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Abstract
Cities are crucibles of numerous opportunities, but
also hotbeds of inequality. The plight of disadvan-
taged populations who are “left behind” within ur-
ban environments has been an increasingly press-
ing concern, which poses substantial threats to the
realization of the UN SDG agenda. However, a
comprehensive framework for studying this urban
dilemma is currently absent, preventing researchers
from developing AI models for social good pre-
diction and intervention. To fill this gap, we con-
struct VulnerabilityMap, a framework to meticu-
lously dissect the challenges faced by urban dis-
advantaged populations, unraveling their vulnera-
bility to a spectrum of shocks and stresses that
are categorized through the prism of Maslow’s hi-
erarchy of needs. Specifically, we systematically
collect large-scale multi-sourced census and web-
based data covering more than 328 million peo-
ple in the United States regarding demographic fea-
tures, neighborhood environments, offline mobility
behaviors, and online social connections. These
features are further related to vulnerability out-
comes from short-term shocks such as COVID-
19 and long-term physiological, social, and self-
actualization stresses. Leveraging our framework,
we construct machine learning models that exhibit
strong performance in predicting vulnerability out-
comes from various disadvantage features, which
shows the promising utility of our framework to
support targeted AI models. Moreover, we provide
model-based explainability analysis to interpret
the reasons underlying model predictions, shed-
ding light on intricate social factors that trap cer-
tain populations inside vulnerable situations. Our
constructed dataset is publicly available at https:
//github.com/LinChen-65/VulnerabilityMap/.

1 Introduction
In the process of unprecedented global urbanization, cities
have emerged as vibrant hubs teeming with opportunities

Please find our Appendix here: https://rb.gy/b5lgq2

and innovations, drawing millions of people seeking better
lives with remarkably fast-paced development, intricate so-
cial networks, and diverse cultural experiences [Bettencourt
et al., 2007]. However, beneath the surface of urban dy-
namism lie marginalized and hence disadvantaged popula-
tions along multiple dimensions including but not limited to
income, race, ethnicity, and education level [Nijman and Wei,
2020]. Such marginalization stems from long-standing struc-
tural inequalities that often go unaddressed, some of which
even end up in a vicious circle of self-reinforcement. For in-
stance, rapid population growth strains infrastructures, lead-
ing to housing shortages and increased cost of facility ac-
cess. Limited access to quality education, healthcare, and
employment opportunities creates barriers to upward mobil-
ity for many urban residents, further exacerbating inequal-
ities [Kearney and Levine, 2014]. Moreover, urban life is
riddled with challenges ranging from immediate shocks such
as disease outbreaks and climate disturbance [Abedi et al.,
2021] to persistent stresses such as violent crimes and social
segregation [Leitner et al., 2018]. These adversities consti-
tute a web of vulnerabilities, particularly for disadvantaged
communities. Understanding the situation of these communi-
ties in the face of urban challenges is essential for fostering
inclusive and sustainable urban development, as emphasized
by the UN’s Sustainable Development Goals (SDG), and en-
suring the well-being of all residents, as anticipated by the
UN’s Leave No One Behind (LNOB) Principle.

Addressing such a crucial issue necessitates a comprehen-
sive analytic framework empowered by multi-sourced data
and targeted AI models. Regrettably, such a united frame-
work is currently absent, with previous studies predominantly
focusing on one aspect of vulnerability. To surmount this
obstacle faced by the research community, we endeavor to
dissect this urban complexity by meticulously curating the
VulnerabilityMap framework. To comprehensively charac-
terize urban disadvantages and vulnerabilities, our frame-
work integrates the power of multiple types of data sources.
Alongside census and survey statistics, we incorporate web-
collected human mobility data, online social network char-
acteristics, and other digital footprints of human activities.
Fusing such data richness not only enables multidimensional
profiling of social vulnerabilities with nuanced temporal and
spatial details, but also provides up-to-date reflections of on-
the-ground realities. For instance, mobility traces can un-
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cover the lived experiences of disadvantaged communities
in their daily activities beyond their residential neighbor-
hood [Moro et al., 2021; Wang et al., 2018], and online inter-
est data facilitate understanding of diverse lifestyles that are
not covered by any demographic census [Araujo et al., 2017;
Fatehkia et al., 2020]. Through this comprehensive explo-
ration, we aim to shed light on the nuanced experiences of ur-
ban disadvantaged populations, unraveling their vulnerability
to a spectrum of shocks and stresses.

As depicted in Figure 1, our constructed framework con-
sists of two key components: the disadvantage features and
the vulnerability outcomes. The disadvantage features en-
compass data that reflect the unequal distribution of intrinsic
demographic features and extrinsic living experiences, which
are organized into four indices: demographic disadvantage
index, neighborhood disadvantage index, mobility disadvan-
tage index, and social disadvantage index. Combination of
these four indices further yields a composite index that sum-
marizes the experienced disadvantage of urban populations.
The vulnerability outcomes are classified into two categories:
vulnerability to shocks, which typically occur abruptly and
exert most impacts in a relatively short time, and vulnera-
bility to stresses, which are generally milder but accumulate
gradually in a long term.

We conduct a series of experiments including geograph-
ical visualization, correlation analysis, prediction, and tem-
poral analysis to showcase the usefulness of our constructed
dataset in supporting various AI research on vulnerability
faced by disadvantaged populations. Notably, our constructed
machine learning models achieve strong prediction perfor-
mances for all vulnerability outcome variables by jointly con-
sidering different disadvantage dimensions. Moreover, we
can distinguish the importance of different disadvantage fea-
tures for predicting each vulnerability outcome, so as to seek
a better understanding of what contributes to certain dimen-
sions of vulnerability.

To summarize, the contribution of this work is three-fold:
• We construct VulnerabilityMap, the first comprehensive

framework for mapping vulnerability outcomes with
a carefully categorized list of disadvantage features,
which are extracted from multi-sourced web-collected
data covering demographic characteristics, neighbor-
hood environment, offline mobility patterns, and online
social networks and interests.

• We conduct a series of experiments to validate the use-
fulness of our framework in supporting the development
of targeted AI models. Specifically, we construct ma-
chine learning models based on the constructed dataset
that achieve strong prediction performances, underscor-
ing the effectiveness of selected feature dimensions.

• We provide explainability analysis to interpret the rea-
sons underlying model predictions, shedding light on in-
tricate social factors resulting in vulnerability traps for
certain populations.

VulnerabilityMap seeks to pave the way for research on
targeted interventions and policy initiatives, striving to create
more equitable and resilient urban communities toward sus-
tainable development.

2 Methods
2.1 Data Identification
We aim to create a comprehensive framework as a foundation
for dissecting the root of inequalities and vulnerabilities in ur-
ban space. Therefore, we gather data from multiple sources,
including official census data, tech-company-released data,
and self-collected data published by researchers. We mainly
consider three criteria when selecting data sources:

• Accessibility criteria. Our objective is to create an open
framework accessible to everyone in the research com-
munity. Thus, we select data sources that either possess
an open-source license or allow open-source distribution
of certain derived features, if not all raw data.

• Granularity criteria. Previous research [Levy et al.,
2022; Hsu et al., 2021] highlighted socio-economic
heterogeneities among granular communities such as
neighborhoods. To enable cross-comparison with these
findings and facilitate new insights, we select data
sources that can at least be decomposed to the county
level, excluding those at the MSA level, state level, or
even national level.

• Timeliness criteria. If the data are widely dispersed
along the temporal dimension, the significance of their
correlations is expected to decrease considerably. Thus,
we opt for data collected as early as 2000, which not
only ensures a substantial duration for analysis with an
observational window of approximately 20 years but
also maintains data cohesiveness.

With these criteria, our final set of data sources is summa-
rized in Tables 1-4 in Appendix A.

2.2 Data Retrieval and Pre-Processing
As the collected data are heterogeneous in spatial resolution,
time period, and data type, we design a pipeline for retrieving
and processing the raw data into a unified format, as shown
in Figure 2.
Processing demographic and neighborhood data. Our
primary demographic data source is the American Commu-
nity Survey (ACS), which is an annual official census cap-
turing a wide range of socioeconomic features for every cen-
sus block group (CBG) in the United States. Extracted fea-
tures include: (1) Non-Hispanic white rate, reflecting persist-
ing racial-ethnic disparities in many sections of urban life; (2)
Disability rate, indicating households with at least one person
with a disability, who are marginalized groups with highly-
constrained capability in moving around to access various ur-
ban resources; (3) Median household income, a key factor
shaping lifestyle choices and resilience capability; (4) Bach-
elor rate, representing the percentage of the population with
at least a bachelor’s degree, which is connected with socio-
economic status and has a lasting impact on social mobil-
ity; and (5) Creative job rate, indicating the percentage of
the working-age population in creative industries, as listed in
the “Management, business, science, and arts occupations”
category in the ACS [Credit et al., 2021].

We also complement the dataset with researcher-collected
data sources. For example, we extract the number of polluting
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Figure 1: Schematic framework of VulnerabilityMap.
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Figure 2: Open workflow of the dataset construction.

sites [Finlay et al., 2022], and the neighborhood-school gap
which measures the discrepancy between the demographics
of a public school and its surrounding community [Gomez-
Lopez et al., 2021].

Processing offline mobility data. Human mobility in ur-
ban space enables access to various facilities and spatial in-
teraction, which is a critical element holding the social fab-
ric. To include mobility features, we perform feature ex-
traction from the Safegraph Patterns Data 1, which has been
used to analyze inequality of place access [Fan et al., 2022],
reveal uneven behavioral changes during COVID-19 [Chen

1https://www.safegraph.com/

et al., 2023], and design policy interventions [Chen et al.,
2022]. Safegraph collects data from online applications with
location service about the visitations to each place of inter-
est (POI), which can be traced back to the residential neigh-
borhoods (CBGs) these visitors come from. To ensure pri-
vacy protection, the collected visitation data are aggregated
spatially to the CBG level and temporally on a monthly ba-
sis, with differential privacy protection techniques further ap-
plied. From Safegraph Patterns, we extract the following
features: (1) Mobility level, measured by the total visitation
frequency of a neighborhood; (2) # Explored places, mea-
sured by the number of unique places visited by people from
a neighborhood, which reflects people’s exploration willing-
ness in urban space; (3) Visitation frequencies to represen-
tative urban facilities that satisfy people’s essential needs, in-
cluding healthcare facilities, educational facilities, stores pro-
viding healthy food, green space, arts and cultural facilities,
and sports facilities; and (4) Experienced segregation (ES),
which quantifies the de facto segregation phenomenon be-
yond static residential perspectives that people from different
socio-economic backgrounds are far from uniformly mixing
in urban space, albeit seemingly moving freely from place to
place [Moro et al., 2021]. To calculate this feature, we di-
vide CBGs into N = 5 groups with similar population sizes
according to their median household income, and obtain the
segregation at each POI by calculating the deviation of the
observed mixing of different income groups from the perfect
uniform mixing (with the greatest entropy), illustrated below:
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ESp =
N∑
i=1

∣∣∣∣pi − 1

N

∣∣∣∣ , (1)

where pi is the probability of Group i to visit a certain POI p.
Then, we obtain the segregation experienced by each CBG

by taking the average of the segregation at all POIs that have
been visited by this CBG, weighted by the visitation fre-
quency to each POI.

Processing online social network data. We extract per-
sonal interest data from the Facebook Advertising Plat-
form with a Python-based wrapper library named pySocial-
Watcher 2, which has been utilized in ”Digital Demogra-
phy” [Cesare et al., 2018] studies for socioeconomic indicator
mapping [Fatehkia et al., 2020] and chronic disease surveil-
lance [Araujo et al., 2017]. For each geographical region,
we first query the expected number of all Monthly Active
Users (MAU) in the Facebook user population (denoted as
MAUall), and then those with a pre-defined interest (denoted
as MAUx). Assuming a uniform distribution of personal in-
terest between the sampled Facebook population MAU and
the whole population N , we can divide MAUx by MAUall to
obtain an estimation of the percentage of people with a spe-
cific interest in a geographical area, illustrated as follows:

% people interested in x =
Nx

Nall
=

MAUx

MAUall
. (2)

We also gather other online social network data to capture
inequality in interpersonal connections and sentiments. First,
we obtain features regarding online social interactions from
the Facebook Data for Good Platform 3, including social con-
nections, social capital, and number of long social ties. Sec-
ond, we process the Twitter Sentiment Geographical Index
Dataset [Chai et al., 2023] to extract a sentiment positivity
(measured as the average level of sentiment) and a sentiment
fluctuation (measured as the standard deviation of sentiment).

2.3 Construction of Disadvantage Indices
Organizing data within our framework offers a degree of con-
venience; however, dealing with the raw values of diverse di-
mensions remains challenging due to two primary sources of
complexity. First, distinct data ranges exist, where some fea-
tures span from 0 to 1, while others theoretically range from
0 to infinity. Second, these dimensions exhibit different di-
rections: in some cases (e.g., disability rate), a higher value
signifies a greater disadvantage, whereas for others (e.g., me-
dian household income), the opposite holds true. To provide
a clearer and more consistent perspective, we construct disad-
vantage indices using the following processing steps, inspired
by the approach outlined in [Hale et al., 2021]:

• Step 1: For each disadvantage dimension, rank all
neighborhoods from the least disadvantaged to the most
advantaged, which assigns an ordinal number to each
neighborhood.

2https://github.com/maraujo/pySocialWatcher
3https://dataforgood.facebook.com/dfg/tools

• Step 2: Apply z-score normalization to these rankings
along each disadvantage dimension to obtain normal dis-
tributions.

• Step 3: Calculate the composite disadvantage index for
each neighborhood, by summing up all the normalized
rankings, which summarizes the corresponding set of
disadvantage dimensions.

In the Results Section, we will further validate the effec-
tiveness of the constructed disadvantage indices by correlat-
ing them with both the individual disadvantage features and
the vulnerability outcomes.

2.4 Taxonomization of Vulnerability Outcomes

While living in cities enjoys considerable life convenience
and thriving opportunities, it is also accompanied by a num-
ber of intertwined urban challenges. In a general sense, ur-
ban challenges can be divided into two categories, i.e., shocks
and stresses, where shocks refer to those that typically occur
abruptly and exert most impacts in a relatively short time, and
stresses refer to those that are generally milder but accumu-
late gradually in a long term [Leitner et al., 2018]. Corre-
spondingly, we classify vulnerability outcomes into two cat-
egories, i.e., those to shocks and those to stresses. For vul-
nerability to shocks, we include data about the COVID-19
pandemic [The New York Times, 2021] and the Urban Heat
Island (UHI) effect [Hsu et al., 2021]. For vulnerability to
stresses, we further taxonomize them along Maslow’s hier-
archy of needs, as shown in Figure 3. From bottom to top,
human needs can generally be categorized into three lev-
els: basic needs (for food, water, safety, etc.), psychological
needs (for friends, prestige, etc.), and self-fulfillment needs
(for achieving one’s full potential, including creative activi-
ties). In accordance with this categorization, we divide ur-
ban stresses into physiological stresses (regarding healthcare,
crime rate. etc.), social stresses (regarding social capital, ex-
perienced segregation, etc.), and self-actualization stresses
(regarding political participation, volunteering, etc.). Note
that this classification does not imply differentiated respect
for different levels of needs, but rather serves as a slicing
method to observe urban life.

Self-
actualization

Esteem needs 

Belongingness & love

Safety

Physiological needs

Maslow’s hierarchy of needs

Self-fulfillment
needs

Psychological
needs

Basic 
needs

Stress taxonomy

Self-Actualization 
Stress

Social 
Stress

Physiological 
Stress

Level 3

Level 2

Level 1

Potential, creativity

Confidence, respect

Security, safety

Food, water, warmth, rest

Intimate relationships & friends

Figure 3: Taxonomy of urban stresses along Maslow’s hierarchy of
needs.
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2.5 Machine Learning Model for Predicting
Vulnerability

To further exemplify the utility of our meticulously con-
structed dataset for AI research, we train machine learning
models to predict the values of vulnerability outcomes based
on the comprehensive set of disadvantage features we col-
lected. Our methodology involves partitioning the dataset
into training and test sets, with 80% of CBGs randomly se-
lected for training and the remaining 20% reserved for test-
ing. For each vulnerability outcome variable, we opt for a
random forest regression model, a choice driven by its ability
to strike a balance between predictive performance and inter-
pretability. The random forest comprises 100 decision trees,
and we assess the model’s predictive performance using the
coefficient of determination (R2).

The notable advantage of employing random forest models
lies in their ability to provide feature importance scores as a
natural outcome of the iterative data-splitting process based
on features that yield the greatest information gain. This fea-
ture importance analysis is pivotal in unraveling the driving
forces behind our predicted results. For each vulnerability
outcome, we extract the top-3 important disadvantage fea-
tures. This granular exploration aids in gaining a nuanced un-
derstanding of the factors contributing to specific dimensions
of vulnerability, offering valuable insights into the intricacies
of the urban challenges faced by disadvantaged populations.

3 Results
3.1 Checking Data Distributions
We discretize the constructed disadvantage index into 5 lev-
els, where Group 0 represents the least disadvantaged and
Group 4 represents the most disadvantaged, after which we
visualize its distribution in the continental United States in
Figure 4. We mainly observe two interesting characteristics:
First, geographical adjacency does not ensure similar disad-
vantage levels, as some of the most disadvantaged neighbor-
hoods are immediately adjacent to a neighborhood belong-
ing to the least disadvantaged group. Second, there exists an
unbalanced distribution of disadvantage at the national scale.
Specifically, many neighborhoods from the most disadvan-
taged group cluster in the southwestern part intersecting with
New Mexico and Arizona, both ranking relatively low in GDP
per capita among all US states and territories. Meanwhile,
many neighborhoods among the least disadvantaged cluster
in the northeastern part where major cities like New York,
Boston, and Washington, D.C. reside, which are hubs for fi-
nance, technology, education, and research. These observa-
tions validate that our index can capture the macroscopic het-
erogeneity in disadvantage distribution across geographical
regions.

3.2 Effectiveness of Individual Disadvantage
Dimensions

As our dataset contains multiple dimensions of potential
disadvantages, we examine the correlation between single-
dimensional disadvantage indices and representative vulner-
ability outcomes. As shown in Table 1, demographic dis-
advantage index shows reasonable results regarding the di-

Figure 4: Geographical distribution of disadvantage index.

Vulnerability Outcome Spearman Correlation
Sentiment positivity -0.1384

Economic connectedness -0.3810
Sentiment fluctuation 0.1294

Support ratio 0.2523
Volunteering rate -0.1551

Table 1: Correlation between demographic disadvantage index and
sampled vulnerability outcomes

rections of correlations. For example, the negative cor-
relation with average sentiment signals that neighborhoods
with more disadvantaged demographic characteristics gener-
ate more negative feelings. Likewise, these disadvantaged
neighborhoods are associated with fewer resources to receive
help from other high-SES neighborhoods from social connec-
tions (reflecting more physiological stress), greater fluctua-
tion and thus less stability in their sentiment (reflecting more
social stress), and smaller participation rate in volunteering
activities (reflecting more self-actualization stress). However,
it is worth noting that we find a positive correlation between
demographic disadvantage index and support ratio, suggest-
ing that these neighborhoods with more disadvantaged demo-
graphic characteristics have a tighter (albeit maybe smaller)
support network. The reason may be that socio-economically
disadvantaged populations having fewer chances to explore
the urban space are more confined in the family and close-
friend networks. The concrete impact of such social network
formation may be two-fold and needs further investigation.

3.3 Effectiveness of Composite Disadvantage
Indices

After confirming the reasonability of the individual disad-
vantage indices, we take a further step to examine the ef-
fectiveness of our generated composite disadvantage indices.
As shown in Figure 5, we identify the ”most disadvantaged
neighborhoods” and the ”least disadvantaged neighborhoods”
by sorting all neighborhoods based on the values of their com-
posite disadvantage index, and compare their vulnerabilities
when facing multiple types of challenges. The results are con-
sistent with our expectations: the most disadvantaged neigh-
borhoods are more negative and less stable in sentiment, ex-
posed more to both the Urban Heat Island effect and air pol-
lution, participating less in political and volunteering activi-
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ties, and enjoying less economic connectedness but showing
a stronger support ratio. These results show that our designed
metrics are capable of accurately locating disadvantaged pop-
ulations in urban spaces when taking into consideration the
balance between multiple dimensions of disadvantage, pro-
viding convenience for designing intervention policies.
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Figure 5: Comparison of most- and least-disadvantaged neighbor-
hoods on vulnerability outcomes.

3.4 Prediction Performance and Interpretation
We present the prediction performances for all vulnerability
outcomes in Figure 6, where the vulnerability outcomes are
grouped into one type of shock and three types of stresses.
Across these four categories, our predictive models demon-
strate consistently strong performance. Specifically, all 20
outcomes are predicted with R2 > 0.4, with 15 of them
achieving an even higher R2 > 0.7. These results substan-
tiate the effectiveness of our selected variables as reliable in-
dicators of vulnerability occurrences.

Figure 6: Prediction performance measured by R2.

To gain insights into the reasons behind our prediction re-
sults, we visualize in Figure 7 the top-3 important features
for each vulnerability outcome within the self-actualization
stresses category, using it as a case study. We make the fol-

lowing three observations: First, the feature importance re-
sults expose more intricate interactions among social factors
that trap certain populations inside vulnerability. Notably,
creative job rate is strongly influenced by bachelor rate, un-
derscoring that better-educated populations have a distinct
advantage in securing jobs associated with exciting inno-
vation processes. However, median household income and
non-Hispanic white rate follow as the second and third most
important feature, highlighting the non-negligible impact of
poverty and racial-ethnic minority backgrounds on employ-
ment decisions. Second, the crucial disadvantage features in-
fluencing various vulnerability outcomes can exhibit consid-
erable variation. For instance, visitation to education facili-
ties is predominantly influenced by per-capita social connec-
tions, indicating that education resources tend to favor popu-
lations with robust social capital and thus are more informa-
tive through social network interactions. In contrast, visita-
tion to arts and cultural sites is more influenced by bachelor
rate than social connections. This discrepancy may be at-
tributed to the idea that appreciating arts and specific cultures
requires intentional aesthetic training and exposure, elements
not easily transferrable through social network connections.
Third, vulnerability outcomes with closer conceptual connec-
tions tend to be influenced by similar disadvantage features.
Specifically, volunteering rate and # civic organizations de-
scribe the extent of civic life participation, thus relating to
each other in a closed way. As a result, the top-3 important
features for predicting both outcome variables are identical,
albeit with different orders.

Figure 7: Top-3 important features for predicting various vulnera-
bility outcomes.

3.5 Temporal Dynamics
As our dataset records feature dynamics with time pass-
ing by, we also analyze the temporal dynamics of the dis-
advantage indices. Here we take the offline mobility pat-
terns across different periods of the COVID-19 pandemic
as an example, as human mobility can change fast and cor-
respond well to impacts brought by urban challenges, es-
pecially urban shocks. As shown in Figure 8, the correla-
tion between demographic disadvantage index and mobility
level is −0.2062 in Year 2019 before the pandemic, indi-
cating that people with better socio-economic statuses move
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around more freely and actively in urban space, potentially
getting in touch with more opportunities. However, in 2020
after the pandemic began, the magnitude of the correlation
was significantly reduced to −0.1461. This corresponds to
the fact that during the COVID-19, people with better socio-
economic statuses are more capable of cutting their mobil-
ity to conform to the ”stay-at-home” policies, while disad-
vantaged neighborhoods generally have more essential work-
ers who had to stick to offline work [Weill et al., 2020;
Jay et al., 2020]. Moreover, we observe a recovery of the
correlation to −0.1542 in 2021 when the pandemic was grad-
ually under control with vaccines and targeted drugs. The cor-
relation between demographic disadvantage index and num of
explored places sees a similar “reduce-rebound” dynamic.
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Figure 8: Temporal change in correlation between demographic dis-
advantage index and mobility outcomes.

4 Related Work
The interconnections between disadvantaged dimensions and
vulnerability outcomes are highly complex, remaining an in-
triguing and inviting problem for the urban social network
research communities. Some of the links have been stud-
ied in previous works, resulting in interesting findings. For
example, [Williams et al., 2020] reveals that neighborhoods
with lower income and more racial/ethnic minorities not only
enjoy less green space, but also suffer from more criminal
threats. In the context of COVID-19, [Coleman et al., 2022]
finds that low-income and non-white neighborhoods faced
larger risks of COVID-19 exposure. However, most of such
studies focused their scope on one or several specific pairs of
links, compromising on studying the bigger picture.

There are also some indices designed for summarizing cer-
tain dimensions of inequalities faced by urban populations.
The Atlas of Inequality made by MIT Media Lab4 maps
the economic inequality encoded in people’s everyday move-
ments onto communities. However, it does not proceed be-
yond the potential to study the concrete vulnerability out-
comes experienced by communities. In contrast, our dataset
provides both disadvantage dimensions and vulnerability out-
comes, thus offering opportunities to study the processes of
transformation in-depth. The Disaster Risk Index (DRI) pro-
posed by [Peduzzi et al., 2009] mainly reflects the risks of
facing natural disasters such as droughts and earthquakes, and
is only provided at the national level. The Social Vulnera-
bility Index (SVI) developed by the US CDC and ATSDR5

4https://inequality.media.mit.edu/
5https://www.atsdr.cdc.gov/placeandhealth/svi/index.html

combines a set of demographic characteristics to evaluate the
potential negative impacts on communities brought by ei-
ther natural or human-caused disasters. However, it primar-
ily concentrates on assessing the impact on human physical
health, thereby overlooking other crucial aspects of human
life. In contrast to these works, our framework goes beyond
the scope of the SVI. Not only does it encompass both long-
term stresses and short-term shocks experienced by commu-
nities, but it also takes a nuanced approach by taxonomizing
stresses according to Maslow’s hierarchy of needs, providing
a comprehensive landscape of vulnerabilities.

To summarize, given the absence of frameworks support-
ing comprehensive analyses of the disadvantage-vulnerability
relationships, we collect multi-sourced data that reflects de-
mographic disadvantages, neighborhood disadvantages, mo-
bility disadvantages, and social disadvantages, covering most
of the vital aspects of urban life. We also collect data regard-
ing various types of urban shocks and stresses to measure vul-
nerability to urban challenges from a multi-dimensional per-
spective. More importantly, we organize these variables into
an analytic framework, and validate its utility for AI research
with well-performed machine learning models.

5 Discussion
We believe that our proposed framework, VulnerabilityMap,
is promising in bringing several new opportunities for the
web and urban research community. The most direct use is
to analyze the relationship between dimensions of disadvan-
tages and dimensions of vulnerabilities to various urban chal-
lenges. Based on these understandings, our framework can
be further used to inform the design or generation of inter-
vention strategies. Moreover, with the temporal dimension,
our framework can support analyses of Granger causality and
prediction/simulation tasks. Overall, our framework provides
a nuanced understanding of the challenges faced by urban
communities, serving as a foundation for targeted interven-
tions and informed policy-making.

Although we made our best effort in constructing the
framework, VulnerabilityMap is not without limitations.
First, the varying updating frequencies of raw data sources in-
troduce potential inconsistencies in estimation. Despite this,
our experimental results establish a reliable lower bound for
discovering inequality in vulnerability outcomes and their as-
sociation with various disadvantage factors. Second, the com-
plex web of entities and relationships in urban spaces raises
the possibility of overlooking contributive factors to vulner-
ability outcomes. Third, our current approach to obtaining
disadvantage indices involves a straightforward summation
of normalized individual features, potentially disregarding
more sophisticated methods like calibrated weighted sums.
Thus, researchers using our framework should acknowledge
these limitations to make grounded hypotheses and reason-
able claims about the derived research findings.

For future work, we will continue improving the compre-
hensiveness of VulnerabilityMap to cover more potential de-
terminants and vulnerabilities. We will also keep track of var-
ious indices along the temporal dimension, and develop a web
interface to facilitate public use and citizen communication.
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