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Abstract

In multicriteria decision making, sophisticated de-
cision models often involve a non-additive set func-
tion (named capacity) to define the weights of all
subsets of criteria. This makes it possible to model
criteria interactions, leaving room for a diversity of
attitudes in criteria aggregation. Fitting a capacity-
based decision model to a given Decision Maker is
a challenging problem and several batch learning
methods have been proposed in the literature to de-
rive the capacity from a database of preference ex-
amples. In this paper, we introduce an online algo-
rithm for learning a sparse representation of the ca-
pacity, designed for decision contexts where prefer-
ence examples become available sequentially. Our
method based on regularized dual averaging is also
well fitted to decision contexts involving a large
number of preference examples or a large number
of criteria. Moreover, we propose a variant mak-
ing it possible to include normative constraints on
the capacity (e.g., monotonicity, supermodularity)
while preserving scalability, based on the alternat-
ing direction method of multipliers.

1 Introduction
Multicriteria decision support tools aim to facilitate the explo-
ration of possible trade-offs between the evaluation dimen-
sions involved in the comparison of alternatives in a choice
or ranking problem, and to recommend suitable solutions to
the user [Steuer, 1986; Keeney et al., 1993; Roy, 1996]. To be
able to entrust the machine with the task of exploring possible
solutions and making recommendations, an important step is
to acquire preferential information enabling a formal model
of the user’s preferences to be built [Boutilier, 2013]. This
step of learning preferences and the decision model is often
envisaged in batch mode, i.e. it is assumed that a history of
previous decisions is available, or a database of examples of
pairwise comparisons, which will be exploited in its entirety
to adapt a generic decision model to the user’s value system

∗The code and the proofs not included in the paper are available
at https://gitlab.com/margother/OPL.

[Fürnkranz and Hüllermeier, 2010; Domshlak et al., 2011;
Aggarwal and Fallah Tehrani, 2019].

In other contexts, particularly that of recommender sys-
tems [Zhao et al., 2016], examples of preferences arrive se-
quentially, because they are collected progressively from re-
cent user’s feedback or answers to preference queries. In
this case, for reasons of reactivity, it is generally prefer-
able to adapt the current model to the margin using the
new example (online learning), rather than restart the learn-
ing process from scratch on the set of available examples.
When the entire database of examples is available but very
large, it can also be efficient to consider these examples se-
quentially and use online learning [Shalev-Shwartz, 2012;
Hoi et al., 2021]. Various methods for learning decision mod-
els in batch are available in the literature on preference mod-
eling, but the online aspect remains relatively unexploited in
decision theory. The aim of this article is to propose on-
line algorithms for learning advanced weighted aggregation
functions standardly used for multicriteria decision making,
including Choquet integrals and multilinear utility functions
[Grabisch et al., 2009].

In the setting of multicriteria aggregation, it is well known
that linear models of the weighted sum type are not suffi-
cient to cover the diversity of preferences and value systems
encountered. To gain in expressiveness, we often resort to
more sophisticated aggregation functions that allow a non-
additive view of the importance of criteria. In this way, the
weight associated with a set of criteria can be greater or less
than the sum of the weights of the criteria that make it up.
This makes it possible to model positive or negative syner-
gies in the aggregation of evaluations, and thus to model in-
teractions among criteria [Grabisch et al., 2009]. The notion
of weighting is then represented by a set function called ca-
pacity, which associates a weight to every subset [Grabisch,
2016]. The multilinear model introduced in multi-attribute
utility theory [Keeney et al., 1993] and Choquet’s integral
for multicriteria decision making [Grabisch and Labreuche,
2010] are standard examples of capacity-based multidimen-
sional evaluation models. The task of fine-tuning the prefer-
ence model is then to determine which capacity is best suited
to model and explain the user’s preferences.

This learning process can be complex in several respects.
On the one hand, defining a capacity requires specifying a
number of parameters exponential in the number of criteria
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(one per subset). Moreover, these parameters are generally
subject to constraints, for normative reasons. For example,
in the multilinear model, as in the Choquet integral, capacity
must be monotonic with respect to set-inclusion to guarantee
that the associated decision model is monotonic with Pareto
dominance (the improvement of a solution on one or more
criteria cannot have negative repercussions in the comparison
of this solution with the others). Putting such constraints on
the capacity makes sure that the learned aggregation function
is monotonic [Fallah Tehrani et al., 2012]. Other constraints
may sometimes be deemed desirable to define a suitable ca-
pacity. For example, in a context of fairness, the capacity used
in the Choquet model may be required to be supermodular
so as to promote solutions with balanced evaluation profiles
[Lesca and Perny, 2010].

Capacity identification in decision models, possibly un-
der monotonicity constraints, has been the subject of several
studies by the past, e.g., [Grabisch et al., 2008; Tehrani and
Hüllermeier, 2013; Anderson et al., 2014; Benabbou et al.,
2017]. In recent years, this issue has been very much alive in
the community at the crossroads of machine learning and al-
gorithmic decision theory., see e.g., [Beliakov and Wu, 2019;
Bresson et al., 2020; Pelegrina et al., 2020; Kakula et al.,
2020a; Herin et al., 2023]. However, the potential contribu-
tion of online learning to the identification of capacities re-
mains underexplored despite a recent attempt [Kakula et al.,
2020b] concerning the Choquet integral without the mono-
tonicity constraint.

In this paper, we introduce online learning algorithms suit-
able for a wide class of capacity-based decision models, in-
cluding the Choquet integral and the multilinear model. We
also propose an extension to include normative constraints on
capacities such as monotonicity and supermodularity. The
paper is organized as follows: Section 2 introduces the tech-
nical background needed to present the results and some illus-
trative examples, Section 3 proposes an online algorithm for
learning a capacity without constraints, Section 4 proposes an
online algorithm capable of including normative constraints
(typically monotonicity or supermodularity) in the learning
process. Finally, Section 5 presents numerical test results il-
lustrating the effectiveness of the proposed approach.

2 Background and Notations
Multicriteria decision making problems are characterized by
the fact that the alternatives are evaluated with respect to n di-
mensions representing various points of view (criteria evalu-
ation or individual optinions) possibly conflicting each other.
In the sequel, N = {1, . . . , n} denotes the set of criteria un-
der consideration in the problem. The set of alternatives is
denoted X . Every element x ∈ X is represented by an evalu-
ation vector x = (x1, . . . , xn) where xi represents the value
of x with respect to criterion i for i = 1, . . . , n. We assume
here that criterion values are all expressed on the same utility
scale [0,1], 0 and 1 representing the bottom and top evalua-
tions respectively.

Capacities and the Möbius inverse. In order to model
the importance of criteria coalitions, we consider a capacity
v : 2N → [0, 1], i.e., a set function such that v(∅) = 0,

v(N) = 1 and v(T ) ≤ v(S) for all S, T ⊆ N such that
T ⊆ S. The latter condition, called monotonicity with re-
spect to set inclusion, guarantees that no criterion has a neg-
ative contribution to the importance of the coalition to which
it belongs. The explicit definition of a capacity requires 2n

parameters (one per subset of criteria) but alternative repre-
sentations, sometimes more compact, can be obtained using
the Möbius inverse. Formally, the Möbius inverse of capacity
v is another set function m defined by:

m(S) =
∑
T⊆S

(−1)|S\T |v(T )

The coefficients m(S) are named Möbius masses. They com-
pletely characterize capacity v that can be recovered, for any
S ⊆ N by: v(S) =

∑
T⊆S m(T ).

By abuse of notation, v and m will also denote the vec-
tors (v(S)S∈N ) and (m(S)S∈N ) in Rd with d = 2n whose
components are indexed by all subsets of N ranked in lexi-
cographic order. Due to the monotonicity constraint we have
∥m∥0 ≤ ∥v∥0 where ∥.∥0 denotes the L0 norm (i.e., the num-
ber of non-zero coefficients), thus making the Möbius repre-
sentation generally more compact than the capacity itself, as
pointed out in [Herin et al., 2022]. An illustration of this in-
equality is given by k-additive capacities, i.e., capacities hav-
ing null Möbius masses on all subsets including more than k
elements and admitting at least a non-zero Möbius mass on
a subset of size k [Grabisch, 1997]. For example, 2-additive
capacities are defined using only n + n(n − 1)/2 Möbius
masses. They are used when interactions only appear on pairs
of criteria but not on larger subsets.

Since v({i}) = m({i}) for every singleton, we can see
that m{i,j} = v({i, j})− v({i})− v({j}) measures the gap
to additivity in aggregating the importance of i and j. Möbius
masses may be positive or negative and are used to model syn-
ergies between the elements of a coalition, e.g., in cooperative
game theory and in multicriteria decision analysis [Grabisch,
2016]. When the capacity is used as a weighting function in
a multicriteria decision model, the associated Möbius inverse
enables to control the interactions among criteria.
Decision models based on Möbius masses. Given a capac-
ity v and its Möbius inverse m, we consider a general aggre-
gation function defined for any vector x ∈ X by:

F (x) =
∑

S⊆N m(S) ϕS(xS) (1)

where xS is the restriction of x to components belonging
to S and ϕS is an non-linear aggregation function defining
the interaction term on every subset S including more than
one element (ϕ{i}(xi) = xi for any singleton {i}). Func-
tion ϕS is a local aggregator measuring the quality of x re-
stricted to subset S. Standard examples for ϕS are conjunc-
tive aggregation functions like minimum or product but other
functions could be considered as well. Whenever m(S) = 0
for some S, the interaction term ϕS does not appear in the
model. If v is 1-additive, then all interaction terms vanish
in the model and F boils down to a weighted sum: F (x) =∑n

i=1 m({i})xi. If v is 2-additive, then the weighted sum is
augmented by terms modeling pairwise interactions. We ob-
tain: F (x) =

∑n
i=1 m({i})xi +

∑
i<j m({i, j})ϕij(xi, xj).
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Considering only k-additive models would be too limited.
Non-null Möbius masses may appear on subsets of any size,
possibly including N itself (e.g., when we want to attach
a special importance to the worse component of x, using
ϕN (x) = mini∈N{xi}). When it comes to learning model
F from preference examples, we have to identify the interac-
tions that really matter, even if it means neglecting the others
to make the model more readable. This can be achieved by
looking for a sparse m vector.

Function F simply defines a preference model by stating
that a solution x is at least as good as y (denoted x ≿ y) if
and only if F (x) ≥ F (y). Our focus on model F defined in
Equation 1 is justified by several reasons. First, it covers a
large class of sophisticated decision models used in multicri-
teria analysis. In particular, it includes the discrete Choquet
integral used to model preferences based on interacting crite-
ria [Grabisch et al., 2009] and defined by:

Cv(x) =
∑n

i=1

[
v(X(i))− v(X(i+1))

]
x(i)

where (.) is any permutation of N such that x(i−1) ≤ x(i),
i = 1, . . . , n, X(i) = {(i), . . . , (n)} and X(n+1) = ∅. Us-
ing Möbius masses, Cv can indeed be rewritten as follows
[Chateauneuf and Jaffray, 1989]:

Cv(x) =
∑

S⊆N m(S)mini∈S{xi}

We recognize an instance of model F where ϕS(xS) =
mini∈S{xi}. The Choquet integral includes various simpler
decision models as special cases such as weighted averages,
order statistics, ordered weighted averages [Yager, 1988] and
their weighted extension [Torra, 1997]. They are therefore all
instances of the F model. Similarly, the multilinear model
used in multiattribute utility theory [Dyer and Sarin, 1979]
and in game theory [Owen, 1972] is defined by:

MLv(x) =
∑

S⊆N v(S)
∏

i∈S xi

∏
i/∈S(1− xi)

It also reads as follows:MLv(x) =
∑

S⊆N m(S)
∏

i∈S xi.
Here also, we recognize an instance of model F where
ϕS(xS) =

∏
i∈S xi.

Beyond its generality, the focus on model F is justified by
its linearity in parameter m. F indeed takes the simple form
of an inner product ⟨m,ϕ(x)⟩ where ϕ(x) = (ϕS(x), S ⊆
N) whose components are indexed by the subsets of N
ranked in lexicographic order. Thus, F (x) is a linear function
of m for any given x, and any constraint of type F (x) ≥ F (y)
associated to a preference example x ≿ y for any given pair
(x, y) reads ⟨m,ϕ(x)− ϕ(y)⟩ ≥ 0 which is a linear inequal-
ity. This also holds for indifference examples that translate to
linear equations. Hence, a database of preference and indif-
ference example translates into a linear system of equations,
which significantly simplifies the learning process.
Dealing with constraints on the capacity. Monotonicity
of v w.r.t. set inclusion is a necessary and sufficient condition
to guarantee that Choquet and multilinear models are non-
decreasing in every component and therefore that the induced
preference is consistent with weak Pareto dominance (e.g.,
∀i ∈ N, xi ≥ yi ⇒ x ≿ y). When it comes to learning
capacity from preference examples, whether in the Choquet
integral, in the multilinear model, or more generally in the F

model, the question arises as to how to obtain a capacity that
verifies this monotonicity property. Let us first remark that
preference examples may partly contribute to enforce mono-
tonicity. For instance, in the case of Choquet and multilinear
model we have F (1S , 0−S) = v(S) for all S ⊆ N where
(1S , 0−S) is the vector of Rn whose components indexed in
S equal 1, the other being equal to 0. Hence, for any pair
T, S of subsets such that T ⊆ S ⊆ N , a preference example
like (1S , 0−S) ≿ (1T , 0−T ) is equivalent to v(S) ≥ v(T ).
Thus a capacity-based decision model that well fits such pref-
erence examples should nearly satisfy monotonicity on the
pairs present in the database, However, in practice, prefer-
ence are collected from past experiences and we cannot ex-
pect that all relevant (S, T ) pairs are present in the preference
database. Multiple violations of monotonicity are still possi-
ble. Another approach to enforce monotonicity is to explic-
itly include all monotonicity constraints in the learning pro-
cess. The constraints can be directly expressed using Möbius
masses as follows:

∑
T⊆S,T∋i m(T ) ≥ 0, ∀i ∈ S, ∀S ⊆ N .

This option will be investigated in Section 4.
Beyond monotonicity, other structural constraints on the

capacity might be considered, and in particular supermodu-
larity. A capacity v is said to be supermodular (or convex) if
v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) for all S, T ⊆ N . This
condition is used in the Choquet integral to support the emer-
gence of fair solutions in choices [Lesca and Perny, 2010].
More precisely, if the decision maker is indifferent between q
solutions x1, . . . , xq , with a supermodular v it is guaranteed
that a vector obtained by convex combination of x1, . . . , xq

will be preferred to any of the xi’s [Chateauneuf and Tallon,
2002]. Thus, softening the variations of components in vec-
tors xi, i = 1, . . . , q makes the decision maker better off. This
condition promotes alternatives having balanced profiles.

Example 1. If the decision maker is indifferent between (1, 0)
and (0, 1), a solution like ( 12 ,

1
2 ) will be preferred to the other

two according to the Choquet model provided that the capac-
ity is supermodular. We have indeed, Cv(1, 0) = v({1}),
Cv(0, 1) = v({2}) and v({1}) = v({2}) since (1, 0) and
(0, 1) are indifferent. Hence Cv(

1
2 ,

1
2 ) = 1

2v({1, 2}) ≥
1
2 (v({1}) + v({2})) by supermodularity of v. Therefore
Cv(

1
2 ,

1
2 ) ≥ v({1}) = Cv(1, 0) = Cv(0, 1).

Obviously, supermodularity can also be expressed using
Möbius masses. The explicit consideration of supermodular-
ity constraints in the learning process for reasons of fairness
will be also addressed in Section 4.

3 Online Learning of the Capacity
3.1 Online Preference Learning
Online learning algorithms work sequentially [Shalev-
Shwartz, 2012; Hoi et al., 2021]. At each round t, a
new instance is received and the learner makes a predic-
tion. Then, the true label or value of the instance is received,
and in the case of an incorrect prediction, the learner suf-
fers a certain loss lt(mt) where mt is the current model,
and lt : M → R is an instantaneous loss function defined
on the set of admissible models M. One desirable prop-
erty of an online algorithm is the guarantee that the cumu-
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lative loss after T rounds is close to the minimal cumula-
tive loss one could obtain with all the instances in hand. To
this end, model mt is updated at each round t, in such a
way that the regret against the best fixed model in hindsight
RT =

∑T
t=1 lt(mt) − minm∈M

∑T
t=1 lt(m) is guaranteed

to be sublinear in T , i.e., limT→∞
RT

T = 0. When lt is
a convex loss function and M is a convex set, online con-
vex optimization provides us with efficient algorithms that
achieve sublinear regrets. For instance, Online Gradient De-
scent (OGD) is a simple online learning algorithm that uses
the update mt+1 = ΠM(mt − ηtgt) where gt ∈ ∂lt(mt)
is a subgradient of lt evaluated at mt, ηt is a learning rate
and ΠM is the Euclidean projection on an admissible setM
(i.e, ΠM(m0) = argminm∈M∥m −m0∥22). OGD is known
to achieve sublinear regret RT with a O(

√
T ) regret bound

[Zinkevich, 2003].
We now consider the online setting to learn a sparse

Möbius vector m in model F from preference examples. The
preference examples are supposed to be received as a stream
of pairwise preference examples (xt, yt), where at each round
t, we consider without loss of generality that xt ≻ yt (strict
preference) or xt ∼ yt (indifference). To define the instanta-
neous loss lt adapted to this online preference learning prob-
lem, we first consider the batch counterpart problem.

In the batch problem, we have in hand a training set of
pairwise comparisons (xt, yt)

T
t=1. A natural problem for-

mulation for preference learning is to minimize the cumu-
lative error on the preference examples and a regularization
term Ψ(m) [Joachims, 2002; Tsochantaridis et al., 2005;
Waegeman et al., 2009; Tehrani, 2021; Herin et al., 2023].
This leads to the following problem:

min
m∈M

1

|P|
∑
t∈P

ϵt +
1

|I|
∑
t∈I

(ϵ−t + ϵ+t ) + λΨ(m) (2)

⟨m,ϕ(xt)− ϕ(yt)⟩ ≥ δ − ϵt, t ∈ P
⟨m,ϕ(xt)− ϕ(yt)⟩ ≤ δ + ϵ+t , t ∈ I
⟨m,ϕ(yt)− ϕ(xt)⟩ ≤ δ + ϵ−t , t ∈ I

ϵt, ϵ
+
t , ϵ

−
t ≥ 0, t = 1, . . . , T

where P , I ⊆ {1, . . . , T} are respectively the index set of
strict preference and indifference examples, δ > 0 is a dis-
crimination threshold used to separate preference from indif-
ference situations and λ > 0 is a hyperparameter that controls
the level of regularization. Variables ϵt (resp. ϵ+t ,ϵ+t ) are er-
ror variables making flexible preference (resp. indifference)
constraints.

Problem (2) amounts to minimizing the regularized loss
function 1

T

∑T
t=1(lt(m) + λΨ(m)) where loss lt measures

the violation of preference xt ≻ yt if t ∈ P or indifference
xt ∼ yt if t ∈ I, i.e.:

lt(m) = [δ − ⟨m,ϕ(xt)− ϕ(yt)⟩]+ if t ∈ P (3)
= [|⟨m,ϕ(xt)− ϕ(yt)⟩| − δ]+ if t ∈ I

where for any vector v ∈ Rd, [v]+ = (max(0, vi))
d
i=1.

When Ψ(m) = 1
2∥m∥

2
2, Problem (2) is similar to a standard

Support Vector Machine [Joachims, 2002] optimization prob-
lem. Here, to promote sparse solutions and thus obtain sparse

Möbius representations of capacities, we use the well-known
sparse-inducing penalty Ψ(m) = ∥m∥1 [Tibshirani, 1996].
Then, the batch problem of learning compact preference mod-
els naturally extends to the online setting by taking the in-
stantaneous L1-regularized loss ft(mt) = lt(mt) + λ∥mt∥1.
Note that for any t ∈ {1, . . . , T}, ft is a convex function.

Basic online algorithms such as OGD have been ex-
tended to handle L1-regularized losses [Langford et al.,
2009; Duchi and Singer, 2009; Duchi et al., 2010]. How-
ever, these gradient-descent-based algorithms show difficul-
ties in fully exploiting the L1-regularization and in partic-
ular provide models with high numbers of non-null coef-
ficients [Xiao, 2009]. Nevertheless, another family of on-
line algorithms called Regularized Dual Averaging (RDA)
[Xiao, 2009] (or equivalently Follow-the-Regularized-Leader
(FTLR) [Shalev-Shwartz, 2007]) is known to produce en-
hanced sparse models compared to gradient-descent based
methods [Hoi et al., 2021; Xiao, 2009]. For this reason, in
the next subsection, we propose an RDA algorithm for learn-
ing compact Möbius preference representations of capacities.
The benefit of using an RDA algorithm over an OGD algo-
rithm is illustrated with numerical experiments in Section 5.

3.2 A RDA Algorithm for Capacity Learning
In this section, no constraint is put on the capacity and there-
fore the set of admissible Möbius vectors is assumed to be
M = Rd. The case of constrained capacities is addressed in
Section 4. In general, an RDA (or FTLR) algorithm consists
in taking mt+1 as the model that minimizes the cumulative
regularized loss on the past rounds [Shalev-Shwartz, 2012].
Then, contrarily to ODG that computes mt+1 based on mt

and the loss received at step t, RDA uses the whole history of
received losses. Following the RDA principle with the regu-
larized loss ft to learn compact Möbius preference represen-
tations, we obtain the following model update:

mt+1 = argmin
m∈M

{1
t

t∑
τ=1

fτ (m) + ηt ∥m∥22
}

(4)

where ηt∥m∥22 is a strongly convex regularization term and
ηt = γ/2

√
t. With other mild assumptions, the strongly con-

vex regularization term guarantees a O(
√
T ) regret bound for

the regularized loss function ft [Xiao, 2009].
Unfortunately, contrarily to an OGD update, Equation (4)

does not admit a closed-form solution and requires solving
a quadratic program at each iteration. However, using the
convexity of lt and the subgradient definition, for any se-
quence of models (mt)

T
t=1 and any fixed model m, we have

that
∑T

t=1(ft(mt) − ft(m)) =
∑T

t=1(lt(mt) − lt(m) +

λ(∥mt∥1 − ∥m∥1)) ≤
∑T

t=1(⟨gt,mt − m⟩ + λ(∥mt∥1 −
∥m∥1)) =

∑T
t=1(f̃t(mt) − f̃t(m)). Then, the regret w.r.t.

to the losses ft is upper bounded by the regret w.r.t. the
linearized loss f̃t. Therefore, replacing the regularized loss
function ft by f̃t in Equation (4) also guarantees a O(

√
T ) re-

gret bound for ft. Using f̃t instead of ft, Equation (4) admits
the following efficient closed-form solution [Xiao, 2009]:

mt+1 = −
√
t

γ

[
|ḡt| − λ

]
+
sign(ḡt) (5)
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Algorithm 1
Parameter: (γ, λ, T )

1: t← 1, m1 ← (0, . . . , 0)
2: while t < T do
3: receive pairwise example (xt, yt)
4: compute loss gradient gt ∈ ∂lt(mt)
5: update average gradient ḡt
6: mt+1 ← −

√
t

γ

[
|ḡt| − λ

]
+
sign(ḡt)

7: end while
8: return mT

where for any sequence of vector ut ∈ Rd ūt =
1
t

∑t
τ=1 uτ ,

and for any vector u ∈ Rd, sign(u)i = 1 if ui > 0,
sign(u)i = −1 if ui < 0 and sign(u)i = 0 otherwise,
i = 1, . . . , d. Note that for t ∈ P , gt = −(ϕ(xt) − ϕ(yt))
if ⟨mt, ϕ(xt) − ϕ(yt)⟩ < δ and gt = 0 otherwise. For
t ∈ I, gt = −(ϕ(xt)− ϕ(yt)) if ⟨mt, ϕ(xt)− ϕ(yt)⟩ < −δ,
gt = ϕ(xt) − ϕ(yt) if ⟨mt, ϕ(xt) − ϕ(yt)⟩ > δ and gt = 0
otherwise. The online learning algorithm based on Equation
(5) for learning a compact Möbius representation of capaci-
ties is summarized in Algorithm 1.

The proposed online approach has the well-known advan-
tage of improving the scalability of the learning task, com-
pared with batch problem solving (2). Due to the efficient
closed-form of Equation (5), Algorithm 1 applies on instances
involving more than 20 criteria (millions of interactions), as
shown by the results of numerical tests given in Section 5.
Handling problems with such size is also possible with a re-
cent contribution ([Herin et al., 2023]) in batch mode, pro-
vided the database of preference examples is small (a few
hundreds). Here, the computational complexity of Algorithm
1 is in O(Td). It is still exponential in the number of crite-
ria since d = 2n but linear in T for bounded n. This is an
advantage in view of processing large-size databases.

On the other hand, Algorithm 1 does not enforce mono-
tonicity constraints on the capacity. As suggested in Section
2, if the DM preferences are monotonic w.r.t Pareto domi-
nance, we may observe in practice that the algorithm pro-
gressively captures the data monotonicity as new preference
examples arrive (this is confirmed by our numerical tests, see
Section 5). However, even though the average monotonicity
violation progressively vanishes, high-amplitude and recur-
rent violations can occur, especially at the beginning of the
online learning process. In the next section, we propose an
extension of Algorithm 1 that explicitly includes monotonic-
ity constraints and possibly other constraints such as super-
modularity constraints.

4 Online Learning of Constrained Capacity
4.1 Online Learning with Constraints
Online learning with constraints usually requires a projec-
tion step to bring back the current model into the admissi-
ble set M at each iteration. However, projections often re-
quire heavy computational efforts and may cancel the effi-
ciency of the unconstrained online algorithms. For this rea-
son, projection-free online algorithms have been developed.

For instance, an algorithm based on the Frank-Wolfe method
[Hazan and Kale, 2012] replaces the projection step with lin-
ear programming. However, this approach is not very ef-
ficient to achieve monotonicity, due to the number of con-
straints required.

Other methods do not enforce the constraints at every step
but use the concept of long-term constraints and guarantee
a bound on the cumulative constraint violation, similarly to
the regret bound [Mahdavi et al., 2012; Wang and Banerjee,
2012; Jenatton et al., 2016; Yu and Neely, 2020]. Among
them, online ADMM methods [Wang and Banerjee, 2012;
Suzuki, 2013] combine online algorithms with ADMM, a
well-known iterative optimization method for batch problems
that uses splitting variables to reduce the optimization prob-
lem into easier sub-problems at each iteration [Boyd et al.,
2011]. Online ADMM methods have been shown to produce
projection-free online algorithms for linear constraints both
in the context of OGD [Wang and Banerjee, 2012] and RDA
[Suzuki, 2013] online algorithms. In the following, we com-
bine ideas of both works to propose an ADMM online algo-
rithm to learn a constrained Möbius vector in model F .

4.2 An ADMM-RDA Algorithm
Let b denote the number of constraints and B ∈ Rb×d the
matrix encoding the linear constraints on the capacity such as
monotonicity and/or supermodularity constraints, i.e., such
that the set of admissible models isM = {m : Bm ≤ 0}.
Example 2. When N = {1, 2} monotonicity and supermod-
ularity are enforced by the system Bm ≤ 0 with:

B =


−1 0 0
0 −1 0
0 −1 −1
−1 0 −1
0 0 −1

 and m =

(
m1

m2

m12

)

Monotonicity is guaranteed by the four first lines, and super-
modularity by the fifth.

The size of matrix B is exponential in n. However, B gets
sparser as n increases which allows us to resort to specialized
libraries (e.g., scipy.sparse) for efficient matrix products in
learning algorithms.

Let z ∈ Rb denote a vector of auxiliary splitting variables
enabling the separation of loss minimization and constraint
satisfaction. Then, using the linearized regularized loss f̃t as
in the unconstrained case, Equation (4) can be formulated in
the constrained case as follows:

mt+1 = argmin
z=Bm

{ t∑
τ=1

f̃τ (m) + ηt∥m∥22 + IB(z)
}

(6)

where IB(z) = 0 if z ∈ Rb
− and IB(z) = +∞ otherwise.

At each iteration t, the augmented Lagrangian of Problem (6)
reads as follows:

Lt(m, z, µ) =⟨ḡt,m⟩+ λ∥m∥1 + ηt∥m∥22 + IB(z)

−⟨µ,Bm− z⟩+ ρ

2
∥Bm− z∥22

where µ ∈ Rb is the vector of Lagrangian multipliers attached
to the constraints, and ρ > 0 is a parameter that controls the
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Algorithm 2
Parameter: (γ, λ, ρ, T )

1: t← 1, m1, µ1, z1 ← (0, . . . , 0)
2: while t < T do
3: receive pairwise example (xt, yt)
4: compute loss gradient gt ∈ ∂lt(mt)
5: update average gradient ḡt
6: ḡµt ← ḡt −B⊺(µ̄t − ρ(Bm̄t − z̄t))

7: mt+1 ← −
√
t

γ

[
|ḡµt | − λ

]
+
sign(ḡµt )

8: zt+1 ← −
[
µt

ρ −Bmt+1

]
+

9: µt+1 ← µt − ρ(Bmt+1 − zt+1)
10: end while
11: return mT

level of penalization. Exploiting the ADMM principle [Boyd
et al., 2011] for online learning, we minimize the augmented
Lagrangian successively over m and z and update the La-
grangian multiplier vector µ at each iteration. This yields the
following updates:

mt+1 = argmin
m

Lt(m, z̄t, µ̄t) (7)

zt+1 = argmin
z
Lt(mt+1, z, µt) (8)

µt+1 = µt − ρ(Bmt+1 − zt+1) (9)

Note that in Equation (7), z and λ are set to their aver-
age values over the past rounds, allowing to keep mem-
ory of the past constraint violations [Suzuki, 2013]. Also,
due to the term ρ

2∥Bm − z∥22 in the augmented Lagrangian
Lt, the first equation (7) does not admit an efficient closed-
form solution. Constraint matrix B indeed induces non-
separability of the optimization problem w.r.t the compo-
nents of m and thus bans us from getting a closed-form so-
lution similar to Equation (5) in Algorithm 1. To bypass
this issue, we use a linearization that is standard for ADMM
methods [Deng and Yin, 2016; Wang and Banerjee, 2012;
Suzuki, 2013] and that consists in using the linearized aug-
mented Lagrangian L̃t = Lt− ρ

2∥B(m−m̄t)∥22 in Equations
(7),(8), and (9). This requires taking γ sufficiently large so
that ηt∥m∥22−

ρ
2∥B(m−m̄t)∥22 is still a strongly convex reg-

ularization. Using this linearization, we obtain:

Proposition 1. Equations (7-9) where Lt is replaced by L̃t

admit closed-form solutions given in Algorithm 2 line 7-9.
The proof is given in the supplementary material. The re-

sulting online learning process is given in Algorithm 2 and its
benefit for retrieving monotonic capacity is illustrated in the
next section with numerical experiments.

5 Numerical Tests
In this section, we conduct numerical tests using synthetic
preference data We generate preference data by randomly
drawing sparse (with few non-null coefficients) normalized
Möbius vector m associated with monotonic capacities and
pairs of alternatives xt, yt ∈ [0, 1]n. Then, after compar-
ison of the perturbed overall values ⟨m,ϕ(xt)⟩ + ϵx and

(n, T ) (10, 500) (15, 750) (20, 1000)

Batch (LP) 0.92± 0.03 0.89± 0.03 –
Algo 1 0.88± 0.03 0.84± 0.03 0.79± 0.03

Table 1: Average accuracy over 20 simulations.

(n, T ) (10, 500) (15, 750) (20, 1000)

Batch (LP) 1.94± 0.21 246.8± 20.4 –
Algo 1 0.04± 0.01 0.7± 0.1 66.7± 1.9

Table 2: Average training times (sec.) over 20 simulations.

⟨m,ϕ(yt)⟩ + ϵy (where ϵx is a centered Gaussian noise with
standard error σ = 0.03), we obtain preference or indiffer-
ence examples. In all the experiments, we test our algorithms
on the learning of Choquet Integral, and thus we generate data
using ϕ(xt) = (mini∈S{xi})S⊆N but the tests could be pre-
sented with the ML model with similar results.

In the first experiment, we show the practical efficiency
of Algorithm 1 compared to batch problem (2) solved
with linear programming (denoted Batch(LP)). The L1-
regularization parameter λ is set to 0.01 for both methods
and for Algorithm 1, γ is set to 103. In Table 1 and 2 we
compare the average accuracy and training times over 20 sim-
ulations of both methods for a growing number of criteria n.
The accuracy is computed as the average proportion of cor-
rectly predicted preferences within a test set containing 500
preference examples. The number of preference examples T
increases linearly with n. We observe that for 10 and 15 cri-
teria, Algorithm 1 reaches accuracy values close to the one
obtained with the batch solution (at most 5% lower) while
having significantly lower training times. Finally, for 20 cri-
teria (millions of possible criteria interactions), it provides a
solution in around 1 minute that approximately reaches 80%
of accuracy while no solution can be obtained in batch using
linear programming.

In the second experiment, we first compare Algorithm 1
and Algorithm 2 in the retrieval of monotonic capacities. The
number of criteria is set to n = 10 and the total number
of preference examples is set to T = 1000. Preference ex-
amples are generated as in the previous experiment; hyper-
parameters λ and γ are unchanged and ρ = 1 for Algo-
rithm 2. Figure 1 (a) represents the average monotonicity
violation computed as 1

t

∑t
τ=1∥[Bmτ ]+∥22 where B is the

matrix encoding the monotonicity constraints. We observe
that Algorithm 1 highly violates monotonicity constraints be-
fore t = 200 examples while we obtain a nearly null av-
erage violation for Algorithm 2 at any t. Remark that Al-
gorithm 1 progressively captures monotonicity as it receives
preference examples. In Figure 1 (b), we show the average
regret 1

tRt = 1
t

∑t
τ=1 fτ (mτ ) − minm∈M

1
t

∑t
τ=1 fτ (m)

w.r.t. the number of preference examples t. The optimal
value minm∈M

∑t
τ=1 fτ (m) is computed with linear pro-

gramming. We observe that both algorithms provide se-
quences of learned models mt with vanishing average regrets.

Then, we show the performances of both Algorithms 1
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(a)

(b)

(c)

(d)

Figure 1: Avg. constraint violation (a), Avg. regret (b), , accuracy
(c), and number of non-null coefficients (d) w.r.t. the number of
preference examples t.

Figure 2: Training times (sec.) w.r.t. the number of preference ex. t.

and 2 in terms of accuracy and number of non-null coeffi-
cients respectively in Figure 1 (c) and (d). We compare their
performances with the Batch(LP) method and with the FO-
BOS algorithm (an OGD-type algorithm for handling L1-
regularized loss) implemented using the loss lt and a learn-
ing rate ηt = η1/

√
t with η1 set at the recommended value

in [Duchi and Singer, 2009]. We observe that FOBOS suf-
fers from instability and produces less compact models. In
contrast, Algorithms 1 and 2 quickly reduce the number of
non-null coefficients to some dozens. Concerning accuracy,
we observe that Algorithm 2 achieves the same performance

as Algorithm 1 while providing a better control of motonic-
ity. The accuracy of both Algorithms 1 and 2 are slightly
below the one obtained with Batch(LP). However, the asso-
ciated training time curves presented in Figure 2 reveal the
efficiency of the online algorithms compared to batch (LP).
In particular Algorithm 1 achieves these results in a near null
training time. Algorithm 2 achieves intermediate times be-
tween Algorithm 1 and Batch(LP).

In the third experiment, we assess the benefit of using Al-
gorithm 2 to learn both monotonic and supermodular capac-
ities. More precisely, we compare the average violation of
constraints for both Algorithms 1 and 2 in Figure 3 (a) and the
average regret in Figure 3 (b). The advantage of Algorithm 2
in terms of constraint respect is also clear when supermodu-
larity is required in addition to monotonicity.

(a)

(b)

Figure 3: Avg. constraint violation (a), avg. regret (b) w.r.t. the
number of preference ex. t.

6 Conclusion
We have proposed online algorithms to efficiently learn the
capacity in a large class of non-linear aggregation functions
(but linear in the capacity), including the well-known Cho-
quet and multilinear models. These algorithms not only allow
a decision model to be adapted to a stream of preference ex-
amples, but can also be used in place of batch learning meth-
ods, with an advantage in terms of scalability confirmed by
our tests. We have also addressed the inclusion of normative
constraints restricting the set of admissible capacities in the
online learning process.

An interesting follow-up to this work would be to investi-
gate the potential benefit of active selection of the next exam-
ple in this online process. Further contributions could involve
finding equivalents of the proposed approach for models be-
yond the class represented by the F model. Other aggrega-
tion functions based on different algebraic operations can in-
deed be used to combine capacities and values. For exam-
ple, Sugeno’s integral uses (max,min) operations instead of
(+,×) [Sugeno, 1977]. The main challenge in going beyond
F will then be to overcome the loss of linearity of the model
with respect to the capacity and its Möbius inverse m.
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Eyke Hüllermeier. Preference learning and ranking by
pairwise comparison. In Preference learning, pages 65–
82. Springer, 2010.

[Grabisch and Labreuche, 2010] Michel Grabisch and
Christophe Labreuche. A decade of application of the
Choquet and Sugeno integrals in multi-criteria decision
aid. Annals of Operations Research, 175(1):247–286,
2010.

[Grabisch et al., 2008] Michel Grabisch, Ivan Kojadinovic,
and Patrick Meyer. A review of methods for capacity iden-
tification in Choquet integral based multi-attribute utility
theory: Applications of the Kappalab R package. Eu-
ropean journal of operational research, 186(2):766–785,
2008.

[Grabisch et al., 2009] Michel Grabisch, Jean-Luc Marichal,
Radko Mesiar, and Endre Pap. Aggregation functions, vol-
ume 127. Cambridge University Press, 2009.

[Grabisch, 1997] Michel Grabisch. K-order additive discrete
fuzzy measures and their representation. Fuzzy sets and
systems, 92(2):167–189, 1997.

[Grabisch, 2016] Michel Grabisch. Set functions, games and
capacities in decision making, volume 46. Springer, 2016.

[Hazan and Kale, 2012] Elad Hazan and Satyen Kale.
Projection-free online learning. In Proceedings of the
29th International Coference on International Conference
on Machine Learning, pages 1843–1850, 2012.

[Herin et al., 2022] Margot Herin, Patrice Perny, and Na-
taliya Sokolovska. Learning sparse representations of
preferences within Choquet expected utility theory. In Un-
certainty in Artificial Intelligence, pages 800–810, 2022.

[Herin et al., 2023] Margot Herin, Patrice Perny, and Na-
taliya Sokolovska. Learning preference models with
sparse interactions of criteria. In Proc. of IJCAI, pages
3786–3794, 2023.

[Hoi et al., 2021] Steven CH Hoi, Doyen Sahoo, Jing Lu,
and Peilin Zhao. Online learning: A comprehensive sur-
vey. Neurocomputing, 459:249–289, 2021.

[Jenatton et al., 2016] Rodolphe Jenatton, Jim Huang, and
Cédric Archambeau. Adaptive algorithms for online con-
vex optimization with long-term constraints. In Interna-
tional Conference on Machine Learning, pages 402–411.
PMLR, 2016.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7125



[Joachims, 2002] Thorsten Joachims. Optimizing search en-
gines using clickthrough data. In Proceedings of the eighth
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 133–142, 2002.

[Kakula et al., 2020a] Siva K Kakula, Anthony J Pinar, Tim-
othy C Havens, and Derek T Anderson. Choquet integral
ridge regression. In 2020 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), pages 1–8. IEEE, 2020.

[Kakula et al., 2020b] Siva K Kakula, Anthony J Pinar, Tim-
othy C Havens, and Derek T Anderson. Online learn-
ing of the fuzzy Choquet integral. In 2020 IEEE Inter-
national Conference on Systems, Man, and Cybernetics
(SMC), pages 608–614. IEEE, 2020.

[Keeney et al., 1993] Ralph L Keeney, Howard Raiffa, and
Richard F Meyer. Decisions with multiple objectives: pref-
erences and value trade-offs. Cambridge university press,
1993.

[Langford et al., 2009] John Langford, Lihong Li, and Tong
Zhang. Sparse online learning via truncated gradient.
Journal of Machine Learning Research, 10(3), 2009.

[Lesca and Perny, 2010] Julien Lesca and Patrice Perny. LP
solvable models for multiagent fair allocation problems. In
ECAI 2010 Proceedings, pages 393–398, 2010.

[Mahdavi et al., 2012] Mehrdad Mahdavi, Rong Jin, and
Tianbao Yang. Trading regret for efficiency: online con-
vex optimization with long term constraints. The Journal
of Machine Learning Research, 13(1):2503–2528, 2012.

[Owen, 1972] Guillermo Owen. Multilinear extensions of
games. Management Science, 18(5-part-2):64–79, 1972.

[Pelegrina et al., 2020] Guilherme Dean Pelegrina,
Leonardo Tomazeli Duarte, Michel Grabisch, and
João Marcos Travassos Romano. The multilinear model
in multicriteria decision making: The case of 2-additive
capacities and contributions to parameter identification.
European Journal of Operational Research, 282(3):945–
956, 2020.

[Roy, 1996] Bernard Roy. Multicriteria methodology for de-
cision aiding, volume 12. Springer Science & Business
Media, 1996.

[Shalev-Shwartz, 2007] Shai Shalev-Shwartz. Online learn-
ing: Theory, algorithms, and applications. PhD thesis,
Hebrew University, 2007.

[Shalev-Shwartz, 2012] Shai Shalev-Shwartz. Online learn-
ing and online convex optimization. Foundations and
Trends® in Machine Learning, 4(2):107–194, 2012.

[Steuer, 1986] Ralph. E. Steuer. Multiple Criteria Optimiza-
tion: Theory, Computation and Application. John Wiley,
New York, 546 pp, 1986.

[Sugeno, 1977] Michio Sugeno. Fuzzy measures and fuzzy
integrals: A survey, page 89–102. North-Holland, Ams-
terdam, 1977.

[Suzuki, 2013] Taiji Suzuki. Dual averaging and proximal
gradient descent for online alternating direction multiplier
method. In International Conference on Machine Learn-
ing, pages 392–400. PMLR, 2013.
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