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Abstract
This paper introduces a novel Functional Graph
Convolutional Network (funGCN) framework that
combines Functional Data Analysis and Graph Con-
volutional Networks to address the complexities
of multi-task and multi-modal learning in digital
health and longitudinal studies. With the growing
importance of health solutions to improve health
care and social support, ensure healthy lives, and
promote well-being at all ages, funGCN offers a
unified approach to handle multivariate longitudinal
data for multiple entities and ensures interpretabil-
ity even with small sample sizes. Key innovations
include task-specific embedding components that
manage different data types, the ability to perform
classification, regression, and forecasting, and the
creation of a knowledge graph for insightful data
interpretation. The efficacy of funGCN is validated
through simulation experiments and a real-data ap-
plication. funGCN source code is publicly available
at https://github.com/IBM/funGCN.

1 Introduction
Ensure healthy lives and promote well-being for all at all ages
and leave no one behind – this idea is embedded in the core
vision of the UN’s 2030 Agenda for Sustainable Development1
[Resolution and others, 2015]. In line with this, in the con-
temporary healthcare landscape, digital health solutions and
longitudinal studies have become increasingly significant to
monitor health care and wellbeing of populations around the
world. These approaches enable a comprehensive understand-
ing of health outcomes over time, providing valuable insights
into disease progression, treatment efficacy, and overall pa-
tients’ well-being [Garssen et al., 2021][Cuff, 2023]. Digital
health solution are therefore critical tools for achieving the
UN sustainable development goals.

With the advent of new technologies, data are collected
from multiple sources, including surveys, phone interviews,
wearable devices, and mobile health applications, to cite a few.

1SDG, goal 3, https://sdgs.un.org/goals/goal3

These tools allow patients to capture a wide array of health-
related signals from the comfort of their homes. They facilitate
the entry of multiple measurements over time [Vijayan et al.,
2021] and enhance medical professionals’ and policymakers’
understanding of a population’s health, the impact of interven-
tions, or, more in general, the well-being of subjects. However,
they also add to the complexity of the analysis.

Artificial intelligence (AI) plays a key role in effectively
dealing with such diverse information. Investigating these
studies necessitates a variety of analytical tasks, including
classification, longitudinal regression, and forecasting. Classi-
fication is crucial for separating patient subgroups or “arms”,
assessing treatments’ effectiveness, or identifying the pres-
ence of diseases. Longitudinal regression can estimate critical
variables that evolve over the entire study’s duration, like
patient well-being or healthcare service utilization, and can
help determine the impact of a trial or a solution on individ-
ual patients. Forecasting, on the other hand, predicts future
trends, informing on a trial’s potential success and interven-
tions’ forthcoming effects [Hu et al., 2015]. On top of the
different required analytical tasks, the analysis of the collected
data presents substantial challenges. First, the variables are
of different modalities. Second, the longitudinal signals can
be recorded at various times and frequencies. Third, the dif-
ficulties of recruiting participants may result in small sample
sizes, even smaller than the number of variables [Ildstad et
al., 2001]. Last, the interpretability of the results is crucial:
understanding the relationships between variables and how
they influence specific outcomes can enhance future trial de-
signs, improve patient care, and optimize resource allocation
[Hakkoum et al., 2022][Farah et al., 2023]. All the above chal-
lenges constitute a complex methodological barrier, even for
the most advanced AI and machine learning (ML) approaches.
Hence, there is a need for new informative methodologies able
to i) deal with multi-modal data and multivariate longitudinal
signals for multiple entities, ii) perform different inference
tasks , and iii) be effective even when the sample size is small.
In response to these demands, we introduce a novel approach
called Functional Graph Convolutional Network (funGCN),
which synergizes Functional Data Analysis (FDA) [Ramsay
and Silverman, 2005][Kokoszka and Reimherr, 2017] and
Graph Convolutional Networks (GCNs) [Zhang et al., 2019].
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FDA a dynamic area of statistical research that allows work-
ing with multivariate longitudinal data by estimating smooth
curves across a continuous domain. GCNs are renowned for
their capacity to discern relations between variables. By in-
tegrating FDA and GCNs, we create a unified framework for
multi-task learning with multi-modal longitudinal data. The
innovative aspects of funGCN include:

• The introduction of two task-specific embeddings designed
for multi-modality. Specifically, they can handle longitu-
dinal, categorical, and constant scalar variables (the latter
are numerical values that remain constant over time) and
facilitate the comparison of diverse variables and statistical
entities throughout the temporal domain.

• The capability to execute three analytics tasks: classifi-
cation, (longitudinal) regression, and forecast. Moreover,
given the embeddings’ flexibility, funGCN can concur-
rently perform regression and classification of multiple tar-
get variables within a single training session.

• The generation of a knowledge graph that quantifies the
connections between all variables, facilitating dimensional-
ity reduction and providing interpretable insights into the
outcomes, even in scenarios with small sample sizes.

The effectiveness of funGCN is demonstrated through sim-
ulation experiments and a real-data application, showcasing
its ability to construct an informative knowledge graph and
offering a new approach for analyzing complex longitudinal
datasets.

This work is part of the SEURO Project2 that aims to de-
velop and evaluate a digital social health platform to improve
and advance home-based self-management and integrated care
for older adults (over 65 years) with multiple chronic condi-
tions. The project focuses on deploying new technologies for
improving health care in elderly population and on evaluat-
ing innovative, flexible, and individual-centered healthcare
models through data from diverse longitudinal studies. The
project brings together academic/research institutions, Small
to Medium Enterprises (SMEs), health service providers and
NGOs and benefits from the a multidisciplinary collaboration
between computer scientists/statistician, health-care profes-
sionals, stakeholders in the health/social care field.

Related work. Multi-modal GCN, Temporal GCN, and
time-series analysis and forecasting are all active research
fields. However, aside from funGCN, there seems to be a
lack of a comprehensive framework that combines all their
capabilities. For a clearer understanding of the terminology
associated with the applicability of the various models, see
Table 1.

Recently work in [Langbridge et al., 2023] introduced a
Causal Temporal GCN for multivariate time series, while
novel approaches in [Jiang et al., 2022], [Vijay et al., 2023],
and [Zhou et al., 2024] extended transformers and large lan-
guage models to time series. Yet, these approaches do not con-
sider multi-modality or multiple statistical entities. [D’Souza
et al., 2022] presents a multi-modal GCN for classification
but, differently from funGCN, does not tackle longitudinal

2https://seuro2020.eu/

variables. Long short-term memory (LSTM) networks [Hochre-
iter and Schmidhuber, 1997] and gated recurrent unit (GRU)
networks [Chung et al., 2014] allow to perform multiple-task
for longitudinal variable and multiple-entities, however they
cannot handle multi-modal data. Similarly, classical ML al-
gorithms such supporting vector machines (SVM) [Müller
et al., 1997] and random forest [Breiman, 2001], can man-
age multi-modal data only after flattening the longitudinal
features, losing the time dependency information and inter-
pretability while, at the same time, increasing the total number
of variables. On the other hand, FDA has shown promising
results in dealing with multi-modal variables across numer-
ous longitudinal applications [Ullah and Finch, 2013][Cre-
mona et al., 2019][Boschi et al., 2021] and, recently, has been
effectively extended to deep learning methodologies [Rao
and Reimherr, 2023]. funGCN is designed to combine the
strengths of the FDA in handling multi-modal longitudinal
data with the GCN’s capabilities at detecting their interrela-
tionships and producing interpretable outcomes.

In the remainder of this paper, we first present our method-
ology (Section 2), then we evaluate the performance of our
approach against various competing algorithms through sim-
ulations (Section 3), and investigate a real-world application
using the longitudinal SHARE dataset (Section 4). Finally, we
draw our conclusions in Section 5. The Appendix material
can be found at https://arxiv.org/pdf/2403.10158.

2 Methodology
The architecture of funGCN is illustrated in Figure 1. The
input data are transformed through two distinct embedding
modules, each serving a preparatory role — KG embedding,
estimating the knowledge graph through a node-wise feature
selection approach, and GCN embedding, preparing the input
for the GCN component. The embedding modules’ outputs
are tensors of dimensions (n, p, kgraph) and (n, p, kgcn), respec-
tively. The GCN takes as input both the knowledge graph and
its specifically embedded data, and performs three analytics
tasks: regression, classification, and forecasting. While re-
gression estimates the feature across the entire time domain,
forecasting predicts the horizon (future) trajectory of a longi-
tudinal feature given its history (past) values.

The problem dimensions are defined by n, representing the
number of statistical entities, and p = pl + pc + ps, which
denotes the total number of variables (or features), where
pl, pc, ps indicate the numerosity of each input data modality.
Longitudinal variables (pl) evolve over time, categorical vari-
ables (pc) can have an arbitrary number of levels, and scalar
features (ps) are numerical values that remain constant.
Assumptions on longitudinal features. For each of the n
statistical entities, we observe pf distinct longitudinal vari-
ables, denoted as Xij for i = 1, . . . , n and j = 1, . . . , pf .
Typically, in real-world scenarios, these variables are sampled
at discrete time points, which might differ across variables
and entities [Ramsay and Silverman, 2005][Ullah and Finch,
2013]. However, FDA provides various established prepro-
cessing tools to construct smooth and continuous curves from
discrete measurements, such as basis expansions, moving av-
erage smoothing, and sparse conditional estimation [Yao et
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Term Definition
Multivariate time series Multiple longitudinal variables for one entity/subject.
Multi-modal model Model dealing with variables of different modalities (e.g. longitudinal, categorical,...).
Multiple entities model Model dealing with more statistical entities (e.g. several subjects).
Multi-task Model performing more that one analytical tasks (i.e. regression, classification, forecast).

Table 1: Definitions. Terminology associated with a model applicability.
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Figure 1: funGCN architecture. Embedding modules are discussed in Subsection 2.1, the knowledge graph estimation in Subsection 2.2, and
the GCN module in Subsection 2.3.

al., 2005]. Throughout this paper, we assume that such pre-
processing has been applied where necessary and consider
Xij ∈ L2(T ), the space of square-integrable functions over
the closed and bounded interval T . This implies that if f is
a function in L2(T ), then ∥f∥2L2 = ⟨f, f⟩L2 =

∫
T f2(t)dt <

∞. Hence, Xij are infinite-dimensional mathematical objects.

2.1 Embedding Modules
The two embedding modules differ on the representation of
longitudinal features, while the same transformation is applied
to categorical and scalar variables.
Longitudinal features. To transform the longitudinal vari-
able into finite-dimensional objects, we employ a tensor
representation, expressing each variable as linear combina-
tions of basis functions [Ramsay and Silverman, 2005]. Let
(bj1, . . . , b

j
k) denote the k functional basis for the feature

j. Then, the embedded longitudinal features are a tensor
X l ∈ Rn×pl×k defined as:

X l
ijs = ⟨Xji, b

j
s⟩L2 =

∫
T
Xji(t)b

j
s(t)dt.

Hence, a functional feature for a specific entity is converted to
a vector in Rk, with the coefficients derived by computing the
L2-inner product between the curve and each basis function.
The selection of the basis system is crucial, as it influences
the characteristics of the resulting embedding. To effectively
exploit their properties, we propose two different sets of basis
functions for the knowledge graph and the GCN embedding
modules.
KG embedding. The longitudinal features are represented us-
ing their first kgraph functional principal components (FPCs),
derived through an eigen-decomposition of the functional co-
variance operator [Kokoszka and Reimherr, 2017]. FPCs cap-
ture the directions of larger variability of the curves and are

a well-established technique in FDA, generally used to solve
a wide range of problems, including regression [Reiss and
Ogden, 2007] and classification [Wang et al., 2016]. Given
their proven effectiveness in detecting significant relationships
among variables [Boschi et al., 2023], FPCs are an optimal ba-
sis system to determine the structure of the node-wise feature
selection module input.
GCN embedding. The longitudinal features are embedded
using kgcn equispaced cubic B-splines. B-splines, known for
their piece-wise polynomial structure, offer a flexible yet stable
method for curves representation [Eilers and Marx, 1996].
Differently from FPCs, which are derived from the data and
vary across features, B-spline bases are pre-determined and
consistent across different variables. Moreover, while FPCs
can influence the entire time domain, cubic B-splines are non-
zero over a limited range, defined by a three-knot interval.
The localized influence is crucial for effective forecasting
while preserving the original embedded form. It enables a
clear distinction between the coefficients associated with past
values and those associated with the future, which ensures
continuity between the history and the horizon prediction and
makes B-splines an ideal tool to define the GCN input.

Categorical features. Each of the pc categorical variables,
which can have an arbitrary number of levels, is mapped to
a k-dimensional space using a standard embedding layer in
PyTorch [Paszke et al., 2019]. This process assigns a unique
k-dimensional vector to every level of the categorical variable,
with k = kgraph, kgcn depending on the embedding module.
Unlike the typical method where vector representations are
learned and optimized within the GCN module, funGCN pre-
determines these vectors before the network’s initialization.
This approach ensures a static representation that, while not
updated during GCN training, allows the integration of multi-
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Algorithm 1 Node-wise functional feature selection

GOAL: Estimate adjacency matrix A ∈ Rp×p

1. SET A = 0. FOR j = 1, . . . p:
• Perform functional feature selection
SET target = j and penalty λ = cλλmax

SET cλ = 1 and active set S = ø

WHILE |S| < pmax:

(a) IF feature t selected and t /∈ S:
→ add t to S and set Ajt = cλ

(b) decrease cλ

2. Make A symmetric: A = 1
2AA

T

3. Prune A: if Aij < θ ⇒ Aij = 0 and normalize it.

modal data by maintaining consistent embeddings.

Scalar features. Scalar features are treated as constant func-
tions over time. We follow the same module-specific basis
representation used for the longitudinal variables.

The embedding modules transform each feature modality
into kgraph and kgcn-dimensional vectors, resulting in output
tensors Xgraph ∈ Rn×p×kgraph and Xgcn ∈ Rn×p×kgcn , respec-
tively. These tensors are then standardized to ensure that, if
the third dimension is fixed, feature values across all entities
have a mean of 0 and a standard deviation of 1. This process
guarantees uniform representation of features. For each entity,
the features are encapsulated in a p× k matrix. This structure
aids the comparison of different entities and enables the fusion
of different modalities, while preserving the time-dependency
information of the longitudinal features.

Selection of kgraph and kgcn. The choice of k for longitu-
dinal features determines how closely the basis representation
approximates the original curves. A lower kgraph, such as
fewer than 5, offers computational efficiency and effective-
ness. Indeed, FPCs provide a parsimonious yet comprehensive
basis system: few components capture most of the curves’
variability and identify key feature relationships. On the other
hand, B-splines require a larger number of basis functions to
reconstruct the original signal. For capturing smooth curves
accurately, it is recommended to set kgcn around 10, with
adjustments based on signal complexity and task.

2.2 Knowledge Graph Estimation
The aim of the node-wise functional feature selection module
is the creation of a knowledge graph with nodes representing
the p features and edges indicating their association strength.
Hence, the graph information can be encapsulated in a p× p
adjacency matrix A. To estimate A, a node-wise regression
method is employed, conducting separate feature selection
for each feature as a target variable [Lee and Hastie, 2015].
This strategy enhances the accuracy and specificity of the
knowledge graph by allowing for individualized analysis of
feature relationships.

We adopt the functional feature selection methodology pro-
posed in [Boschi et al., 2023]. This approach was designed to
work with longitudinal features and basis representation. Still,
given the flexible structure of Xgraph, we can enhance its ap-
plicability to multi-modal data. The node-wise strategy is out-
lined in Algorithm 1. For each target variable j, j = 1, . . . , p,
we explore different penalty parameters λ = cλλmax. Ini-
tially, cλ is set to 1, corresponding to no active features. As
cλ gradually reduces, the number of selected features in the
model increases. We stop the procedure when this number
reaches an upper bound of pmax. In the adjacency matrix A,
for each row corresponding to a target variable j, we mark
the columns linked to selected features with their respective
cλ values, indicating the order of selection within the model.
The diagonal elements are set to 1 for self-association, and
all other non-selected feature columns are zeroed out. The
earlier a feature is chosen, the higher its cλ value. Thus, the
association strength reflects the selection sequence of features.

Once the node-wise selection routine is completed, first, we
compute the symmetric matrix Ã = 1

2 (A+AT ), and we then
prune the matrix by setting values below a certain threshold θ
to zero. Finally, we normalize it as follows:

Ā = DÃD, with D = diag
(( p∑

j=1

Ãij
)− 1

2
)
.

This pruning and normalization process further reduces the
problem dimension and sharpens the GCN focus on the most
significant connections, enhancing the efficiency of training.

Note that, despite the single feature selection procedure
being highly computationally efficient, the graph construction
cost grows with the number of features p. However, the graph
is independent of the specific tasks or targets, and, therefore,
it can be used across different GCN training scenarios without
being recomputed.

2.3 Graph Convolutional Network
The GCN module has a simple structure consisting of two
convolutional layers, each followed by a ReLU activation
function, and a final linear layer.

Input. The GCN receives as input the preprocessed tensor
Xgcn ∈ Rn×p×kgcn and the adjacency matrix Ā. At this stage,
it is necessary to define one or more target variables, denoted
as ptarget. In forecasting, Xgcn is divided into 2 parts based
on its third dimension. We define k2 = rf ∗ kgcn and k1 =
kgcn − k2. Here, rf represents the ratio of the time domain
that will be forecasted, and k1 and k2 denote the number of
coefficients associated with history and horizon, respectively.
We can simply consider k1 = k2 = kgcn for the regression and
classification tasks.

Training. We employ the Adam optimizer [Kingma and Ba,
2014] and the means-square error loss to deal with finite vec-
tors. The n entities are divided into training and validation
sets of dimension ntrain and nval, respectively. Throughout
each epoch, the training process iterates over the ntrain entities
feeding the GCN a p× k1 matrix and receiving a ptarget × k2
output. The optimization procedure occurs after each epoch.
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Monitoring validation loss enables early stopping if no im-
provement is observed for vstop consecutive epochs or upon
reaching the maximum number of epochs.

Mapping back to original features. For longitudinal and
scalar variables, their original form can be easily recovered
once the training is completed due to the adaptable nature
of their embeddings. Given the estimated coefficients ĉijs
and the basis system (bj1, . . . , b

j
k), the curves are computed as

follows [Kokoszka and Reimherr, 2017]:

X̂ij =

kgcn∑
s=1

ĉijsb
j
s .

However, for categorical variables, the embedding cannot
be directly inverted to the original space. Instead, a nearest
neighbors algorithm [Cover and Hart, 1967] is employed to
match each estimated vector with the nearest original category,
ensuring a meaningful approximation of the categorical data.

The GCN learns the most important connections between
different types of features from the adjacency matrix. Despite
its straightforward architecture, it handles multi-modal data
and executes different analytics tasks. Notably, ptarget can
be greater than one, meaning the GCN can predict multiple
targets after one training. Furthermore, it is feasible to train
the GCN for both classification and regression simultaneously,
given that the problem dimensionality is the same for both
tasks.

3 Simulation Experiments
Methods comparison. This section assesses the funGCN
model’s effectiveness with synthetic data, comparing it to
lstm, gru, svm, and functional regression (fReg). The
implementation and hyper-parameters used for all the methods
are detailed in Section A of the Appendix. To the best of our
knowledge, these are the only methodologies able to handle
multivariate longitudinal data and multiple entities.

Table 2 compares the selected methods based on their task
execution capabilities, applicable scenarios, and interpretabil-
ity. Notably, funGCN is the only framework supporting di-
verse tasks for multi-modal data and offering comprehensive
insights into feature relationships. lstm and gru lack inter-
pretability and support for categorical features, necessitating
that we remove such variables before executing these methods.
svm is limited to classification and requires one-hot encoding
of categorical features and flattening of longitudinal variables,
resulting in the loss of the time-dependency information and
interpretability. Finally, fReg cannot handle classification
and scenarios with more features than entities.

Experiments settings. We set the number of entities n =
300 and examine four distinct scenarios with varying numbers
of features: p = 20, 50, 100, 500. In each scenario, the pro-
portion of longitudinal, categorical, and scalar variables is 0.6,
0.2, and 0.2, respectively, and the number of interconnected
features is p0 = 10. We split p0 = 10 into four longitudinal,
4 categorical (2 with two levels, 1 with three levels, and 1
with four levels), and 2 scalar features. The synthetic data
generation process is described in Section B of the Appendix.

In each scenario, the target variables are the 4 longitudinal
and the 4 categorical from the p0 interconnected features. For
forecasting, we set the forecast ratio at 0.3, utilizing 70% of
the domain for predictions.. For each target, we conduct 20
replications using 225 entities for training and 75 for testing
across all methods, totaling 80 replications per task. For fReg,
we limit to 10 replications per target in the scenario with 50
features due to its computational complexity (see Table 3) and
do not consider scenarios with 100 and 500 features due to its
inability to deal with more parameters than entities.

Regression and forecasting tasks are assessed using the stan-
dardized root mean-squared error, which for the longitudinal
target Y is computed as:

std-RMSE =

(
1

n

n∑
i=1

1

sd(Yi)

∫
T

(
Yi − Ŷi

)2
dt
) 1

2
.

Classification performances are evaluated in terms of accuracy,
reflecting the proportion of correctly predicted instances.
Results. The results of the simulation experiments are pre-
sented in Figure 2. For each task across varying p, the dots
illustrate the average performance derived from 80 replications
(20 for each target), with the width of the intervals indicat-
ing the standard deviation. In regression tasks, the perfor-
mance of all algorithms is comparable, though funGCN ex-
hibits a marginal advantage. In forecasting and classification,
funGCN outperforms its competitors, which achieve similar
results among themselves. These findings underline the versa-
tility and effectiveness of funGCN across different tasks and
numbers of features, even in challenging scenarios where the
sample size is small relative to the number of variables.

Table 3 shows the average CPU time required for complet-
ing all replications across various tasks performed by each
algorithm. The computation time for funGCN is divided into
two parts: the creation of the knowledge graph and the training
of the GCN module. Although the graph was recomputed for
each simulation, it is important to note that this computation
is required only once in real-world applications, as the graph
does not need to be recomputed at inference time. svm is
the most time-efficient algorithm, whereas fReg is signifi-
cantly more computationally expensive. Compared to other
deep learning methods, funGCN exhibits greater efficiency,
particularly as the number of variables increases. Notably,
for scenarios with p = 500, funGCN’s inference phase even
surpasses svm in speed, highlighting its efficiency in handling
a large number of variables.

4 SHARE Analysis
The Survey of Health, Ageing and Retirement in Europe
(SHARE) is a pivotal research project that examines the im-
pact of health, social, economic, and environmental policies
on the life course of European citizens [Börsch-Supan et al.,
2013][Bergmann et al., 2017][Börsch-Supan, 2020]. SHARE
stands out for its longitudinal design, tracking the same in-
dividuals across eight survey waves from 2004 to 2020. We
restrict our analysis to the 1,518 participants who were part of
at least seven waves, ensuring sufficient measurements for reli-
able curve estimation. We investigate a subset of 35 variables
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tasks capability feature interpretability
regress classify forecast multi-modal multi-entities p > n single effect importance global relation

funGCN ✓⋆ ✓⋆ ✓ ✓ ✓ ✓ ✗ ✓ ✓
lstm ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗
gru ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗

fReg ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗
svm ✗ ✓ ✗ ▲ ✓ ✓ ✗ ✗ ✗

Table 2: Algorithms comparison. The table displays tasks, capability, and interpretability properties of the proposed funGCN and other
(existing) evaluated algorithms. The task columns refer to the possibility of performing either regression, classification, or forecast. The
capability columns refer to the ability to handle i) multi-modal data, ii) multiple entities, or iii) the number of variables being larger than the
sample size. The interpretability columns refer to the ability to estimate i) effect of single feature on the target, ii) importance of the feature for
the specific task, or iii) the global relationship between all the variables. [Notation: ⋆ indicates that funGCN is the only algorithm able to
concurrently perform regression and classification of multiple target variables within just one training process; ▲ denotes that svm can handle
multi-modal data only after flattening the longitudinal variables, losing the time information.]
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Figure 2: Simulation results. For each investigated scenario (p = 20, 50, 100, 500), dots represent the average over 80 replications (20 for
each target), and the width of the interval indicates the standard deviation. The y-axis for regression and forecast are inverted: higher values
correspond to better performance in all the panels.

p funGCNkg funGCNinf lstm gru fReg svm
20 0.8 2.5 4.3 10.8 472.5 0.1
50 1.8 2.2 9.7 18.6 5,006.5 0.2

100 3.5 2.4 16.8 25.1 − 0.4
500 16.1 3.1 80.7 80.8 − 4.7

Table 3: Simulation CPU time. Average CPU processing time, in
seconds, computed over 80 replications (20 for each target), and
across all possible tasks an algorithm performs in each instance. For
funGCN we report the time required to create the knowledge graph
(kg) and the time needed to complete the inference task (inf). All
the computations were executed on a MacBookPro 2021 with an M1
Max processor and 32GB of RAM.

from the EasySHARE dataset [Gruber et al., 2014], a prepro-
cessed version of the SHARE data. These variables, which
can be longitudinal, categorical, or scalar, span physical and
mental health, socio-demographics, and healthcare, offering a
rich dataset for comprehensive analysis — the complete list of
the examined variables is reported in Appendix Table C1.

Following the strategy in [Boschi et al., 2024], we employ
cubic B-splines for smoothing longitudinal variables, with
knots at survey dates and a roughness penalty on the curve’s
second derivative. The optimal smoothing parameter is deter-
mined by minimizing the generalized cross-validation crite-
rion [Craven and Wahba, 1978]. Despite variations in survey
dates and data points across participants, this approach offers a
consistent functional representation, allowing for a natural im-
putation of missing values and facilitating comparisons across
the entire timeline.
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Figure 3: SHARE results. Boxplots generated from the distribution
obtained from a total of 260 replications for regression and fore-
casting tasks, and 80 replications for classification – encompassing
20 replications for each target. The dots and the lines indicate the
means and medians of the distributions, respectively. The y-axis
for regression and forecast are inverted: higher values correspond to
better performance in all the panels.

Across task results. To evaluate the algorithms’ perfor-
mance across the 3 different tasks, we select each of the 13
longitudinal and 4 categorical variables from the chosen 35-
feature subset as target variables (detailed in Appendix Table
C1). We conduct 20 replications for each target, randomly
splitting the 1,518 subjects into a training set of 1,139 and a
test set of 379. The aggregate average results are depicted in
Figure 3, while the individual targets performance are avail-
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Figure 4: SHARE knowledge graph. Graph constructed considering all the 1, 518 subjects with kgraph = 3 and pruning parameter θ = 0.5.
Each node represents a feature, while different colors refer to different modalities. The nodes’ diameter and edges’ width are proportional to
the connections’ number and strength, respectively.

able in Appendix Table C2. Except for fReg, which shows
lower efficacy, all methods — including funGCN — yield
similar results across all evaluation metrics and tasks in this
analysis. However, funGCN provides interpretable results,
analyzed in the next section.

Graph Analysis. While the evaluation metrics are compa-
rable across algorithms, funGCN provides a unique inter-
pretability feature. Figure 4 illustrates the knowledge graph
generated for all 1,518 subjects with kgraph = 3 and pruning
parameter θ = 0.5. The graph unveils significant insights into
the interconnection between multi-modal features, and also
highlights complex relationships between health, social, and
economic factors.

In particular, the graph finds connections among chronic
conditions such as hypertension, heart attacks, and diabetes,
demonstrating their associations with factors like body mass
index (BMI) and age. This visualization highlights the dis-
eases’ intertwined nature and potential common drivers or
consequences, findings confirmed by medical literature [Petrie
et al., 2018][Powell-Wiley et al., 2021].

Moreover, funGCN reveals how variables describing health-
care service utilization, such as the number of general prac-
titioner visits and hospitalizations, are interconnected. This
helps to provide a clearer understanding of the healthcare
engagement and utilization patterns among individuals with
different health conditions [Walker et al., 2014].

Noteworthy is also the relationship between casp, a quality
of life measure, and eurod, an index assessing depression lev-
els, alongside perceptions of income and years of education.
This connection underscores the multifaceted impacts of men-
tal health, socioeconomic status, and education on overall life
satisfaction [Sivertsen et al., 2015][Zanin, 2017].

Additionally, the graph spotlights the link between Parkin-
son’s disease, hip fractures, and variables related to the sub-

jects’ mobility, such as adla (which measures the activities of
daily living) and fine motor skills. This association points to
the broader implications of such health conditions on individ-
uals’ independence and daily functioning [Tan et al., 2012].

Through these detailed insights, the knowledge graph serves
as a tool for understanding specific health and social con-
nections and emphasizes the value of funGCN in offering
a comprehensive overview of the factors influencing health
outcomes.

5 Conclusions
The proposed Functional Graph Convolutional Network
(funGCN) model offers a powerful and innovative approach
to analyzing complex multi-modal longitudinal data. By com-
bining Functional Data Analysis and Graph Convolutional
Networks, funGCN provides a unified framework for multi-
task learning and generates interpretable insights through the
creation of a knowledge graph. The promising simulation ex-
periments and a real-data application demonstrate funGCN’s
capability to improve the analysis of outcomes from the imple-
mentation of digital health solutions and longitudinal studies.
funGCN is an essential component of the SEURO Project

that aims to enhance home-based care and self-management
for older and frail adults. By identifying the most signifi-
cant interconnections between variables of different natures,
funGCN has the potential to provide new insights on person-
alized health and social care models. This can assist medical
professionals and policymakers in enhancing patient well-
being, reducing healthcare costs, and associated burden on
patients services.

Future plans include expanding funGCN’s applicability to a
wider range of healthcare datasets and settings, incorporating
more data types like imaging and genomics, and increasing
model interpretability with explainable AI techniques.
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