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Abstract
Uncontrolled confounding bias causes a spurious
relationship between an exposure variable and an
outcome variable and precludes reliable evaluation
of the causal effect from observed data. Thus, it is
important to observe a sufficient set of confounders
to evaluate the causal effect reliably. However,
there is no statistical method for judging whether
an available set of covariates is sufficient to derive
a reliable estimator for the causal effect. To ad-
dress this problem, we focus on the fact that the
mean squared error (MSE) of the outcome variable
with respect to the average causal risk can be de-
scribed as the sum of “the conditional variance of
the outcome variable given the exposure variable”
and “the square of the uncontrolled confounding
bias.” We then propose a novel sensitivity analy-
sis, namely, the proportion-based sensitivity analy-
sis of uncontrolled confounding bias in causal ef-
fects (PSA) in which the sensitivity parameter is
formulated as the proportion of “the square of the
uncontrolled confounding bias” to the MSE, and
we clarify some properties. We also demonstrate
the applicability of the PSA through two case stud-
ies.

1 Introduction
1.1 Background
The evaluation of the causal effect of an exposure variable
on an outcome variable is one of the central aims in obser-
vational studies. Compared to controlled randomized exper-
iments, observational studies are more susceptible to various
types of biases. In particular, uncontrolled confounding bias
causes a spurious relationship between the exposure variable
and the outcome variable, and this precludes reliable evalua-
tion of the causal effect from observed data. It is well known
that such uncontrolled confounding bias arises when there are
unmeasured confounders that are associated with both the ex-
posure variable and the outcome variable but are not influ-
enced by them.

When confounders between an exposure variable and an
outcome variable are properly measured in observational

studies, adjustment methods, such as stratified analysis, can
provide a reliable evaluation of the causal effect [Imbens and
Rubin, 2015; Pearl, 2009]. However, there is no statisti-
cal method to judge whether an available set of covariates
is sufficient to derive a reliable estimator of the causal effect
because of insufficient knowledge of important confounders
or a lack of data on known potential confounders. Sensi-
tivity analyses [Cinelli and Hazlett, 2020; Greenland, 2003;
Greenland, 2005; McCandless et al., 2007; McCandless et
al., 2008; Peña, 2022; VanderWeele and Ding, 2017; Van-
derWeele et al., 2019] and bounding methods [Balke, 1995;
Balke and Pearl, 1997; Cai et al., 2007; Cai et al., 2008;
Kuroki and Cai, 2008; Li et al., 2023; MacLehose et al.,
2005; Manski, 1990] have been commonly used to address
uncontrolled confounding bias in observational studies.

In this paper, we focus on sensitivity analysis for uncon-
trolled confounding bias in causal effects. Sensitivity analysis
actively introduces covariate information that is not available
from observational studies into a statistical causal model as
a sensitivity parameter and quantitatively evaluates how the
estimate of the causal effect changes when the value of the
sensitivity parameter is changed. Therefore, causal judgment
using sensitivity analysis is based on the bounds of the causal
effect of the exposure variable on the outcome variable (or
the uncontrolled confounding bias). Thus, unlike bounding
methods, in which the goal is to evaluate the causal effect
based on the best-case and worst-case scenarios, sensitivity
analysis has the advantage of eliminating unrealistic situa-
tions from the causal judgment. However, most of the cur-
rent sensitivity analyses (i) are formulated based on the mean
but not the variation (variance) of the potential outcome vari-
ables, and (ii) they do not handle a set of unmeasured con-
founders that consist of an uncertain number of discrete and
continuous variables. Thus, it is reasonable to introduce the
uncontrolled confounding bias itself as the sensitivity param-
eter into sensitivity analysis but not to focus on the associa-
tion among a specific unmeasured confounder, the exposure
variable, and the outcome variable.

1.2 Contribution
In this paper, we focus on the fact that the mean squared error
(MSE) of the outcome variable with respect to the average
causal risk can be described as the sum of “the conditional
variance of the outcome variable given the exposure variable”
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and “the square of the uncontrolled confounding bias,” i.e.,
the difference between the conditional mean of the outcome
variable given the exposure variable and the average causal
risk.

We then propose a novel sensitivity analysis, namely, the
proportion-based sensitivity analysis of uncontrolled con-
founding bias in causal effects (PSA), in which the sensitiv-
ity parameter is formulated as the proportion of “the square
of the uncontrolled confounding bias” to the MSE of the out-
come variable with respect to the average causal risk, and we
clarify some properties.

Here, the sensitivity parameters used in the PSA are called
the proportion-based sensitivity parameters of uncontrolled
confounding bias (PSP).

In contrast to the current sensitivity analysis, the PSA has
the following desirable properties.

(i) The PSA is formulated based on the minimal causal
knowledge that (a) the outcome variable cannot have an
effect on the exposure variable, and (b) a set of covariates
does not occur after the exposure variable or the outcome
variable.

(ii) The PSA enables us to handle a set of covariates that
consists of an uncertain number of discrete and continu-
ous variables.

(iii) The PSP always falls inside the range [0,1] without any
assumptions: The PSP can be interpreted as the propor-
tion.

(iv) The PSP has an estimable cutoff value that qualita-
tively prevents misleading causal judgment when we use
statistical measures, such as statistical risk differences,
through observed data to evaluate the causal effect.

In particular, in the framework of linear structural equa-
tion models (linear SEMs), the PSP can be interpreted from
the viewpoint of the interventional variance that evaluates
the variation of the outcome variable when conducting ex-
ternal intervention to the exposure variable [Kuroki, 2008;
Kuroki, 2012; Kuroki and Miyakawa, 2003]. In addition, we
provide a medical case study from the Cooperative Cardio-
vascular Project [MacLehose et al., 2005] and an industrial
case study on setting up painting conditions of car bodies
[Kuroki, 2008; Kuroki, 2012] to discuss the applicability of
the PSA. The PSA contributes to addressing the evaluation
problems of causal effects in the context of statistical causal
inferences. Here, given space constraints, proofs, the details
of the case studies and numerical experiments are provided in
the Supplementary Material.

2 General Framework
2.1 Preliminaries
This section introduces potential outcome variables used to
discuss our problem.

For simplicity, let X and Y be an exposure variable and
an outcome variable, respectively. For the values x and y
taken by X and Y , respectively, let f(x, y) and f(x) be the
joint probability density function of (X,Y )T = (x, y)T and

the marginal probability density function of X = x, respec-
tively. Here, the notation “T ” stands for a transposed vec-
tor/matrix. Then, f(y|x) represents the conditional proba-
bility density function of Y = y given X = x, defined as

f(y|x) def
= f(x, y)/f(x) for f(x) ̸= 0. Especially, in this pa-

per, when we emphasize that X and Y are discrete variables,
f(x, y), f(x) and f(y|x) are often replaced by pr(x, y),
pr(x) and pr(y|x), respectively. In addition, E(Y )(= µy)
and var(Y )(= σyy) are the mean of Y and the variance
of Y , respectively. E(Y |x)(= µy.x), var(Y |x)(= σyy.x),
cov(X,Y )(= σxy) are the conditional mean of Y given
X = x, the conditional variance of Y given X = x, and
the covariance between X and Y , respectively. A similar no-
tation is used for the other probability density functions and
statistical parameters.

In this paper, we assume that readers are familiar with the
basic theory of statistical causal inference [Imbens and Rubin,
2015; Pearl, 2009]. In principle, the i-th of the N subjects has
a potential outcome variable Yx(i) that would have resulted if
X had been x, denoted as X(i) = x. Yx(i) = y means that
“Y takes the value y when X is experimentally set to x for the
i-th subject” or the counterfactual statement that “Y would
have the value y, had X been x for the i-th subject”. For the
i-th subject, the potential outcome variable Yx(i) is observed
only if X(i) is x. This property is called consistency [Imbens
and Rubin, 2015; Pearl, 2009], which is formulated as

X(i) = x=⇒Yx(i) = Y (i).

We note that the subject ensures a deterministic relationship
between X and Y in the semantics of statistical causal infer-
ence [Imbens and Rubin, 2015; Pearl, 2009].

In this paper, we assume the stable unit treatment value
assumption, which can be summarized as follows: (i) the ex-
posure status of any subject does not affect the outcomes of
the other subjects (no interference), and (ii) the exposures of
all subjects are comparable (no variation in exposure). Thus,
when the N subjects in the study are considered random sam-
ples from the population of interest, X(i) and Yx(i) are re-
ferred to as the values taken by the random variables X and
Yx, respectively. Then, the causal probability density func-
tion of Yx = y regarding X = x is represented as f(yx). A
similar notation is used for other potential outcome variables
and causal probability density functions. Here, E(Yx), which
is the mean of Yx, is called an average causal risk of X = x
on Y . In this paper, for x ̸= x′,

E(Yx)− E(Yx′) and E(Y |x)− E(Yx)

are called a causal risk difference and an uncontrolled con-
founding bias for X = x, respectively.

When a controlled randomized experiment is conducted
and compliance is perfect since X is independent of Yx for
any x, f(yx) is identifiable and is given by f(yx) = f(y |x).
Here, “identifiable” means that the causal quantities, such as
f(yx), can be formulated consistently from the joint probabil-
ity density function of observed variables. In contrast, when
it is difficult to conduct a controlled randomized experiment
and only observed data are available, f(yx) is also identi-
fiable according to the conditionally ignorable treatment as-
signment condition [Imbens and Rubin, 2015], or graphically,
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the back-door criterion [Pearl, 2009]. In other words, if there
exists such a set S of observed covariates that X is condi-
tionally independent of Yx given S for any x, we say that
treatment assignment is conditionally ignorable given S, or
S is a sufficient set of confounders. Here, a variable that is
not affected by X is called a covariate, and confounders are
included in a set of covariates. Under the conditionally ignor-
able treatment assignment condition, f(yx) is identifiable by
using S as

f(yx) = E(f(y |x,S)).
Here, E[f(y |x,S)] is the expectation of f(y |x,S) regarding
S.

Although there are other identification conditions of causal
quantities, e.g., f(yx) that can be used to address our problem
[Pearl, 2009; Tian and Pearl, 2002], we do not cover them
here because of space constraints.

2.2 The PSP for the Whole Population
For the whole population, let us consider the mean squared
error (MSE) of Y with respect to E(YX)

MSE(Y,E(YX))

=

∫
x

(∫
y

(y − E(YX))
2
f(y|x)dy

)
f(x)dx

= E(var(Y |X)) + E((E(Y |X)− E(YX))
2
). (1)

Here, we note that var(Y |X), E(YX) and E(Y |X) are func-
tions of the random variable X . Given MSE(Y,E(YX)),
equation (1) shows the bias-variance tradeoff that increas-
ing/decreasing the explanation power of X on Y , var(Y |X),
leads to decreasing/increasing the uncontrolled confounding
bias, E(Y |X) − E(YX). Here, for simplicity, we proceed
with our discussion in situations where covariate information
is not available. When covariate information on S is avail-
able, equation (1) is replaced by

MSE(Y,E(YX |s) : s)

=

∫
x

(∫
y

(y − E(YX |s))2 f(y|x, s)dy
)
f(x|s)dx

to proceed with our discussion.
From equation (1), MSE(Y,E(YX)) is represented by the

sum of “the conditional variance of Y given X” and “the
square of the uncontrolled confounding bias”. Then, we pro-
pose one of the novel sensitivity parameters, namely, the
proportion-based sensitivity parameter of uncontrolled con-
founding bias for the whole population (w-PSP), as follows:

w-PSP =
E((E(Y |X)− E(YX))

2
)

MSE(Y,E(YX))
, (2)

where we define 0/0 = 0. Notably, the w-PSP does not de-
pend on the values taken by X or Y .

The w-PSP has the following properties.

(a) The w-PSP always falls inside the range [0, 1] without
any assumption. Thus, the w-PSP can be interpreted as
the proportion that evaluates how much of the MSE is
explained by “the square of the uncontrolled confounding
bias”.

(b) We have

w-PSP = 1 ⇔ E(var(Y |X)) = 0

w-PSP = 0 ⇔ E({E(Y |X)− E(YX)}2) = 0,

that is, the w-PSP = 1 implies that MSE(Y,E(YX)) is
completely explained by the uncontrolled confounding
bias alone, and w-PSP = 0 implies no uncontrolled con-
founding bias.

In addition, under the condition w-PSP ̸= 1, we note that
equation (2) can be transformed into

E((E(Y |X)− E(YX))
2
) =

w-PSP
1− w-PSP

E(var(Y |X)). (3)

Then, equation (3) provides the following findings:

(a) Equation (3) is estimable if the information on the
w-PSP is available together with observed data regard-
ing X and Y .

(b) Noting that E(var(Y |X)) is a positive constant value,
equation (3) is a nondecreasing function of w-PSP with a
vertical asymptote w-PSP = 1.

The w-PSP plays an important role in sensitivity anal-
ysis in linear SEMs. Here, for the given threshold w-
psp (< 1), the bounds on E((E(Y |X)− E(YX))

2
) are de-

rived by solving the inequality w-PSP≤ w-psp. The bounds
present a range within which causal quantities such as
E((E(Y |X)− E(YX))

2
), E(Yx) and E(Yx) − E(Yx′) must

lie given the validity of the assumptions.

2.3 The PSP for the Subpopulation
In this section, for the subpopulation of subjects who take
X = x, we consider the MSE of Y with respect to E(Yx) as
follows:

MSE(Y,E(Yx)) =

∫
y

(y − E(Yx))
2
f(y|x)dy

= var(Y |x) + (E(Y |x)− E(Yx))
2
. (4)

Generally, both var(Y |x) and (E(Y |x)− E(Yx))
2 are func-

tions of X = x. Then, the proportion-based sensitivity pa-
rameter of uncontrolled confounding bias for the subpopula-
tion X = x (s-PSPx) is formulated as

s-PSPx =
(E(Y |x)− E(Yx))

2

MSE(Y,E(Yx))
, (5)

where we define 0/0 = 0. We note that the w-PSP is constant,
but the s-PSPx is a function of x.

Here, the s-PSPx share many mathematical properties with
the w-PSP. As with the different properties from the w-PSP,
we note that equation (5) can be transformed into

(E(Y |x)− E(Yx))
2
=

s-PSPx

1− s-PSPx
var(Y |x) (6)

for s-PSPx ̸= 1.
Then, equation (6) includes E(Yx), which cannot be esti-

mated from observed data alone. However, if the information
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on the s-PSPx is available together with observed data, equa-
tion (6) is formulated by

E(Yx) = E(Y |x)±
√

s-PSPx

1− s-PSPx
var(Y |x). (7)

Then, if the sign of E(Y |x)−E(Yx) is known, E(Yx) is iden-
tifiable.

For the given threshold s-pspx (< 1), the bounds on E(Yx)
are derived by solving the inequality s-PSPx ≤ s-pspx re-
garding E(Yx). Although equation (7) also provides the
bounds on various kinds of causal quantities, such as the
causal risk ratio and the causal odds ratio, we focus on the
bounds on the average causal risk E(Yx) and the average
causal risk difference E(Yx)− E(Yx′) for x ̸= x′.

Letting E(Y 2|x) be the conditional mean of Y 2 given
X = x, the following theorem shows that the s-PSPx has an
estimable cutoff value that prevents misleading causal judg-
ment qualitatively even when E(Y |x) is utilized to evaluate
E(Yx):

Theorem 1✓ ✏
If

s-PSPx <
E(Y |x)2

E(Y 2|x)
(8)

holds, E(Yx) and E(Y |x) have the same sign.✒ ✑
The proof is provided in the Supplementary Material. In

contrast, referring to equation (7), the following theorem is
obtained:

Theorem 2✓ ✏
Under the condition s-PSPx, s-PSPx′ ≤ s-psp (< 1) for
x ̸= x′, the bounds on E(Yx)− E(Yx′) are given by

E(Y |x)− E(Y |x′)

−
√

s-psp
1− s-psp

(√
var(Y |x) +

√
var(Y |x′)

)
≤ E(Yx)− E(Yx′) ≤ (9)
E(Y |x)− E(Y |x′)

+

√
s-psp

1− s-psp

(√
var(Y |x) +

√
var(Y |x′)

)
.

Especially, if

s-PSP = max{s-PSPx, s-PSPx′} < (10)

(E(Y |x)− E(Y |x′))
2

(E(Y |x)− E(Y |x′))
2
+
(√

var(Y |x) +
√

var(Y |x′)
)2

holds, E(Yx)− E(Yx′) and E(Y |x)− E(Y |x′) have the
same sign.✒ ✑
The proof is provided in the Supplementary Material.

3 Theoretical Examples and Application
3.1 Discrete Model
Theoretical Results
In this section, as a theoretical example, we consider the case
where X is a discrete variable. Here, when X is a continu-
ous variable, according to [Balke, 1995] and [Balke and Pearl,
1997], in some situations, it is reasonable to assume that there
exists an exposure interval around each X = x, within which
a subject’s outcome is homogeneous. Under such an assump-
tion, it is possible to apply the discussion in this section. In
addition, although Y is assumed to be dichotomous and takes
one of {y, y′} in this section, the multivalued or continuous
outcome variable can be easily accommodated in the model
by using the event Y ≤ y as a (dichotomous) outcome vari-
able.

Equation (7) provides

pr(yx) = pr(y|x)±
√

s-PSPx

1− s-PSPx
pr(y|x)pr(y′|x). (11)

In addition, from Theorem 1, if s-PSPx < pr(y|x) holds, then
the bounds constructed through equation (11) are informative
in the sense that they exclude null (if equation (11) is neg-
ative, then the lower bound on pr(yx) should be given by 0
because pr(yx) does not take a negative value). In addition,
from Theorem 2, we derive the following theorem:

Theorem 3✓ ✏
Under the condition s-PSPx, s-PSPx′ ≤ s-psp (< 1) for
x ̸= x′, the bounds on pr(yx)− pr(yx′) are given by

pr(y|x)− pr(y|x′)−
√

s-psp
1− s-psp

×
(√

pr(y|x)pr(y′|x) +
√

pr(y|x′)pr(y′|x′)
)

≤ pr(yx)− pr(yx′) ≤

pr(y|x)− pr(y|x′) +

√
s-psp

1− s-psp

×
(√

pr(y|x)pr(y′|x) +
√

pr(y|x′)pr(y′|x′)
)
. (12)

Especially, if

s-PSP = max{s-PSPx, s-PSPx′} < (13)
(pr(y|x)− pr(y|x′))2

(
√

pr(y|x)pr(y′|x′) +
√

pr(y|x′)pr(y′|x))2

holds, pr(y|x)− pr(y|x′) and pr(yx)− pr(yx′) have the
same sign.✒ ✑
The proof is provided in the Supplementary Material.
Equation (13) qualitatively implies that the statistical risk

difference pr(y|x) − pr(y|x′) provides no-misleading causal
judgments for pr(yx)− pr(yx′).

Here, let nx and nx′ be the number of subjects who take
X = x and the number of subjects who take X = x′, re-
spectively. Under the multinomial distribution, letting l̂ and
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blacks (z′) whites (z)
dead within beta-blocker beta-blocker

30 days no (x′) yes (x) no (x′) yes (x)
no (y′) 4224 2143 63449 34868
yes (y) 1254 60 22191 1103

total 5478 2203 85640 35971

Table 1: Data from Cooperative Cardiovascular Project [MacLehose
et al., 2005]

û be the consistent estimator of the lower and upper bounds
of equation (12) using the sample probabilities, p̂r(y|x) and
p̂r(y|x′) when a.var(·) represents the asymptotic variance,
a.var(l̂) and a.var(û) are given by

a.var(l̂) (14)

=
1

nx

(√
pr(y|x)pr(y′|x)−

√
s-psp

1− s-psp
1− 2pr(y|x)

2

)2

+
1

nx′

(√
pr(y|x′)pr(y′|x′) +

√
s-psp

1− s-psp
1− 2pr(y|x′)

2

)2

,

a.var(û) (15)

=
1

nx

(√
pr(y|x)pr(y′|x) +

√
s-psp

1− s-psp
1− 2pr(y|x)

2

)2

+
1

nx′

(√
pr(y|x′)pr(y′|x′)−

√
s-psp

1− s-psp
1− 2pr(y|x′)

2

)2

,

respectively. The derivation is provided in the Supplemen-
tary Material.

Here, we note that [Tian and Pearl, 2000] provides the
sharp bounds on pr(yx) as

pr(x, y) < pr(yx) < 1− pr(x, y′). (16)

for any x. Then, since the simple bounds on pr(yx)− pr(yx′)
are given by

−pr(x′, y)− pr(x, y′)
< pr(yx)− pr(yx′) < pr(x, y) + pr(x′, y′), (17)

Here, equation (17) is called the Tian-Pearl bounds. By com-
bining equation (12) with equation (17), we can derive the
bounds that are sharper than those in [Tian and Pearl, 2000]
because we have

max
{
−pr(x′, y)− pr(x, y′), pr(y|x)− pr(y|x′)

−
√

s-psp
1− s-psp

(√
pr(y|x)pr(y′|x) +

√
pr(y|x′)pr(y′|x′)

)}
≤ pr(yx)− pr(yx′) ≤ (18)

min
{

pr(x, y) + pr(x′, y′), pr(y|x)− pr(y|x′)

+

√
s-psp

1− s-psp

(√
pr(y|x)pr(y′|x) +

√
pr(y|x′)pr(y′|x′)

)}
.

Case Study: Cooperative Cardiovascular Project
We illustrate our results by using data from the Coopera-
tive Cardiovascular Project [MacLehose et al., 2005]. Ta-
ble 1 shows the use of beta-blockers and 30-day mortality

Figure 1: The bounds on the causal risk difference in black patients.
The gray area indicates the region where the causal risk difference
exists, and the vertical line represents the cutoff value given in equa-
tion (13).

among acute myocardial infarction patients, stratified by eth-
nicity (black and white patients). Obviously, it is probable
that there exist some other confounders that affect both beta-
blocker users and 30-day mortality, such as sex and disease
status. We limit our discussion in this section to the evalua-
tion of the causal risk difference of beta-blocker use on 30-
day mortality for black patients. For the discussion of white
patients, refer to the Supplementary Material.

From Figure 1, for s-psp∈ [0.000, 0.107], Theorem 3
shows that the s-psp provides the bounds ([-0.420, 0.000] for
s-psp= 0.107) for the black patients who exclude null, which
suggests that the beta-blocker must have a preventive effect
on 30-day mortality among the black patients. In contrast,
the Tian-Pearl bounds provide the range [−0.442, 0.558] re-
gardless of the value of s-psp because the Tian-Pearl bounds
do not take the impact of the uncontrolled confounding bias
into account. On the other hand, the upper bound based on
the s-psp is higher than that of the Tian-Pearl bounds for s-
psp> 0.629, and the lower bounds based on the s-psp are
lower than that of the Tian-Pearl bounds for s-psp> 0.146.
Figure 1 shows that beta-blocker use can reduce the 30-day
mortality for blacks if s-psp∈ [0.000, 0.107], which does not
contradict [Kuroki and Cai, 2008] and [MacLehose et al.,
2005]. For details, see the Supplementary Material.

3.2 Linear SEM
Preliminaries
In this section, when it is assumed that cause-effect relation-
ships (data-generating process) between random variables
can be represented by a Gaussian linear SEM and the corre-
sponding directed acyclic graph (DAG), we apply the w-PSP
to linear SEMs. Here, we refer to nodes in the DAG and ran-
dom variables of the linear SEM interchangeably throughout
this paper. In addition, for the graph-theoretic terminology
used in this paper, refer to [Pearl, 2009].

Let us suppose that a DAG G = (V ,E) with a set V =
{V1, V2, . . . , Vm} of continuous random variables and a set
E of edges is given. G is called a path diagram when each
child-parent family in G represents a data-generating process
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shown in the linear SEM

Vi = αvi
+

∑
j:Vj∈pa(Vi)

αvivj
Vj + εvi

, i = 1, 2, . . . ,m, (19)

where pa(Vi) denotes a set of parents of Vi in G (the directed
edge Vj → Vi is assigned if Vj is a parent of Vi) and random
disturbances εv = (εv1

, εv2
, . . . , εvm

)T are assumed to be
normally distributed with an m-dimensional zero mean vec-
tor and m ×m invertible variance-covariance matrix. In ad-
dition, the bidirected edges between Vi and Vj (Vi ↔ Vj)
are assigned to a nonzero correlation relationship between
ϵvi and ϵvj (i ̸= j). Furthermore, the constant parameters
αvi and αvivj ( ̸= 0) are called the intercepts of Vi and path
coefficients of Vj on Vi, respectively.

Here, we define some notation. n denotes the sample size.
For univariates X and Y , in the framework of linear SEMs,
the conditional variance σyy·x of Y given X is formulated as
σyy·x = σyy − σ2

xy/σxx, and the regression coefficient βyx

of X in the single regression model of Y on X is represented
by βyx = σxy/σxx. In addition, the correlation coefficient
ρxy between X and Y is defined by ρxy = σxy/

√
σxxσyy .

In linear SEM (19), the first derivative of E(Yx) regarding
x, namely,

dE(Yx)

dx
= τyx (20)

is the total effect of X on Y . Graphically, the total effect τyx
is interpreted as the total sum of the products of the path co-
efficients on the sequence of directed edges along all directed
paths from X to Y . The total effect can be interpreted as
a change in the mean of Y when X is changed by one unit
through external intervention. In contrast, in the context of
linear SEMs, βyx − τyx is called a spurious correlation (un-
controlled confounding bias). Here, external intervention to
X means that X is fixed to a constant value X = x in linear
SEM (19). Then,

E(Yx) = µy + τyx(x− µx) (21)

var(Yx) = σyy.x + (βyx − τyx)
2σxx (22)

are called the interventional mean and the interventional vari-
ance, respectively [Kuroki and Miyakawa, 2003; Kuroki,
2008; Kuroki, 2012].

Theoretical Results
Under the preparation above, noting

MSE(Y,E(YX)) = σyy.x + (βyx − τyx)
2σxx = var(Yx) (23)

From equation (1), the w-PSP is reformulated as

w-PSP =
(βyx − τyx)

2σxx

var(Yx)
. (24)

Equation (24) can be interpreted as the proportion of “the
square of the spurious correlation”, (βyx − τyx)

2σxx, within
the variability, var(Yx), of the outcome variable when con-
ducting external intervention X = x.

From equation (24), we derive the following theorem:

Theorem 4✓ ✏
Under the condition w-PSP≤ w-psp (< 1), the bounds
on τyx are given by

βyx −
√

w-psp
1− w-psp

σyy.x

σxx

≤ τyx ≤ βyx +

√
w-psp

1− w-psp
σyy.x

σxx
. (25)

Especially, if
w-PSP < ρ2xy (26)

holds, τyx and βyx have the same sign.✒ ✑
The proof is provided in the Supplementary Material.

Equation (26) implies that if the proportion of “the square
of the spurious correlation” (βyx − τyx)

2σxx with respect to
the interventional variance var(Yx) is smaller than the square
of the correlation coefficient ρ2xy between X and Y , then the
evaluation of the total effect τyx when using βyx does not
qualitatively provide a misleading causal judgment regarding
the total effect.

By replacing τyx in equation (21) with equation (25), the
bounds on E(Yx) are given by

µy + τyx(x− µx)

≥ µy +

(
βyx −

√
w-psp

1− w-psp
σyy.x

σxx

)
(x− µx) (27)

µy + τyx(x− µx)

≤ µy +

(
βyx +

√
w-psp

1− w-psp
σyy.x

σxx

)
(x− µx) (28)

for x ≥ µx and reverses the inequality for x < µx.
In the framework of linear regression analysis, let β̂yx,

σ̂yy.x, and σ̂xx be the ordinary least square (OLS) estima-
tors of βyx, σyy.x, and σxx, respectively. Then, the unbiased
estimators l̂ and û of the lower and upper bounds of equation
(25) are given by

l̂ = β̂yx −

√
w-psp

1− w-psp
n− 2

n− 1

σ̂yy.x

σ̂xx
, (29)

û = β̂yx +

√
w-psp

1− w-psp
n− 2

n− 1

σ̂yy.x

σ̂xx
, (30)

for the sample size n, respectively. var(l̂) and var(û) can be
formulated as

var(l̂) = var(û) =
σyy.x

(n− 3)(1− w-psp)σxx
. (31)

The derivation is provided in the Supplementary Material.
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Figure 2: The bounds on the total effect of the spray distance. The
gray area indicates the region where the causal risk difference exists,
and the vertical line represents the cutoff value given in equation
(25).

Case Study: Study of Setting Up Coating Conditions
We illustrate our results by using data from a case study of
setting up coating conditions for car bodies, as reported by
[Kuroki, 2008; Kuroki, 2012]. According to [Kuroki, 2008;
Kuroki, 2012], car bodies are coated to increase both the rust
protection quality and visual appearance. A certain coating
thickness must be ensured during the coating process. This
process was conducted by operators who sprayed car bodies
with paint. This depended on the operators’ skills and might
have caused the low transfer efficiency (Y ). Nonexperimen-
tal data in the coating process were collected to examine the
process conditions and to increase the transfer efficiency. The
sample size was 38, and the intervenable variables are

Dilution ratio (X1), Degree of viscosity (X2)
Gun speed (X3), Spray distance (X4), Air pressure (X5)

Pattern width (X6)

The sample correlation coefficients between Y and {X1,
X2, X3, X4, X5, X6} are

ρx1y = −0.198, ρx2y = 0.463, ρx3y = 0.292,
ρx4y = −0.614, ρx5y = −0.151, ρx6y = −0.226,

respectively. For details of this case study, refer to [Kuroki,
2008; Kuroki, 2012]. In this section, we limit our discussion
to the evaluation of the total effect of the spray distance (X4)
on the transfer efficiency (Y ). For other variables, refer to the
Supplementary Material.

From Figure 2, for w-psp∈ [0.000, 0.377], Theorem 4
shows that the w-psp provides the bounds ([−1.228, 0.000]
for w-psp= 0.377) on the total effect of the spray distance
excluding the null, which implies that the spray distance must
have a negative effect to improve the transfer efficiency. For
w-psp> 0.377, since the bounds on the total effects include
the null, it may be difficult to judge whether the total effect
of the spray distance is positive or negative. Here, according
to [Kuroki, 2008; Kuroki, 2012], the possibility of a positive
total effect is excluded by expert knowledge.

4 Discussion
Inspired by the cosine similarity and the bias-variance trade-
off, we proposed a novel sensitivity analysis, the proportion-

based sensitivity analysis of uncontrolled confounding bias in
causal effects (PSA). Remarkably, (i) the PSA is formulated
based on minimal causal knowledge, (ii) the PSA enables us
to handle a set of covariates that consists of an uncertain num-
ber of discrete and continuous variables, (iii) the PSA can
be interpreted as the proportion, and (iv) the PSP has an es-
timable cutoff value that prevents misleading causal judgment
qualitatively through observed data. In particular, when we
wish to know how the estimates of the average causal risk
(causal risk difference) change when the value of the sensi-
tivity parameters is changed since the PSA involves a single
sensitivity parameter, it is easy to visualize the relationship
between the average causal risk (causal risk difference) and
the PSP in 2-D plots.
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