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Abstract
In modern federated learning, one of the main chal-
lenges is to account for inherent heterogeneity and
the diverse nature of data distributions for different
clients. This problem is often addressed by intro-
ducing personalization of the models towards the
data distribution of the particular client. However,
a personalized model might be unreliable when ap-
plied to the data that is not typical for this client.
Eventually, it may perform worse for these data
than the non-personalized global model trained in
a federated way on the data from all the clients.
This paper presents a new approach to federated
learning that allows selecting a model from global
and personalized ones that would perform better
for a particular input point. It is achieved through
a careful modeling of predictive uncertainties that
helps to detect local and global in- and out-of-
distribution data and use this information to select
the model that is confident in a prediction. The
comprehensive experimental evaluation on the pop-
ular real-world image datasets shows the superior
performance of the model in the presence of out-
of-distribution data while performing on par with
state-of-the-art personalized federated learning al-
gorithms in the standard scenarios.

1 Introduction
The widespread adoption of deep neural networks in vari-
ous applications requires reliable predictions, which can be
achieved through rigorous uncertainty quantification. Al-
though uncertainty quantification has been extensively stud-
ied in different domains under centralized settings [Lee et
al., 2018; Lakshminarayanan et al., 2017; Gal and Ghahra-
mani, 2016; Kotelevskii et al., 2022a], only a few works have
considered this area within the context of federated learning
(FL) [Linsner et al., 2022; Kotelevskii et al., 2022b]. Typi-
cally, in FL papers, algorithms result in using either a person-
alized local model or a global model. However, both these
models could be useful in different cases by providing the
tradeoff between the personalization of a local model and the
higher reliability of the global one [Hanzely and Richtárik,
2020; Liang et al., 2019].

In this paper, we introduce a new framework to choose
whether to predict with a local or global model at a given
point based on uncertainty quantification. The core idea is
to apply the global model only if the local one has high
epistemic (model) uncertainty [Hüllermeier and Waegeman,
2021] about the prediction at a given point, i.e., the local
model doesn’t have enough information about the particu-
lar input point. In case the local model is confident (either
in predicting a particular class or in the fact that it is ob-
serving an ambiguous object with high aleatoric (data) uncer-
tainty [Hüllermeier and Waegeman, 2021]), it should make
the decision itself without involving the global one.

As a specific instance of our framework, we propose an
approach inspired by Posterior Networks (PostNet; [Char-
pentier et al., 2020]) and its modification, Natural Posterior
Networks (NatPN; [Charpentier et al., 2022]). This model is
particularly useful for our purposes, as it enables the estima-
tion of aleatoric and epistemic uncertainties without incurring
additional inference costs. Thus, we can fully implement the
switching between local and global models efficiently.
Related work. The literature presents various approaches
to uncertainty quantification in FL settings. In [Linsner et
al., 2022], the authors suggest that training an ensemble of
K global models is the most effective for federated uncer-
tainty quantification. Despite its effectiveness, this approach
is K times more expensive compared to the classic FedAvg
method. Another proposal comes from [Kotelevskii et al.,
2022b], where the authors recommend using Markov Chain
Monte Carlo (MCMC) to obtain samples from the posterior
distribution. However, this method is computationally de-
manding due to its significant computational complexity.

Other works, such as [Chen and Chao, 2021; Kim and
Hospedales, 2023], also present methods that could poten-
tially estimate uncertainty in FL. However, these papers do
not expressly address the opportunities and challenges of un-
certainty quantification in their discussion. It’s important to
note that there are existing approaches of deferring classifi-
cation to other models or experts in case of abstention, for
example [Keswani et al., 2021]. Despite this, none of these
approaches have been explored in a federated context, nor
have they considered the corresponding constraints.

The central idea of PostNet and NatPN involves us-
ing Dirichlet prior and posterior distributions over the cat-
egorical predictive distributions [Malinin and Gales, 2018;
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Malinin and Gales, 2019; Charpentier et al., 2020; Charpen-
tier et al., 2022; Sensoy et al., 2018]. To parameterize the pa-
rameters of these Dirichlet distributions, the authors suggest
introducing a density model over the deep representations of
input objects. In NatPN, a Normalizing Flow [Papamakarios
et al., 2021; Kobyzev et al., 2020] is employed to estimate
the density of embeddings extracted by a trained feature ex-
tractor. This density is then used to calculate updates to the
Dirichlet distribution.

Despite the success of the NatPN model [Charpentier et
al., 2022], we identified certain issues with the loss func-
tion employed in NatPN, which become particularly criti-
cal when dealing with high aleatoric uncertainty regions. In-
triguingly, the issue was not discovered in the authors’ recent
work [Charpentier et al., 2023], which investigated potential
issues in the training procedure. Recent works [Bengs et al.,
2022; Bengs et al., 2023] has unveiled other potential issues
related to the training of Dirichlet models in general but have
not offered solutions to address these challenges.
Contributions. Our paper stands out as one of the few stud-
ies that consider the usage of uncertainty quantification in FL
scenarios. We aim to use uncertainty estimates to improve the
prediction quality in personalized FL. Our contributions:
1. We present a new FL framework that is based on uncer-

tainty quantification, which allows switching between us-
ing a personalized local or global model. To achieve that,
we consider several types of uncertainties for local and
global models and propose a procedure that ensures that
the model is confident in its prediction if the prediction is
made. Otherwise, our framework rejects the prediction if
we are confident that there is a high uncertainty in the pre-
dicted class. To the best of our knowledge, we are the first
who introduce the concept of switching between models
based on uncertainty quantification in FL.

2. We introduce a specific realization of our framework
FedPN, using Dirichlet-based NatPN model. For this
particular model, we identify an issue in the loss func-
tion of NatPN (not known in literature before) that com-
plicates disentanglement of aleatoric and epistemic uncer-
tainties, and propose a solution to rectify it.

3. We conduct an extensive set of experiments that demon-
strate the benefits of our approach for different input data
scenarios. In particular, we show that the proposed model
outperforms state-of-the-art personalized FL algorithms in
the presence of out-of-distribution data while being on par
with them in standard scenarios.

2 General Framework of Switching between
Global and Personal Models

In this section, we introduce our framework, discussing the
general idea and potential nuances. In the subsequent section,
we will delve into a specific implementation.

2.1 Concept Overview
We are going to consider a FL setting with multiple clients,
each having its personalized local model. We additionally as-
sume that a non-personalized global model is also available.

Figure 1: The general scheme of the proposed approach. Each input
is first processed by a personalized local model. In case of high
epistemic uncertainty, the decision is delegated to the global model.
Otherwise, if epistemic uncertainty is low, the local model proceeds
with the decision. Both models consider also aleatoric uncertainty
and may abstain from prediction.

We suppose that local and global models share the same ar-
chitecture, but were trained differently. The global model was
trained using a FL algorithm (e.g. FedAvg [McMahan et al.,
2017]), hence using data (in a federated manner) from all the
clients. Local models were trained by each of the clients lo-
cally, using only local data of a particular client. We assume
both these models are available for each of the clients. The
global model is typically expected to perform reasonably well
on each client’s data. Assuming that we already have trained
global and local models, we consider a situation where clients
have the option to use either the global model or their local
models to make predictions for a new incoming object x.

The choice between local and global models for prediction
depends on the multiple factors that contribute to their predic-
tion quality. First of all, a shift in the distribution between the
local data of a particular client and the global population may
have a significant effect on the models’ performance. Possi-
ble shifts include covariate shift, label shift, or different types
of label noise. If the shift is significant, the global model
might be very biased in the prediction for the particular client,
while normally the local model is unbiased.

The second part of the picture is the size of the available
data. Generally, the global model has more data and poten-
tially, if no data shift is present, should outperform the local
ones. However, the global model is usually trained with no di-
rect access to the data stored by clients, which might degrade
its performance. Eventually, the best-performing model will
be the one that achieves a better bias-variance trade-off.

In this work, we propose a framework to choose between
the pointwise usage of a local or global model for prediction.
This decision is based on the uncertainty scores provided by
the model. This approach aims to mitigate issues that arise
when there is a distribution shift between a client’s distribu-
tion and the global distribution, which can often hinder model
performance. By using uncertainty to guide the model selec-
tion, we can enhance the model’s ability to perform well even
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in the presence of such distribution shifts.
Both the local and global models can provide uncertainty

estimates. These estimates include not only the total predic-
tive uncertainty but also separate aleatoric and epistemic un-
certainties. This feature allows for a more refined decision-
making process, ensuring the most suitable model is used for
prediction or choosing to abstain from making a prediction
altogether in the face of high uncertainty. The resulting work-
flow is summarized in Figure 1.

It is worth noting, that our work is not the first which con-
siders a joint usage of global and local models. However,
we are the first to consider switching strategies between them
that are based on uncertainty quantification. For example,
one of the prior works [Hanzely and Richtárik, 2020] em-
ploys the average distance of local models to their collec-
tive mean as a regularization technique, linking local models.
Conversely, our approach relies on either purely local training
or the global model, depending on model uncertainty for each
sample. Additionally, the “averaged model” in their research
is not akin to a global model in design; it does not guarantee
universal performance across all data and is more similar to
the MAML [Finn et al., 2017] approach.

2.2 Optimal Choice of Model
We start from the important fact that the local model is not
exposed to the data shift between the general population and
the particular client. Thus, if this model is sufficiently confi-
dent in the prediction, there is no need to involve the global
model at all. However, it is important to distinguish between
different types of uncertainty here. Usually, the total uncer-
tainty of the model predicting at a particular data point can
be split into two parts: aleatoric uncertainty and epistemic
uncertainty [Hüllermeier and Waegeman, 2021]. Aleatoric
uncertainty is the one that reflects the inherent randomness in
the data labels. The epistemic uncertainty is the one that re-
flects the lack of knowledge in the model choice because the
model was trained on a data set of a limited size, or model
misspecification. In what follows we will refer to epistemic
as to “lack of knowledge” uncertainty, as the models we are
using, neural networks, are known to be very flexible.

For our problem, it is extremely important to distinguish
between aleatoric and epistemic uncertainties. Suppose the
local model has low epistemic and high aleatoric uncertainty
at some point. In that case, the model is confident that the pre-
dicted label is ambiguous, and the model should abstain from
prediction. However, if the epistemic uncertainty is high,
it means that the model doesn’t have enough knowledge to
make the prediction (not enough data), and the global model
should make the decision. The global model, in its turn, may
either proceed with the prediction if it is confident or abstain
from prediction if there is high uncertainty associated with
the prediction. Thus, in this context, for a fixed client and an
unseen input, there are four interesting outcomes, see Table 1.

Note, that when local epistemic uncertainty is low, there is
no need to refer to the global model. The assumption here is
that the local model is better than the global one if it knows
the input point well. Thus we consider only two options for
the local model: low epistemic with low aleatoric and low
epistemic with high aleatoric regardless of the confidence of

Known knowns Known unknowns
Local Confident. This

represents local in-distribution
data for which the local model

is confident in prediction.

Local Ambiguous. This is
local in-distribution data with

high aleatoric uncertainty
(class ambiguity).

Unknown knowns Unknown unknowns

Local OOD. This refers to
data that is locally unknown
(high epistemic uncertainty)

but known to other clients. In
this case, it makes sense to
use the global model for

predictions.

Global Uncertain. These
input data are

out-of-distribution for the
local model while the global

model is uncertain in
prediction (high total

uncertainty). The best course
of action is to abstain from

making a prediction.

Table 1: Possible scenarios for the input data point in the introduced
setup. A particular input falls into one of the categories depend-
ing on the confidence in its prediction by local and global models.
The disentanglement between aleatoric and epistemic uncertainties
is crucial to optimally making the decision.

the global model. When the local epistemic uncertainty is
high, it means that the client barely knows the input point,
and thus we refer to the global model. For the global model,
we look at the total uncertainty as we only care about the error
of prediction which is determined by total uncertainty.

The particular implementation of the approach described
above would depend on the choice of the machine learning
model and the way to compute uncertainty estimates. The
key feature required is the ability of the method to compute
both aleatoric and epistemic uncertainties. In the next section,
we propose the implementation of the method based on the
posterior networks framework [Charpentier et al., 2020].

3 Dirichlet-Based Deep Learning Models
We have chosen to showcase Dirichlet-based models [Ma-
linin and Gales, 2018; Charpentier et al., 2020; Charpen-
tier et al., 2022] as a specific instance of our general frame-
work. The intuition behind this decision lies in the fact that
these models allow the distinction between various types of
uncertainty and facilitate the computation of corresponding
uncertainty estimates with minimal additional computational
overhead. Furthermore, unlike ensemble methods [Beluch
et al., 2018], there is no need to train multiple models.
In comparison to approximate Bayesian techniques, such as
MC Dropout [Gal and Ghahramani, 2016], Variational Infer-
ence [Graves, 2011] or MCMC [Izmailov et al., 2021], al-
most all expectations of interest can be derived in closed form
and almost without computational overhead. This makes
Dirichlet-based models an attractive and efficient option for
implementing our proposed framework.

3.1 Basics of Dirichlet-Based Models
In this section, we introduce the basics of Dirichlet-based
models for classification tasks. To ease the introduction, let
us start by considering a training dataset D = {xi, yi}Ni=1,
where N denotes the total number of data points in the
dataset. We assume that labels yi belong to one of the K
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classes. Typically, the Dirichlet-based approaches assume
that the model consists of two hierarchical random variables,
µ and θ. The posterior predictive distribution for a given un-
seen object x can be computed as follows:

p(y | x,D) =

∫
p(y | µ)

[∫
p(µ | x, θ) p(θ | D)dθ

]
dµ,

where p(y | µ) is the distribution over class labels, given
some probability vector (e.g., Categorical), p(µ | x, θ) is the
distribution over a simplex (e.g., Dirichlet), and p(θ | D) is
the posterior distribution over parameters of the model. How-
ever, for practical neural networks, the posterior distribution
p(θ | D) does not have an analytical form and is computa-
tionally intractable. Following [Malinin and Gales, 2018], we
suggest considering a “semi-Bayesian” scenario by looking
at a point estimate of this distribution: p(θ | D) = δ(θ − θ̂),
where θ̂ is some estimate of the parameters (e.g., MAP esti-
mate). Then the integral inside the brackets simplifies:∫
p(µ | x, θ) p(θ | D)dθ =

∫
p(µ | x, θ) δ(θ − θ̂)dθ = p(µ | x, θ̂).

In the series of works [Malinin and Gales, 2018; Malinin
and Gales, 2019; Charpentier et al., 2020; Charpentier et al.,
2022] the posterior distribution p(µ | x, θ̂) is chosen to be
the Dirichlet distribution Dir

(
µ | αpost(x)

)
with the parame-

ter vector αpost(x) = αpost(x | θ̂) that depends on the input
point x. In these models, the prior over probability vectors µ
takes the form of a Dirichlet distribution, representing the dis-
tribution over our beliefs about the probability of each class
label. In other words, it is a distribution over distributions of
class labels. This prior is parameterized by a parameter vector
αprior, where each component αprior

c corresponds to our belief
in a specific class. PostNet [Charpentier et al., 2020] and
NatPN [Charpentier et al., 2022] propose the idea that the
posterior parameters αpost(x) can be computed in the form of
pseudo-counts that are computed by a function:

αpost(x) = αprior +α(x), (1)

where α(x) = α(x | θ̂) is a function of input object x that
maps it to positive values.
Parameterization of α(x). In NatPN it is proposed to use
the following parameterization:

α(x) = p
(
g(x)

)
f
(
g(x)

)
. (2)

In this parameterization, g(x) represents a feature extrac-
tion function that maps the input object x (usually high-
dimensional) to a lower-dimensional embedding. Subse-
quently, p(·) is a “density” function (parameterized by nor-
malizing flow in the case of [Charpentier et al., 2022; Char-
pentier et al., 2020]), and f(·) is a function mapping the ex-
tracted features to a vector of class probabilities.
This parameterization offers several advantages. Firstly, since
p(·) is expected to represent the density of training examples,
it should be high for in-distribution data. Secondly, as the
density is properly normalized, embeddings that lie far from
the training ones will result in lower values of p

(
g(x)

)
, thus

leading to lower α(x). This means that for such input x, we
will not add any evidence, and consequently, αpost(x) will be
close to αprior.

3.2 Uncertainty Measures for Dirichlet-Based
Models

One of the advantages of using Dirichlet-based models is
their ability to easily disentangle and quantitatively estimate
aleatoric and epistemic uncertainties.
Epistemic uncertainty. We begin by discussing epistemic
uncertainty, which can be estimated in multiple different
ways [Malinin and Gales, 2021]. In this work, following
the ideas from [Malinin and Gales, 2018], we quantify the
epistemic uncertainty as the entropy of a posterior Dirichlet
distribution, which can be analytically computed as follows

H[Dir
(
µ | αpost(x)

)
] =

ln
∏K

i=1 Γ
(
αpost

i (x)
)

Γ
(
αpost

0 (x)
) −

∑K
i=1(α

post
i (x)− 1)(ψ̃

(
αpost
i (x)

)
− ψ̃

(
αpost
0 (x)

)
),

(3)
where αpost(x) =

[
αpost
1 (x), . . . , αpost

K (x)
]
, ψ̃ is a digamma

function and αpost
0 (x) =

∑K
i=1 α

post
i (x).

Aleatoric uncertainty. Aleatoric uncertainty can be mea-
sured using the average entropy [Kendall and Gal, 2017],
which can be computed as follows:

E
µ∼Dir

(
µ|αpost(x)

)H[p(y | µ)] =

−
∑K

i=1
αpost

i (x)

αpost
0 (x)

[ψ̃
(
αpost
i (x) + 1

)
− ψ̃

(
αpost
0 (x) + 1

)
]. (4)

This metric captures the inherent noise present in the data,
thus providing an estimate of the aleatoric uncertainty.

3.3 Loss Functions for Dirichlet-Based Models
The loss function used in [Charpentier et al., 2022; Charp-
entier et al., 2020] is the expected Cross-Entropy (CE), also
known as Uncertain Cross Entropy (UCE) [Biloš et al., 2019].
This loss function is a strictly proper scoring rule, which im-
plies that a learner is incentivized to learn the true conditional
p(y | x). For a given input x, the loss can be written as:

L(y,αpost(x)) = E
µ∼Dir

(
µ|αpost(x)

)∑K
i=1 − 1[y = i] log µi =

E
µ∼Dir

(
µ|αpost(x)

)CE(µ, y) = ψ̃
(
αpost
0 (x)

)
− ψ̃

(
αpost
y (x)

)
,

(5)
where αpost

0 (x) =
∑K

i=1 α
post
i (x). Additionally, authors sug-

gest penalizing too concentrated predictions, by adding the
regularization term with some hyperparameter λ. The overall
loss function looks as follows:

L(y,αpost(x))− λH[Dir
(
µ | αpost(x)

)
], (6)

where H denotes the entropy of a distribution. This overall
loss function is referred to by authors as Bayesian loss [Char-
pentier et al., 2022; Charpentier et al., 2020].
Issue with the loss function. Let us explore an asymptotic
form of (5). For all x > 0, the following inequality holds:

log x− 1
x ≤ ψ̃(x) ≤ log x− 1

2x .

Recalling the update rule (1) and using the specific parameter-
ization of αprior

c = 1 for all c, we conclude that all αpost
c (x) >

1. Hence, we can approximate ψ̃
(
αpost
c (x)

)
≈ logαpost

c (x).
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To simplify the notation, we will use z = g(x) and denote by
fy(z) predicted probability for the y-th (correct) class:

L(y,αpost(x)) ≈ log(αpost
0 (x))− log(αpost

y (x)) =

logK + log
[
1 +

p(z)(
1
K−fy(z))

αprior
y +p(z)fy(z)

]
, (7)

see the full derivation in Appendix, Section A.2.
We see from (7) that for an in-distribution case with high

aleatoric uncertainty (all classes are confused and equally
probable), the last term is canceled. Note, that the presence
of entropy term (that is used in [Charpentier et al., 2022;
Charpentier et al., 2020] resulting in the final loss of equa-
tion (6)), which incentivizes the learner to produce smooth
prediction will only amplify the effect. This implies that no
gradients concerning the parameters of the density model will
be propagated. As a result, p(·), which is the density in the
embedding space, may disregard regions in the embedding
space that correspond to areas with a high concentration of
ambiguous training examples. This violates the intuition of
p(·) as a data density. Thus, uncertainty estimates based on
p(·) cannot be used to measure epistemic uncertainty, as it
ignores the regions with high aleatoric uncertainty.

In addition to the problem of confusing high-aleatoric and
high-epistemic regions, we discovered that the proposed loss
function defies intuition when confronted with “outliers.” We
define an “outlier” as an object with a predicted probability of
the correct class is less than 1

K . From (7), we see that the last
term changes its sign precisely at the point where fy(z) =
1
K . This implies that to minimize the loss function, we must
decrease p(z) at these points, which seems counterintuitive as
these z values correspond to objects from our training data.

Although the issue concerning equation (5) arises primarily
in the asymptotic context, we can readily illustrate it through
the loss function profiles (see Figure 2-left) for a range of
fixed correct class prediction probabilities.

To further emphasize the problem, we examine the loss
function landscape and provide a demonstrative example.
Consider three two-dimensional Gaussian distributions, each
with a standard deviation of 0.1 and centers at (−1, 0), (1, 0),
and (0, 1) (see Figure 2-center). Left and right clusters are set
to include objects of only one class, while the middle distribu-
tion contains uniformly distributed labels, representing a high
aleatoric region. Each Gaussian contains an equal amount
of data. We train the NatPN model using a centralized ap-
proach, employing both the loss function from equation (5)
and the loss function with our fix; see equation (8). Subse-
quently, we evaluate the quality of the learned model by plot-
ting the density in the center of the middle Gaussian. Ideally,
we would expect the density to be equal for different numbers
of classes K. However, we observe a different picture with
a “density” estimate at the central cluster decreasing when
one increases the number of clusters, see Figure 2-right. In
this Figure, we plot the median of the estimated density for
different loss functions. In the next section, we introduce a
simple trick, which rectifies the behavior of the loss function,
while without the correction density vanishes with K. We re-
fer the reader to an additional toy example on image data in
Appendix, Section B.6.

It is essential to emphasize that addressing these issues is
critical for our framework, as we need to accurately differen-
tiate between aleatoric and epistemic uncertainties to select
the appropriate model for a given situation. In the following
section, we propose a simple but efficient technique to rectify
the aforementioned problem with the loss function, ensuring
that our framework distinguishes between the different types
of uncertainties and makes informed model choices.
Proposed solution. We propose to still use the parametric
model to estimate density, but now our goal is to ensure that
p(z) accurately represents the density of our training embed-
dings z = g(x). To achieve this, we propose maximizing
the likelihood of the embeddings explicitly by incorporating
a corresponding term into the loss function. Simultaneously,
we aim to prevent any potential impact of the Bayesian loss
on the density estimation parameters, maintaining their inde-
pendence. Thus, we suggest the following loss function:

L
(
y, StopGradp(g(x))α

post(x)
)
− λH

[
Dir

(
µ | αpost(x)

)]
− γ log p

(
g(x)

)
,

(8)
where λ, γ > 0 are hyperparameters, and StopGradp(g(x))
means that the gradient will be not propagated to the param-
eters of a density model, which parameterizes p

(
g(x)

)
.

We should note that while the corrected loss function may
look somewhat ad hoc, it is computationally simple to im-
plement, which is very important for modern deep learn-
ing. Compared to the original loss function, our rectified loss
does not introduce any additional computational overhead –
in both cases (for the old loss and the new one) the gradient
will be computed only once for each of the parameters.

4 FedPN: Specific Instance of the Framework
In the section, we consider specific instances of our frame-
work. However, it is not limited to only one instance. Other
possible options are discussed in Appendix, Section B.2.

4.1 Federated Setup
In this section, we show, how one can adapt NatPN for
FL. Suppose we are given an array of datasets Di for 1 ≤
i ≤ b, where b represents the number of clients. Each
Di = {xij ∈ Rd, yij}

|Di|
j=1 consists of object-label pairs. We

construct our federated framework in such a way that all
clients share the feature extractor g parameters ϕ and main-
tain personalized heads f i parameterized by θi. Furthermore,
we retain a “global” head-model f , which is trained using
the FedAvg [McMahan et al., 2017] method and which ulti-
mately has parameters θ.

Following the NatPN approach, we employ normalizing
flows to estimate the embedding density. As it is for head
models, here we also learn two types of models – a local den-
sity model pi (using local data) parameterized by ψi and a
global density model p (using data from other clients in a fed-
erated fashion) parameterized by ψ. It is important to note
that both types of models are trained on the same domain
since the feature extractor model is fixed for local and global
models. We refer readers to Appendix, Section B.3. for the
discussion of computational overhead.
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Figure 2: Left: Image depicts the landscape of the loss function with K = 10 classes. The red line (representing high aleatoric regions)
appears relatively flat. Even at this level, the density in corresponding points tends to be underestimated. As the number of classes increases,
this effect is amplified. Center: This image depicts the training data, where the leftmost and rightmost Gaussians consist of only one class
each. In contrast, the middle Gaussian contains all K labels, randomly permuted. Each Gaussian has an equal number of data points, implying
that, if p(z) follows the intuition of density, all peaks should have the same height. Right: By altering the number of classes K, we change
the aleatoric uncertainty. We train the model using the vanilla approach of NatPN and measure p(z) at the central peak. As the number of
classes increases, the density for UCE decreases, violating the intuition that p(z) is the density of training data. While for our proposed trick
it behaves as expected.

4.2 Threshold Selection
Before discussing the results, it is essential to understand how
we determine when to make predictions using a local model
or a global one. This decision, resulting in a “switching”
model, depends on a particular uncertainty score. This score
can either be the logarithm of the density of embeddings, ob-
tained using the density model (normalizing flows), or the
entropy of predictive Dirichlet distribution (3). We found that
both measures provide comparable behavior, and in the ex-
periments for Table 2 we use the density of embeddings.

To apply this approach, we must establish a rule for how
a client decides whether to use its local model for predic-
tions on a previously unseen input object x or to delegate
the prediction to the global model. One approach is to select
some uncertainty values’ threshold. This threshold can be
chosen based on an additional calibration dataset. In our ex-
periments, we split each client’s validation dataset in a 40/60
ratio, using the smaller part for calibration.

The choice of the threshold is arguably the most subjective
part of the approach. Ideally, we would desire to have ac-
cess to explicit out-of-distribution data (either from another
client “local OOD” or completely unrelated data “global
OOD”). With this data, we could explicitly compute uncer-
tainty scores for both types of data (in-distribution and out-
of-distribution) and select the threshold that maximizes ac-
curacy. However, we believe it is unfair to assume that we
have this data in the problem statement. Therefore, we sug-
gest a procedure for choosing the threshold based solely on
available local data.

To choose the threshold, we assume that for all clients,
there might be a chance that some p% (typically 10%) of
objects are considered outliers. We further compute the es-
timates of epistemic uncertainty (with either entropy or the
logarithms of the density of embeddings) and select an ap-
propriate threshold based on this assumption for each of the
clients. For the high epistemic uncertainty points of the global
model, similar thresholding can be performed to optimize its

prediction quality. Additionally, we conducted an ablation
study on threshold selection (see Appendix, Section B.5).

5 Experiments
For experiments, we employ seven diverse datasets:
MNIST [LeCun et al., 1998b], FashionMNIST [Xiao et al.,
2017], MedMNIST-A, MedMNIST-C, MedMNIST-S [Yang
et al., 2021; Yang et al., 2023], CIFAR10 [Krizhevsky, 2009],
and SVHN [Netzer et al., 2011]. The LeNet-5 [LeCun et
al., 1998a] encoder architecture is applied to the first five
datasets, while ResNet-18 [He et al., 2016] is used for CI-
FAR10 and SVHN. Building on the ideas from [Charpen-
tier et al., 2020; Charpentier et al., 2022], we implemented
the Radial Flow [Rezende and Mohamed, 2015] normalizing
flow due to its lightweight nature and flexibility. In all our
experiments, we focus on a heterogeneous data distribution
across clients. We consider a scenario involving 20 clients,
each possessing a random subset of 2 or 3 classes. The overall
amount of data each client possesses is approximately equal.
The FL process is conducted using FedAvg algorithm.

In the following sections, we present different experiments
that highlight the strengths of our approach. We should note
that we don’t have a dedicated experiment to illustrate how
the approach deals with local ambiguous data as the vision
datasets we are considering have very few points of this type.

5.1 Assessing Performance of the Switching Model
In this section, we assess the performance of our method,
where the prediction alternates between local and global
models based on the uncertainty threshold.

For each dataset, we have three types of models. First,
a global model is trained as a result of the federated proce-
dure, following FedAvg procedure. Then, every client, after
the federated procedure, retains the resulting encoder network
while the classifier and flow are retrained from scratch us-
ing only local data. The third type of model, the “switching”
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FedAvg FedRep PerFedAvg FedBabu FedPer FedBN APFL FedPN
Dataset InD OOD Mix InD OOD Mix InD OOD Mix InD OOD Mix InD OOD Mix InD OOD Mix InD OOD Mix InD OOD Mix

MNIST 87.6 82.3 84.8 99.3 0.0 50.0 99.3 50.0 74.7 99.6 61.8 80.5 99.5 29.4 64.1 74.2 65.0 69.4 77.9 58.9 68.4 98.4 98.3 98.3
FashionMNIST 66.4 55.2 60.8 95.3 0.0 47.7 95.1 22.9 59.0 95.8 22.4 59.1 95.8 15.2 55.5 56.3 51.8 54.1 77.0 34.0 55.5 84.3 78.2 81.3
MedMNIST-A 58.1 47.5 52.3 96.9 0.0 48.5 96.2 12.5 55.4 97.3 8.1 53.4 97.7 12.6 56.2 47.8 43.3 45.5 98.0 49.0 74.4 96.2 94.9 95.5
MedMNIST-C 49.5 45.5 43.6 93.0 0.0 46.5 91.7 2.4 47.5 95.0 13.6 54.1 95.2 10.9 54.0 50.0 43.3 44.3 95.4 53.3 73.3 94.4 88.7 91.2
MedMNIST-S 38.9 34.8 33.0 87.4 0.0 43.8 86.7 3.2 45.8 90.5 5.7 48.0 90.9 6.0 48.5 40.5 38.9 37.2 91.8 34.0 61.8 86.9 75.5 80.0

CIFAR10 27.6 23.3 25.6 81.2 0.0 40.6 73.3 0.0 36.8 84.1 1.4 42.7 84.1 0.6 42.4 35.2 28.6 32.0 62.4 15.0 38.7 59.1 28.8 44.1
SVHN 80.6 76.7 78.3 94.7 0.0 47.3 93.4 9.5 51.4 94.9 11.2 53.0 95.4 6.5 50.9 74.4 71.9 73.3 80.5 42.5 59.3 87.1 62.2 73.4

Table 2: In the table, we report accuracy scores, obtained by different algorithms using different data splits. InD means that we use in-
distribution data of all the clients and corresponding local models. OOD means that we use local models of different clients, but evaluate it
on the classes not presented in the corresponding train splits. Mix means a random mixture of InD and OOD, where the share of InD is 50%
and the same for OOD. Values in bold – best results on mixed data.

Local FedAvg FedRep PerFedAvg FedBabu FedPer FedBN APFL FedPN
MNIST 99.1 87.6 99.3 99.3 99.6 99.5 74.2 77.9 99.4

FashionMNIST 95.3 66.4 95.3 95.1 95.8 95.8 56.3 77.0 95.7
MedMNIST-A 96.2 58.1 96.9 96.2 97.3 97.7 47.8 98.0 99.0
MedMNIST-C 93.3 49.5 93.0 91.7 95.0 95.2 50.0 95.4 96.6
MedMNIST-S 87.8 38.9 87.4 86.7 90.5 90.9 40.5 91.8 90.7

CIFAR10 88.6 27.6 81.2 73.3 84.1 84.1 35.2 62.4 75.1
SVHN 91.2 80.6 94.7 93.4 94.9 95.4 74.4 80.5 92.2

Table 3: In this table we report the accuracy of the in-distribution data, using only local models. We can see, that for our approach if we know
that the input data comes from in-distribution, we can safely use local models (without switching) and the results will be on par with others.
Underlined values are the best for a given dataset.

model, alternates between the first two models based on the
uncertainty threshold set for each client.

Additionally, for each client, we consider the following
three types of data: data from the same classes used during
training (InD), data from all other classes (OOD), and data
from all classes (Mix). For each of these datasets and data
splits, we compute the average prediction accuracy (client-
wise). The results of this experiment are presented in Ta-
ble 2. Separate results on InD and OOD data are shown in
Appendix, Section B.4.

In this experiment, we compare the performance (accu-
racy score) of different (personalized) FL algorithms: Fe-
dAvg [McMahan et al., 2017], FedRep [Collins et al., 2021],
PerFedAvg [Fallah et al., 2020], FedBabu [Oh et al., 2022],
FedPer [Arivazhagan et al., 2019], FedBN [Li et al., 2021],
APFL [Deng et al., 2020]. Note, however, that our proposed
method is the only which allows natural criteria for switching
and selecting either the local or global models. For others,
incorporation of the logic is not straightforward and might be
a topic of further research.

Worth emphasising, that the state-of-the-art performance
on the in-distribution data is not the ultimate goal of our pa-
per, our method performs on par with other popular personal-
ized FL algorithms. The remarkable thing about our approach
is that it can be reliably used on any type of input data.

For our method, FedPN, we used the “switching” model.
From Table 2, we observe that our model’s performance for
InD data is typically comparable to the competitors. For
“Mix” data, our approach is the winner by a large margin
for almost all datasets. Note, that this data split is the most
realistic practical scenario — all the clients aim to collabo-
ratively solve the same problem, given different local data.

However, due to the heterogeneous nature of the between-
clients data distribution (covariate shift), local models cannot
learn the entire data manifold. Therefore, occasionally refer-
ring to global knowledge is beneficial while still preserving
personalization when the local model is confident.

Note, that for CIFAR10 all the methods are not working
well. For our method, it means that either the learned den-
sity model does not distinguish well between in- and out-of-
distribution data, or the threshold was not chosen accurately.
In Table 3 we present results for our model on InD data when
only local models were applied (so no “switching” is used,
compared to Table 2). This might be useful in scenarios when
we know that data comes from the distribution of the local
data. In this case, there is no sense to switch to the global
model. We see, that despite it was not the purpose of the
work, our approach performs on par with other competitors,
slightly outperforming them on some datasets. An additional
ablation study on the performance of each model on different
splits is in Appendix, Section B.7.

6 Conclusion
We proposed a personalized FL framework that leverages
both a globally trained federated model and personalized lo-
cal models to make final predictions. The selection between
these models is based on the confidence in the prediction.
Empirical evaluation demonstrated that, under realistic sce-
narios with both InD and OOD data present, this approach
outperforms both local and global models when used inde-
pendently. While the model’s capacity to handle OOD data is
not perfect and depends on various factors, such as the qual-
ity of the global model and the selection of the threshold, our
“switching” approach leads to improved performance.
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