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Abstract
Learning the causal structure of each individual
plays a crucial role in neuroscience, biology, and
so on. Existing methods consider data from each
individual separately, which may yield inaccurate
causal structure estimations in limited samples. To
leverage more samples, we consider incorporating
data from all individuals as population data. We ob-
serve that the variables of all individuals are influ-
enced by the common environment variables they
share. These shared environment variables can be
modeled as latent variables and serve as a bridge
connecting data from different individuals. In par-
ticular, we propose an Individual Linear Acyclic
Model (ILAM) for each individual from population
data, which models the individual’s variables as be-
ing linearly influenced by their parents, in addition
to environment variables and noise terms. The-
oretical analysis shows that model is identifiable
when all environment variables are non-Gaussian,
or even if some are Gaussian with an adequate di-
versity in the variance of noises for each individ-
ual. We then develop an individual causal struc-
tures learning method based on the Share Indepen-
dence Component Analysis technique. Experimen-
tal results on synthetic and real-world data demon-
strate the correctness of the method even when the
sample size of each individual’s data is small.

1 Introduction
Learning individual causal structures from observational data
is a crucial task [Spirtes et al., 2000; Shimizu et al., 2006;
Huang et al., 2020b; Wang and Drton, 2023]. In practice, it
is often difficult to collect a substantial amount of data from
the same individual due to inefficiency, high costs and oc-
casionally ethical concerns. Instead, data collected in small
quantities from various individuals can form a dataset with a
substantial amount of data. This data that encompasses the
datasets collected from different individuals is called Popu-
lation data. For example, in fMRI analysis, scientists typ-
ically instruct different individuals or subjects to perform
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the same task while collecting data [Glasser et al., 2016;
Miller et al., 2016]. Due to constraints such as time limita-
tions during task execution, the amount of data collected from
a single individual is generally limited. They are interested in
considering all data of different individuals which forms pop-
ulation data, to learn the individual causal structure. The indi-
vidual causal structure refers to model or the graphical repre-
sentation describing the causal relationships among variables
within an individual. In fMRI analysis, an individual causal
structure is the causal relations between Regions of interest
(ROIs) for an individual. Different individuals entail differ-
ent causal structures [Smith et al., 2011; Zhang et al., 2023;
Cai et al., 2024], which introduces variability and complexity
in causal relationships across individuals when using popula-
tion data. Thus, learning causal structures for each individual
from population data is challenging.

To leverage the population data, a subsequent problem is
how to use the information implied in other individuals’ data
when learning one individual causal structure. A straightfor-
ward idea is to apply existing methods to the data of each in-
dividual. However, the effectiveness of existing methods de-
pends on having a sufficiently large sample size. In practice,
we cannot always collect enough individual data for causal
discovery, leading to challenges related to inadequate sam-
ple size. An alternative approach involves directly apply-
ing methods for individual causal graphs to the aggregated
individual data, without considering the different individual
causal structures. Nevertheless, this strategy yields a singu-
lar causal graph for the entire population, potentially leading
to inaccuracies. Recently, some methods first cluster mul-
tiple individual samples into several groups and then learn
causal structures from the clustered data [Hu et al., 2018;
Huang et al., 2019]. Some recover the shared causal mech-
anism [Ghassami et al., 2018; Perry et al., 2022], leveraging
the sparsity of mechanism changes. This may ignore the spe-
cific causal relationships of each individual. The common
idea of these methods is to argue the sample, and they focus
on the shared causal mechanisms without utilizing the shared
environment information among individuals.

Considering the generating process of the individual data,
we find that the data of each individual is collected from the
same environment as other individual data. This common
environment may influence the variables of each individual,
which can be regarded as the connection between different
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Figure 1: An example of traditional methods and our methods to
learn individual causal structures from population data. In these
causal graphs, x(i)

j denotes the j-th observed variable for individ-

ual i, ϵ(i)j denotes the j-th noise term for individual i, and sj denote
the j-th shared environment variable for two individuals. (a) Tra-
ditional methods always learn the individual causal structures sep-
arately from different individual’s data; (b) Our method considers
the shared environment variables to leverage the population data to
learn the causal structure for individual 1 and individual 2.

individual datasets. Take Figure 1 as an example. In fMRI
analysis, two individuals (denoted as Individual 1 and Indi-
vidual 2) live in the same country, and their ROIs (denoted as
x
(i)
j , for i = 1, 2 and j = 1, 2, 3) are affected by the shared

environment variables (denoted as s1, s2, s3). These variables
are latent but can be used as the connection of two individu-
als’ variables. That is, the shared environment information is
regarded as the bridge to all individual data in the population
data. Given the limited sample size for each individual, draw-
ing inspiration from the shared information, the synthesis of
these samples could contribute to the learning of individual
causal relationships. Therefore, it is crucial to explore how to
effectively utilize data from all individuals to learn the causal
structures inherent to different individuals.

Motivated by the above example, we consider taking the
shared environment information as the exogenous latent con-
founder for all individual data. In light of this, we propose
a data-generating model for each individual, named the Indi-
vidual Linear Acyclic Model (ILAM). This model is designed
to represent all individual data consistently. Specifically, in
ILAM, each individual’s variables are primarily influenced
by the common environment variables shared by all individu-
als and the individual-specific causal relationships from their
parents, with the corresponding noises. Similar to the typi-
cal Linear Non-Gaussian Acyclic Model (LiNGAM), the as-
sumption of non-Gaussian noises is helpful for model iden-
tification, which is also proven for our proposed model. Be-
sides, leveraging all the individuals’ data, it is proven that the
diversity of noise terms within each individual can be used
to guarantee the identifiability of ILAM, which allows some

noise terms to be Gaussian. Based on the proposed model
and the identification of theoretical results, we develop the
Individual Causal Structure Learning (ICSL) method for es-
timating the individual causal structure.

2 Related Work
In this section, we investigate the related work of causal dis-
covery from multiple datasets of different individuals, which
may constitute population data. The existing work pursues
three primary objectives: recovering the specific causal struc-
ture for each individual, learning the shared causal graph
among (a group of) individuals, and learning the specific and
shared causal relationships within groups of individuals.

For the first type, several methods [Spirtes et al., 2000;
Shimizu et al., 2006; Shimizu et al., 2011; Chen et al., 2021;
Chen et al., 2024] are proposed and applied to each dataset of
each individual separately. However, their performance heav-
ily depends on the sample sizes. The larger the sample sizes,
the better performance they obtain. For the second type, cer-
tain methods [Zhang et al., 2017; Huang et al., 2020b] ar-
gue that some causal mechanisms may vary across different
datasets or environments. Thus, they assume that there exists
a single unobserved variable affecting some observed vari-
ables in causal graphs, leading to changes in causal mecha-
nisms. CD-NOD method [Huang et al., 2020b] introduces a
time/domain index to model the non-stationary or heteroge-
neous. [Saeed et al., 2020] considers that multiple datasets
are generated from a mixture of K Directed Acyclic Graph
(DAG) models. The MSS method [Perry et al., 2022] uti-
lizes the sparse mechanism shift (SMS) hypothesis, and intro-
duces the Mechanism Shift Score to recover the causal graph.
[Ghassami et al., 2018] exploits the principle of independent
changes to learn the causal structure from observational data
given in multiple domains. CD-MiNi [Huang et al., 2020a]
considers the situation that each dataset contains a subset of
all variables.

In recent years, some researchers have proposed meth-
ods for recovering the specific and shared causal relation-
ships when using the same group of data. The Group Itera-
tive Multiple Model Estimation approach [Gates et al., 2010;
Gates and Molenaar, 2012] attempts to heuristically uncover
time-lagged causal relations at both group and individual
levels, without providing theoretical guarantees. Some ap-
proaches characterize the distributions of causal mechanisms
parameters through a mixture model. The SSCM method
leverages the shared and specific information to learn the
causal structures and cluster the causal mechanism [Huang et
al., 2019]. To model the non-linear relationships, the ANM
Mixture Model (ANM-MM) [Hu et al., 2018] assumes that
the causal mechanism parameter is drawn from a discrete
distribution on a finite set. [Pashami et al., 2018] integrate
clustering and learning causal structures by clustering sub-
jects into multiple groups based on the estimated causal struc-
tures. All of these methods attempt to argue the sample with
the dataset of individuals within the same group, in terms of
causal mechanisms. In our work, we do not emphasize the ag-
gregation of samples with partially identical labels to cluster
individuals. Instead, we focus on leveraging the shared in-
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formation in population data, to learn individual causal struc-
tures by considering the data generation process.

3 Individual Linear Acyclic Model
Suppose there are m individuals in the same environment.
Each individual has n observed variables. The individ-
uals share some common information from the environ-
ment, but their causal relationships may be different. Let
x(1),x(2), . . . ,x(m) denote the observation of m different in-
dividuals. We aim to learn the individual causal model over
n variables for each individual. Similar to the Linear Non-
Gaussian Acyclic Model, we assume that for each individual,
the causal relations between two observed variables are lin-
ear, and the causal graph among variables is acyclic. Inspired
by the variables of each individual affected by the common
environment variables, we introduce latent variables to repre-
sent the shared environment variables. Then, we propose an
Individual Linear Acyclic Model (ILAM) to model the data
generation process of each individual that shares the same en-
vironment with others. In detail, the observed variable x(i)

j of
the i-th individual, satisfy the following generation process:

x
(i)
j =

∑
k∈PA

(i)
j

b
(i)
j,kx

(i)
k + sj + e

(i)
j , (1)

for j = 1, 2, · · · , n, where PA
(i)
j is an index set containing

the parent of x(i)
j , b(i)j,k is the causal strength from x

(i)
k to x

(i)
j ,

s and e(i) denote the shared environment variables and the
noise terms of individual i, respectively. All the environment
variables and the noise terms are independent of each other.

In the form of matrix, Eq. (1) can be written as:

x(i) = B(i)x(i) + s+ e(i), (2)

where B(i) is a causal strength matrix among observed
variables. Since B(i) represents a Directed Acyclic Graph
(DAG), B(i) could be permuted to a strictly lower triangular
matrix. Without loss of generality, in ILAM, we assume that
the noise terms for each individual have zero mean, i.e., ∀i ∈
{1, 2, . . . ,m}, e(i) ∼ N (0,Σ(i)), where the Σ(i) are diago-
nal and positive matrices. Besides, the shared environmental
noises are assumed to be unit variance, i.e., E[ss⊤] = I. Note
that these assumptions are common in other methods, and can
be achieved by normalizing the data.

Our goal is to infer the individual causal structures
B(1),B(2), . . . ,B(m) for all individuals, given population
data that consists of all observed individual datasets, which
are generated by ILAM.

4 Identifiablity
Based on the model (2), to identify the causal strength ma-
trices, we find that the unknown influence is from the latent
environment variables and the noise terms. Inspired by the
LiNGAM, we would like to transfer the model to represent
the mapping from the latent variables part to the observed
variables part. That is, for i ∈ {1, 2, . . . ,m}, we can transfer
model (2) to the following equation:

x(i) = (I−B(i))−1(s+ e(i))

= A(i)(s+ e(i)),
(3)

where A(i) = (I−B(i))−1, is called the mixing matrix. Be-
cause B(i) could be permuted to a strictly lower triangular
matrix, each A(i) could be permuted to a lower triangular
matrix with all non-zero elements along its diagonal. We de-
note the inverse of A(i) as W(i) = (A(i))−1 = I − B(i),
which could also be permuted to lower triangular matrix with
non-zero elements on the main diagonal.

Interestingly, we find that the form of Eq. (3) is similar to
the Shared Independent Component Analysis (ShICA) model
[Richard et al., 2021], where s can be viewed as shared com-
ponents, and e(i) can be viewed as noises components for
i-th individual. The mixing matrices A(1),A(2), . . . ,A(m)

have been proven to be identifiable up to sign and permu-
tation under mild assumptions on the distributions of s and
e(i) [Richard et al., 2021].

In light of the ShICA, the distribution of environment vari-
ables s can be non-Gaussian, or there may be partial Gaussian
in the identification of the model (3) with mild assumptions.
In the first case, we assume that at most one environment vari-
able follows a Gaussian distribution. In the second case, we
assume that there are two or more environment variables fol-
lowing Gaussian distributions.

Although the mixing matrix in the model (3) is identifiable,
the identification of ILAM model also requires addressing the
unique transformation from the mixing matrix to the causal
strength matrix. Regarding permutation indeterminacy, it per-
tains to the relationship between observed variables and their
corresponding components. That is, the true W(i) is a matrix
with non-zero diagonals because our model is acyclic. In-
tuitively, we can find the correspondence between the latent
components and the observed variables by a row permutation.
The lemma proved in the work [Shimizu et al., 2006] shows
that the row permutation is unique and eliminates the indeter-
minacy of permutation. With this connection, we can provide
the theorems for the identification of the proposed model.

First, we consider the case where at most one environment
variable follows a Gaussian distribution. The identifiability
of ILAM is guaranteed by the following theorem.
Theorem 4.1 (Identifiability with at most one Gaussian com-
ponent). Suppose there is at most one Gaussian compo-
nent in shared environment variables s and the number
of individuals m is at least 3. Given enough observed
data x(1),x(2), . . . ,x(m) generated from model (2), then the
model (2) is identifiable up to sign.

Theorem 4.3 shows that with the data of different indi-
viduals, it can provide the pseudo-supervised information to
estimate our model (2). It can relax the non-Gaussian as-
sumption, different from the existing model for one individ-
ual. Inspired by the Multiset Canonical Correlation Analysis
(CCA) [Kettenring, 1971] and the ShICA technique, if there
are more than two Gaussian components in s, we require an
additional assumption on the variances of e(i) within each in-
dividual. Let N denote the set of Gaussian components in s,
i.e., ∀j ∈ N, sj follows the Gaussian distribution.
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Assumption 4.2 (Noise diversity in Gaussian variances). For
i ∈ {1, 2, . . . ,m}, ∀j, j′ ∈ N, j ̸= j′, the sequences
(Σ

(i)
j,j)i=1,...,m and (Σ

(i)
j′,j′)i=1,...,m are different.

In this case. the identifiability of model can be guaranteed
by the following theorem:
Theorem 4.3 (Identifiability with noise diversity). Suppose
Assumption 4.2 holds and the number of individuals m is
at least 3. Given enough observed data x(1),x(2), . . . ,x(m)

generated from model (2), then model (2) is identifiable up to
sign.

For the sign indeterminacy, while both Theorem 4.1 and
Theorem 4.3 only guarantee the identifiability of model (2)
up to sign, we can demonstrate that this is tolerable. Since
model (2) is identified up to sign and B(i) corresponds to a
DAG, we can transform the estimated B̂(i) into a lower trian-
gular matrix by the equal permutation. The permuted order
of observed variables reflects the causal order. Based on the
causal order, we can re-estimated the coefficients of B(i) us-
ing regression methods, like Adaptive Lasso, which helps us
discover the sign of the coefficients of B(i). For the condi-
tion of enough observed data, note that in practice, the data
is enough when the error of the objective function is small,
which will also be shown in the experimental results.

5 ICSL Algorithm
In this section, we provide an Individual Causal Structure
Learning (ICSL) algorithm, using the observed data X =
{x(1),x(2), . . . ,x(m)} generated from model (2).

Based on the identifiability of model (3), we can obtain
the estimated Â(i) for all individuals by estimating the mix-
ing matrix on the population data. Then, we can calculate
the inverse of the mixing matrices Ŵ(i) for every individ-
ual. In the first stage, we can use the approaches provided in
ShICA [Richard et al., 2021] to estimate the mixing matrix.
Because the ShICA is identifiable up to sign and permutation,
our next step is to find the correct sorting for the components,
which corresponds to the combination of s and e(i). Fortu-
nately, we know that the true W(i) is a matrix with all-ones
on the main diagonal. Therefore, for each individual, we can
reorder the components by finding a row permutation P(i) of
Ŵ(i) such that W̃(i) = P(i)Ŵ(i) have non-zero on the di-
agonal. Subsequently, to obtain the causal strength matrix,
we divide each row of W̃(i) by its corresponding diagonal
element to obtain W

(i)
with all-one elements on the diag-

onal. And then we can obtain the estimated causal matrix
B̂(i) = I −W

(i)
. Finally, for each individual, we try to find

an equal permutation P̃(i) on the row and column of B̂(i),
such that B̃(i) = P̃(i)B̂(i)(P̃(i))⊤ is close to a strictly lower
triangular. Every permutation matrix P̃(i) reflects the causal
order of the observed variables for the i-th individual.

In the above steps, we can use two approaches to estimate
the mixing matrices. The first approach involves estimat-
ing the mixing matrices via multiset CCA, followed by the
joint-diagonalization algorithm for improved estimation, de-
noted as ICSL-J. This method can be applied to the data that

are Gaussian or non-Gaussian. The second approach entails
maximizing the likelihood of components using the EM al-
gorithm to estimate parameters, denoted as ICSL-ML. This
method can be used when at most one dataset is Gaussian. In
practice, we can first test whether the dataset is Gaussian or
non-Gaussian to choose the proper method.

6 Experiments
In this section, we conduct experiments on synthetic and real-
world data to evaluate the performance of our method.

6.1 Synthetic Data
We randomly generate the synthetic data according to our
model (2). To show the efficacy of the proposed method,
we generate data with two kinds of distributions for envi-
ronment variables: Gaussian and non-Gaussian distributions.
For the Gaussian distribution, we sample environment vari-
ables from a standard Gaussian distribution s ∼ N (0, I). For
the non-Gaussian distribution, we sample environment vari-
ables from the Laplace distribution s ∼ Laplace(0, I). In
each setting, we synthesize data with fixed parameters while
traversing the target parameter. In detail, we vary the number
of nodes with n = 6, 8, 10, 12, the sample size per individ-
ual with l = 50, 100, 500, 1000, the number of individuals
m = 3, 5, 7, 9 and the number of different causal structures
with d = 1, 2, 4, 8. The default parameters are marked as
bold. The causal strength from one observed variable to an-
other is randomly generated with the range of [0.5, 1.2].

In these experiments, we use PC [Spirtes et al.,
2000], ICA-LiNGAM [Shimizu et al., 2006], Direct-
LiNGAM [Shimizu et al., 2011], CD-NOD [Huang et al.,
2020b], SSCM [Huang et al., 2019], MSS [Perry et al., 2022]
and J-PCMCI+ [Günther et al., 2023] as the baseline meth-
ods. Among these methods, PC, ICA-LiNGAM, and Direct-
LiNGAM are typical methods for causal discovery from each
individual data. The CD-NOD method uses conditional in-
dependence tests for causal discovery from non-stationary
or heterogeneous data. The SSCM method aims to recover
the share and specific causal relation among observed vari-
ables. The MSS method identifies the causal graph based on
the mechanism shift hypothesis. The J-PCMCI+ method is
a constraint-based method that takes into account the influ-
ence of temporal and spatial context information on multiple
datasets, and recovers their common causal structure.

To evaluate the correctness of causal structure learning, we
use the F1 score and Structural Hamming Distance (SHD) as
evaluation metrics. Furthermore, to evaluate the correctness
of the estimated causal strength, we also use the mean squared
error (MSE) between the true B(i) and the estimated one, as a
metric. Each setting was conducted 10 times and the average
of the evaluation metrics was calculated as the final evaluation
metric. The results on SHD for all methods are provided in
the appendix due to the space limit.

Experimental results for non-Gaussian noises. Figure 2
illustrates the experimental results from synthetic data with
noises generated by Laplace distributions. In the experi-
mental result for sensitivity to number of nodes, with the
increase in the number of nodes, fluctuations or decreases
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Figure 2: F1 scores of the recovered causal structure and MSE of the recovered causal strength in the setting with Laplace noises.

in F1 score are observed across all methods. The F1 score
of our method consistently maintains a high level and out-
perform other methods. It is worth noting that F1 scores
of ICA-LiNGAM and Direct-LiNGAM remain lower than
our method. Considering that, under a single individual,
the generated data follows the LiNGAM model assumption,
we attribute this phenomenon to the issue of sample size.
The dataset with a sample size of 100 may not be sufficient
for ICA-LiNGAM and Direct-LiNGAM to estimate accurate
causal structure. Our method, on the other hand, aggregates
generated data from different individuals, thereby compen-
sating for the inadequacy in sample size.

In the experimental result for sensitivity to sample size,
F1 scores for methods other than ours, ICA-LiNGAM, and
Direct-LiNGAM consistently remain lower. As the sample
size increases, F1 scores for our method, ICA-LiNGAM, and
Direct-LiNGAM also steadily rise. When the sample size
is 500 or 1000, F1 scores of our method, Direct-LiNGAM,
and ICA-LiNGAM are close to 1. However, as the sample
size gradually decreases, the gap between these two base-
line methods and ours becomes more pronounced. When the
sample size is 10, ICA-LiNGAM’s F1 score are below 0.8,
Direct-LiNGAM’s F1 score is below 0.6, while our method
maintains the F1 score above 0.9. This also corroborates the
earlier conjecture: our method, by aggregating generated data
from different individuals, is capable of compensating for the
problem of a small sample size per individual.

In the experimental result for sensitivity to the number of
individuals, we observe a clear increase in our method’s F1
score as the number of individuals grows. When the number
of individuals is sufficiently high, our F1 score approaches 1.
Even in the case of a smaller number of individuals (m = 3),
our method performs well. In contrast, there is no signifi-
cant improvement in the F1 scores of other methods as the
number as the number of individuals grows. The F1 score

of MSS shows a notable decline. This is attributed to the
MSS method relying on the sparsity of mechanism changes
to estimate causal structures. In our assumed data generation
process, mechanism changes across different individuals lack
sparsity. These findings demonstrate that our method can bet-
ter leverage shared information among different individuals
to enhance the accuracy of causal structure estimation.

In the experimental result for sensitivity to the number of
different dags, for varying d, our method consistently main-
tains stable F1 scores close to 1. In contrast, as d increases,
both CD-NOD and MSS experience a significant drop in their
F1 scores. This is because CD-NOD and MSS assume that
different individuals share the same underlying causal struc-
ture and utilize the principle of minimal changes in causal
mechanisms for estimation. In our setting, individual causal
structures vary widely, and different individuals just share
common information from the environment, which is the
foundation for our method’s estimation.

Furthermore, for all the experimental results mentioned
above, the MSE of our method is close to zero, while the
MSE of SSCM is generally greater than 0.5. ICA-LiNGAM
and Direct-LiNGAM only achieve close-to-zero MSE when
the sample size is 500 or 1000. This indicates that using our
method, our model is identifiable up to sign.

Experimental results for Gaussian noises. In these exper-
iments, we randomly sample noises from Gaussian distribu-
tion and yield the synthetic data based on the randomly gen-
erated DAG. We make the variances of individual noises to
be different. Figure 3 illustrates the experimental results.

In the experimental result for sensitivity to the number
of nodes, compared to the case without Gaussian noises,
F1 scores of Direct-LiNGAM decreas significantly, because
Gaussian noises violate the assumptions of the LiNGAM
model. In contrast, our F1 score approaches 1. This indi-
cates that with the diverse individual noises, our method can
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Figure 3: F1 scores of the recovered causal structure and MSE of the recovered causal strength in the setting with Gaussian noises.

identify the causal structure.
In the experimental result for sensitivity to sample size, the

F1 score of our method is significantly higher than that of
baseline models. As the sample size increases, our F1 score
increases and eventually approaches 1. However, F1 scores
of ICA-LiNGAM and Direct-LiNGAM are relatively low, in-
dicating that Gaussian noise makes them challenging to accu-
rately estimate the causal structure.

Similar to the previous experiments, in the experimental
result for sensitivity to number of individuals, F1 scores of
ICA-LiNGAM and Direct-LiNGAM exhibit a noticeable de-
crease. While the F1 score of our method increases with the
growing number of individuals. In the experimental result
for the number of different dags, CD-NOD and MSS show
a noticeable decrease as d increases. From all experimental
results, the MSE of our method is close to zero. Unlike the
previous experiments, the MSE of ICA-LiNGAM and Direct-
LiNGAM no longer approaches zero, even when we increase
the sample size.

6.2 Real World Data
FMRI Data
To test the performance of our method in a real-world prob-
lem, we applied the algorithm to real functional magnetic res-
onance imaging (fMRI) task data [Ramsey et al., 2010]. This
fMRI dataset was acquired by a 3T scanner with TR= 2 s,
resulting in a sample size of 160 [Sanchez-Romero et al.,
2019] per subject. The raw data can be obtained from the
OpenfMRI project1. Our experiment uses the preprocessed
data2. The dataset contains data for 9 individuals, each con-
sisting of nine variables that were judged to rhyme with or
without a pair of visual stimuli. It includes one input vari-
able (Input) and eight regions of interest (ROIs). The input

1https://openfmri.org/dataset/ds000003/
2https://github.com/cabal-cmu/Feedback-Discovery

variables were created by combining the rhyming task’s box-
car model with the standard hemodynamic response function,
which reflects how the brain’s blood flow changes in response
to neural activity. The eight ROIs include the left and right oc-
cipital cortex (LOCC, ROCC), left and right anterior cingu-
late cortex (LACC, RACC), and left and right inferior frontal
gyrus (LIFG, RIFG); as well as the left inferior and right in-
ferior parietal lobule (LIPL, RIPL). We treat the fMRI data of
all subjects as population data and apply our method to dis-
cover the causal relations for every subject. Subsequently, we
aggregate the results from each individual to obtain the final
causal graph. For each edge, if more than 50% of individuals
believe it exists, we retain the edge in the aggregated causal
graph; otherwise, we remove the edge from the aggregated
causal graph.

For fMRI data, a common point of view is that the stimulus
input is expected to traverse the left occipital cortex and prop-
agate from the left to the right. The result of the fMRI data

(a) ICSL-J (b) ICSL-ML

Figure 4: Causal graphs learned from fMRI task data.
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(a) ICSL-J (b) ICSL-ML

Figure 5: Causal graphs learned from sachs data. Black lines: cor-
rect edges. Blue dashed lines: missing edges. Orange lines: wrong
edges.

is shown in Figure 4. It can be seen that the only edge con-
necting to Input is from it to the left occipital cortex, which
is consistent with the common viewpoint. Also, both the left
and right brain connected edges are from the left half of the
brain to the right half of the brain, which is also consistent
with the actual situation. Although there are some additional
edges in our results, we can observe that some of the findings
are consistent with those in [Ramsey et al., 2010]. Specif-
ically, in the results ICSL-J, the edges LOCC → LIFG and
LOCC → LACC maintain a consistent causal order with the
outcomes in [Ramsey et al., 2010]. For the result of ICSL-
ML, the feedforward edges LOCC → LIFG → LIPL are also
consistent with the results in [Ramsey et al., 2010].

Sachs Data
We also applied our methods to Sachs data [Sachs et al.,
2005]. The data consists of a collection of data sets, where
each data set corresponds with a different experiment in
which a perturbation was applied to sets of individual cells.
The dataset we used contains 9 experimental observed data.
We treat the data of each experiment as individual observed
data. We aim to discover the causal relationship of different
types of cellular protein. We use obtain the aggregated causal
graph by the same way as the experiment for fMRI Data.

The learned causal structures by ICSL-J and ICSL-ML are
shown in Figure 5. It is shown that our estimated structures
contain many edges in ground truth. We observed that all
estimated edges from the ICSL method are contained within
the ground truth causal structure. For the structure estimated
by ICSL-ML, all edges except for edges Raf → P38 and PIP3
→ Jnk are included in the ground truth causal structure.

Model Precision Recall F1 score SHD

ICSL-J 0.92 0.55 0.69 10
ICSL-ML 0.76 0.65 0.7 11
PC (2000) 0.53 0.50 0.51 18
ICA-LiNGAM (2006) 0.60 0.60 0.60 16
Direct-LiNGAM (2011) 0.59 0.50 0.54 17
CD-NOD (2020) 0.45 0.45 0.45 31
SSCM (2019) 0.17 0.40 0.24 50
MSS (2022) 0.29 0.10 0.15 21
J-PCMCI+(2023) 0.53 0.5 0.51 18

Table 1: Evaluation results on sachs data

(a) ICSL-J (b) ICSL-ML

Figure 6: Causal graphs learned from Yahoo stock indices data.

We calculated the Precision, Recall, F1 score and SHD be-
tween the ground truth and the estimated causal structures of
all methods. In the table 1, we can see that our method out-
performs all the other methods. Specifically, our F1 score is
higher than that of ICA-LiNGAM and Direct-LiNGAM, and
our SHD is lower than theirs. We attribute this to the aggre-
gation of information from multiple datasets, providing more
abundant information for causal structure recovery.

Yahoo Stock Indices Data
We also apply our algorithm to stock indices data that is col-
lected from the Yahoo finance database for 5 years (from
2015 to 2019). We use the adjusted closing prices for the
stocks. This data contains 3 stock indices, which are N225
from Japan, FCHI from Europe and NYA from the United
States. We treat the data of each year as the observed data
of each individual. Then, we aim to find the causal structure
between 3 stork indices with our method. Due to the different
time zones, it is expected the causal order of ground truth is
N225 → FCHI → NYA. The results of ICSL-J and ICSL-ML
are shown in Figure 6, which are consistent with expectations.

7 Conclusion
In this paper, we introduce the Individual Linear Acyclic
Model (ILAM) to describe the data generation process for
each individual where it shares common environment infor-
mation with other individuals. Additionally, we propose a
novel method named Individual Causal Structure Learning
(ICSL) to uncover causal structures for each individual. ICSL
estimates the mixing matrix first and then determines a row
permutation for the inverse of the mixing matrix to establish
the correspondence between noise terms and observed vari-
ables. We demonstrate that our model is identifiable up to
sign when at most one component of the shared noises fol-
lows a Gaussian distribution. Even with more than two com-
ponents following a Gaussian distribution, our model remains
identifiable under additional mild assumptions. We experi-
mentally demonstrate that our method performs well when
dealing with shared environment variables following a non-
Gaussian or Gaussian distribution. Even in scenarios with
limited sample size, a common challenge in real-world appli-
cations, our method consistently outperforms other baseline
approaches. It is noted that the linear assumption of ILAM
can be relaxed, and future work will focus on the more flexi-
ble causal relationships.
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