. As Module 2 is a late
fusion method, we compare RefNet against two other com-
monly used late fusion methods: (i) Ensemble method, where
the final prediction is made according to the predicted class
probability that is highest across all classifiers. (ii) Stacking
method [Baltrušaitis et al., 2018], where another classifier, a
logistic regression model, is used to to provide the final clas-
sification. Our proposed method is most similar to a stacking
classifier with the key difference that it weighs each modality
according to the individual fairness (IF) scores and debiases
the individual modalities before providing the final outcome.

5.4 Evaluation Protocols
Model Performance. We adopted the evaluation methods
of existing work [Yoon et al., 2022; Cheong et al., 2023b] by
using precision, recall and F1 to evaluate model performance.

Method Modality Prec. Rec. F1

D-Vlog

Dosovitskiy et al. [2020] AV 0.64 0.63 0.63
Touvron et al. [2021] AV 0.64 0.64 0.64
Yin et al. [2022] AV 0.65 0.64 0.65
Wang et al. [2022] AV 0.65 0.64 0.65
Wu et al. [2022] AV 0.65 0.64 0.65
Zheng et al. [2023] AV 0.66 0.64 0.65
FAIRREFUSE AV 0.61 0.82 0.70

DAIC-
WoZ

Ma et al. [2016] A 0.35 1.00 0.52
Valstar et al. [2018] A 0.32 0.86 0.46
Williamson et al. [2016] V - - 0.53
Valstar et al. [2018] V 0.60 0.43 0.50
Valstar et al. [2018] AV 0.60 0.43 0.50
FAIRREFUSE AV 0.52 0.60 0.57

Table 3: Comparison with other models which used extracted fea-
tures. Best results highlighted in bold. Due to space constraints, the
full table is made available within the Appendix of the full paper.

Group Fairness (GF). We use the most commonly
used fairness metrics [Hort et al., 2022; Pessach and
Shmueli, 2022]: Statistical Parity (MSP ), Equal Opportunity
(MEOpp), Equalised Odds (MOdd) as well as Equal Accu-
racy (MEAcc) to evaluate group fairness. Specific formula-
tions can be found in the appendix. We adopt the approach of
existing work which considers 0.80 and 1.20 as the accept-
able lower and upper fairness bounds [Zanna et al., 2022].
Values outside this range are considered unfair.

Individual Fairness (IF). As there is no prior work which
evaluates individual fairness for depression detection, we
use consistency (Eq. 2) as a measure of individual fairness
which aligns with existing work [Yurochkin and Sun, 2021;
Mukherjee et al., 2020; Zemel et al., 2013].

6 Results
6.1 Baseline Performance Comparison
Table 3 presents our results compared against other meth-
ods which also worked with extracted features. We are start-
ing with this comparison in order to demonstrate that FAIR-
REFUSE outperforms other methods which also worked
with extracted features. D-Vlog only provides extracted data
hence all the recent state-of-the art (SOTA) methods were im-
plemented on extracted features. DAIC-WOZ and E-DAIC
provided raw files in addition to the extracted features. As a
result, most of the recent methods worked directly with the
raw files in order to obtain better benchmark performance.
We have chosen to only include methods which rely only on
extracted features in order for our method to be comparable.
As seen in Table 3, there is a general precision-recall trade-off
across all methods hence more emphasis should be placed on
the F1-score when evaluating performance results. We ob-
serve that our results are comparable and often outperform
existing SOTA methods especially across the F1-score.

Summary: Despite the dataset challenges (C1a-C1c),
FAIRREFUSE still provides comparatively better results over-
all compared to existing methods for both datasets. This is
significant as most of the recent studies which report higher
accuracies typically work directly with the raw files. This
may pose ethical and privacy concerns (C3) which will be
discussed in further detail in Section 7.
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Approach Method Classification Group Fairness Indv. Fairness
Prec. Rec. F1 MSP MEOpp MEOdd MEAcc MIndv

D-Vlog

Unimodal Audio Network 0.60 0.58 0.63 1.07 0.71 0.59 0.82 0.54±0.22
Visual Network 0.57 0.62 0.64 1.23 1.42 1.28 1.11 0.56±0.22

Fusion
Baseline-AV 0.58 0.58 0.59 0.92 1.23 1.86 1.24 0.62±0.22
Ensembles 0.59 0.83 0.69 1.20 0.97 0.95 1.04 0.61±0.23
Stacking 0.59 0.85 0.69 1.33 0.98 0.97 1.07 0.60±0.25

FAIRREFUSE CID & RefNet 0.61 0.82 0.70 1.03 1.02 1.06 1.05 0.80±0.24

DAIC-WOZ

Unimodal Audio Network 0.54 0.66 0.56 0.38 0.89 0.80 0.66 0.48±0.20
Visual Network 0.58 0.62 0.53 0.76 0.81 0.83 0.66 0.56±0.24

Fusion
Baseline-AV 0.56 0.52 0.53 0.75 0.88 0.77 0.87 0.56±0.20
Ensembles 0.58 0.21 0.31 284.78 1.10 1.22 0.72 0.73±0.26
Stacking 0.53 0.35 0.42 0.00 1.05 1.12 0.69 0.68±0.28

FAIRREFUSE CID & RefNet 0.52 0.60 0.57 22.58 1.08 1.10 0.74 0.80±0.20

EDAIC

Unimodal Audio Network 0.50 0.51 0.50 0.53 0.64 0.70 0.74 0.52±0.21
Visual Network 0.50 0.52 0.52 0.58 0.65 0.76 0.75 0.54±0.22

Fusion
Baseline-AV 0.50 0.48 0.50 0.84 0.86 0.82 0.82 0.64±0.20
Ensembles 0.54 0.19 0.29 281.78 1.09 1.21 0.69 0.68±0.22
Stacking 0.55 0.37 0.44 0.00 1.10 1.24 0.72 0.70±0.23

FAIRREFUSE CID & RefNet 0.56 0.62 0.60 18.60 1.05 1.11 0.88 0.78±0.22

Table 4: A comparison of the performance and fairness across different unimodal and multimodal fusion methods and modalities where
k = 5. Modalities. A: Audio. V:Visual. Best results are highlighted in bold.

6.2 Comparison with Other Fusion Methods
As our method can largely be considered a late fusion strat-
egy, we compare FAIRREFUSE against other popular late fu-
sion strategies: ensembles and stacking. With reference to
Table 4, we see that our proposed method is comparable to
or better than other fusion methods across most performance
measures and especially the F1-score for all datasets. Across
group fairness, our method generally ensures better group
fairness for all datasets. For DAIC-WOZ and E-DAIC, across
MEOpp and MEOdd, all fusion methods improved fairness
in favour of the minority group (values > 1) whereasMEAcc

still shows bias against the minority group (values < 1). It
is noteworthy that according to the MSP measure, all the
fusion methods exacerbated bias compared to baseline. For
DAIC-WOZ, the MSP values for ensembles, stacking and
FAIRREFUSE are 284.78, 0, and 22.58 respectively whereas
for E-DAIC, theMSP values are 281.78, 0 and 18.6 respec-
tively. Ensembles and stacking severely exacerbated the bias
whereas FAIRREFUSE lead to the same though to a less se-
vere degree. We provide further insights to this phenomena
in Section 7. Across MIndv , FAIRREFUSE also provided
the fairestMIndv score which exceeds theMIndv scores of
other methods for all datasets.

Summary: FAIRREFUSE generally out-performs other
methods across most measures and achieves more consistent
group and individual fairness compared to the other meth-
ods. The results are significant especially for D-Vlog. We
also noted how certain fairness metrics are unsuitable for the
task of depression detecion (C2). We discuss C2 as well as
the dataset challenges (C1a-C1c) that may have impacted the
results for DAIC-WOZ and E-DAIC in Section 7.

6.3 Ablation Studies
The Effects of Module 1: CID
With reference to Table 5, for the unimodal results, we see
that the CID module was able to provide improvements across
most metrics compared to the unimodal baselines for all
datasets. For instance, for E-DAIC’s audio modality, CID
improved the prec., rec. and F1 from 0.50, 0.51, and 0.50 to
0.54, 0.57 and 0.56 respectively. The corresponding group

fairness results also improved from 0.53, 0.64, 0.70 and 0.74
to 0.83, 0.74, 0.77 and 0.82. This trend is consistent for both
modalities across all datasets. This suggests that for each
modality, gender may have been a confounder as hypothe-
sised and CID was effective in helping the model achieve
group-level fairness across gender. Across the multimodal
approaches, CID improves most metrics compared to base-
line. For instance, for DAIC-WOZ, CID improved the prec.,
rec. and F1 from 0.56, 0.52 and 0.53 to 0.58, 0.59 and 0.59
respectively. The corresponding group fairness results also
mostly improved from 0.75, 0.88, 0.77 and 0.87 to 0.85, 0.81,
0.83 and 1.23. The results are more pronounced for D-Vlog
than DAIC-WOZ and E-DAIC.
Summary: CID is effective at improving both performance
and fairness. It is most effective when the source of bias is the
group difference in depression manifestation. This is distinct
from the typical class imbalance problem. Despite females
being the majority as evidenced in Table 2, there is still bias
against females as seen from the baseline model in Table 4.
CID which addresses the group difference is thus able to ad-
dress this source of bias which existing bias mitigation meth-
ods were unable to (see Table 4 in [Cheong et al., 2023c]).

The Effects of Module 2: RefNet
From Table 5, we see that RefNet improves performance and
group fairness in addition to the increments provided by CID.
For example, for D-Vlog, CID improves the rec. and F1 from
0.58 and 0.59 to 0.61 and 0.62 respectively. RefNet further
improves the values to 0.82 and 0.70. For group fairness, we
see RefNet improving beyond the CID results to achieve a
near perfect group fairness score of 1.03, 1.02, 1.06 and 1.05.
Across MIndv , RefNet combined with CID consistently pro-
vides the fairest MIndv score across all datasets. An analysis
of the effects of k is within the Appendix of the full paper3.
Summary: RefNet improves the classification and group
fairness measures beyond the increment provided by the CID
module. This effect is more pronounced for D-Vlog than it is
for DAIC-WOZ and E-DAIC. This may be due to the fact
that DAIC-WOZ and E-DAIC are much more challenging

3 https://www.repository.cam.ac.uk/handle/1810/368887
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Method Classification Group Fairness Indv. Fairness
CID MM RN Mod. Prec. Rec. F1 MSP MEOpp MEOdd MEAcc MIndv

D-Vlog

A 0.60 0.58 0.63 1.07 0.71 0.59 0.82 0.54±0.22
✓ A 0.68 0.72 0.69 0.97 1.12 0.78 1.08 0.61±0.21

V 0.57 0.62 0.64 1.23 1.42 1.28 1.11 0.56±0.22
✓ V 0.61 0.67 0.68 1.12 1.05 1.17 1.19 0.66±0.20

✓ AV 0.58 0.58 0.59 0.92 1.23 1.86 1.24 0.62±0.22
✓ ✓ AV 0.63 0.61 0.62 1.29 1.11 1.18 1.09 0.60±0.19

FAIRREFUSE ✓ ✓ ✓ AV 0.61 0.82 0.70 1.03 1.02 1.06 1.05 0.80±0.24

DAIC-WOZ

A 0.54 0.66 0.56 0.38 0.89 0.80 0.66 0.48±0.20
✓ A 0.55 0.64 0.58 0.69 0.88 0.76 0.90 0.67±0.22

V 0.58 0.62 0.53 0.76 0.81 0.83 0.66 0.56±0.24
✓ V 0.58 0.63 0.60 0.73 0.76 0.75 1.12 0.71±0.24

✓ AV 0.56 0.52 0.53 0.75 0.88 0.77 0.87 0.56±0.20
✓ ✓ AV 0.58 0.59 0.59 0.85 0.81 0.83 1.23 0.70±0.25

FAIRREFUSE ✓ ✓ ✓ AV 0.52 0.60 0.57 22.58 1.08 1.18 0.74 0.80±0.20

E-DAIC

A 0.50 0.51 0.50 0.53 0.64 0.70 0.74 0.52±0.21
✓ A 0.54 0.57 0.56 0.83 0.74 0.77 0.82 0.64±0.21

V 0.50 0.52 0.52 0.58 0.65 0.76 0.75 0.54±0.22
✓ V 0.53 0.58 0.58 0.88 0.81 0.86 0.80 0.70±0.22

✓ AV 0.50 0.48 0.50 0.87 0.84 0.81 0.86 0.68±0.24
✓ ✓ AV 0.52 0.52 0.51 0.84 0.86 0.82 0.82 0.72±0.20

FAIRREFUSE ✓ ✓ ✓ AV 0.56 0.62 0.60 18.60 1.05 1.11 0.88 0.78±0.22

Table 5: Ablation Results: Performance and Fairness Results of the ablation studies. A: Audio. V:Visual. CID represents Module 1: Causal
Interventional Debiasing. MM represents Multi-modal. RN represents Module 2: Referee Network. Best results are highlighted in bold.

datasets due to (C1a - C1c). This will be further discussed
in Section 7. Our proposed method’s efficacy is most effec-
tively captured across the individual fairness measureMIndv

across all datasets. This suggests that RefNet is particularly
effective at achieving individual-level fairness.

7 Conclusion and Discussion
Conclusion. We present a novel framework to achieve both
group and individual level fairness for the task of depression
detection. We focus specifically on extracted audio-visual
data as this is less studied compared to text-based depression
detection research. We show that both Module 1: CID and
Module 2: RefNet were effective at improving ML perfor-
mance and fairness. They are most effective when used to-
gether and are able to achieve good performance and fairness
results without requiring access to the raw files. This respects
the privacy and anonymity of the subjects. In addition, we
highlight three key challenges as a call to the community to
address the identified issues collectively. This is in tandem
with the goal of addressing the real-world challenge of MHD
in order to achieve social good for all.
Discussion. C1: Dataset Challenges. Compared to D-
Vlog, the results seem less effective for DAIC-WOZ and E-
DAIC. From Table 2, we see that there are significantly less
samples (C1a) in DAIC-WOZ (185) and E-DAIC (268) com-
pared to D-Vlog (961). Second, there is class imbalance
(C1b) as seen in Table 2. D-Vlog is balanced across classes
(Y0: 0.42 vs Y1: 0.58) but imbalanced across gender (M: 0.34
vs F: 0.66). DAIC-WOZ (Y0: 0.81 vs Y1: 0.19) and E-DAIC
(Y0: 0.76 vs Y1: 0.24) are both imbalanced across classes.
Third, Table 6 within the Appendix, suggest a significant dis-
tribution shift (C1c) between the training and testing set for
DAIC-WOZ and E-DAIC. For instance, for DAIC-WOZ, the
training set contains more males than females whereas the
testing set contains more females than males. The training
set contains more males of class Y0 whereas the testing set
contains more females of class Y0. The smaller sample size
(C1a), class imbalance (C1b) and inconsistency in dataset

distribution (C1c) may have impacted the results for DAIC-
WOZ and E-DAIC. Vabalas et al. [2019] demonstrated that
small datasets and small sample sizes cause ML in MHD to be
more vulnerable or sensitive to changes in data distribution.
Our results support the hypothesis that this may have lead to
biased outcomes. Future dataset owners can consider provid-
ing more samples with lesser class imbalance and more con-
sistent data distribution as well as identifying the root cause
of bias [Cheong et al., 2023a] to mitigate this challenge.
C2: Inadequacy of Metrics. Moreover, existing fairness
metrics are inadequate to deal with the small dataset chal-
lenge prevalent for depression detection. The small denom-
inator resulting from the small sample size for DAIC-WOZ
and E-DAIC inadvertently lead to massive numbers which
cannot be interpreted without adequate context. Future work
may consider proposing more appropriate fairness metrics or
evaluation methods and adopting other approaches [Chura-
mani et al., 2023] which takes this challenge into account.
C3: Ethics and Privacy. We lack publicly available
datasets due to the sensitive nature of the problem setting.
Some MH datasets (e.g., the Turkish BD Corpus [Çiftçi et al.,
2018] and the Pittsburgh [Yang et al., 2012]) which were pre-
viously publicly available for research purposes are no longer
made available. Recent datasets have only released the ex-
tracted features due to privacy concerns. This necessitates
the urgency to advance research practices that takes ethical
concerns into consideration. The data collection procedure
and proposed methods should respect subjects’ privacy and
anonymity and perform well across classification and fair-
ness. Our work presents the first step towards that direction.
Limitations. We assume the availability of sensitive at-
tribute labels, which is the common setting in the bias mit-
igation literature. It is possible to extend our framework to
work without this assumption. We only evaluated our meth-
ods on three datasets with two modalities. Future work should
consider experimenting on more datasets and adapting this
approach to other modalities beyond audio-visual sources.
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