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Abstract

Given a directed graph, a set of source nodes, a
target node and a budget, we study the problem
of maximizing the number of source nodes discon-
nected from the target node by removing edges not
exceeding the budget. Our model is mainly moti-
vated by a cyber security use case where we need
to minimize the attack surface of a Windows Active
Directory system. In these high-profile attacks, the
attackers first compromise a source (i.e., a compro-
mised user node) and then laterally move to a des-
tination (i.e., a high-privileged admin node). Our
aim is to minimize the number of users with a path
to the admin.

We first prove that the problem is NP-hard. Al-
gorithms for exact optimality usually struggle to
converge on graphs that approach real-world net-
work scales and therefore are not practical for us-
age. In light of this, we study anytime algorithms
that return an acceptable result whenever the algo-
rithm is terminated, and can improve optimality by
allowing longer computational time. We observe
the source connectivity of directed graphs, based
on which we propose a novel anytime algorithm—
the spiral algorithm. We also develop two Monte
Carlo Tree Search (MCTS) algorithms as a base-
line to study the performance of typical anytime al-
gorithms for our problem, and show that the spiral
algorithm improves the optimality at a significantly
faster speed and therefore exhibits better anytime
behavior compared with MCTS.

1 Introduction

We model current problems in cyber security with judicious
partitioning of directed graphs. We start by describing the
cyber security problems that motivate our model and design
rationales. Then, we give effective algorithms to solve them.
Our primary contributions are new theoretical models and al-
gorithms. Our design choices are heavily influenced by the

*Source code and data are available at: https://github.com/YMZ
hang7/ijcai24_judicious_partition

cyber security use case and the urgent demand for practical
solutions to these problems by security teams.

Microsoft Active Directory (AD) is the default security
management system for Windows domain networks and is
used by approximately 90% of Global Fortune 1000 com-
panies [Krishnamoorthi and Carleton, 2020]. An AD envi-
ronment is naturally described as a graph where the nodes
are accounts/computers/groups, and the directed edges repre-
sent accesses. Minimizing attack paths in an AD system is a
fundamental problem in AD security. There are many open-
source and commercial tools for analyzing AD attack graphs.
BloodHound by SpecterOps [Robbins et al., 2016] is a pop-
ular AD analysis tool that is able to enumerate attack paths
that an attacker can follow from a source node to the admin
node. BloodHound Enterprise also provides actionable fixes
in the form of a set of edges (accesses) that should be re-
moved to reduce the number of attack paths. Unfortunately,
tools like BloodHound focus on removing some shortest at-
tack paths but not all attack paths from a given entry node. As
such, these solutions do not guarantee that no path remains
between an entry node and a high-value target even if enu-
merated shortest paths from that entry node are eliminated. It
leaves the possibility of an attack even after the clean-up. Re-
moving an edge in an AD graph is costly in practice as every
edge removal is manually examined and approved to make
sure it does not disrupt normal operations and cause cascade
effects. These reviews often take days or weeks and are per-
formed by IT operational teams instead of the security team
(who uses Bloodhound).

The goal of an AD defender is to eliminate attack paths
by removing a limited number of connections. We formal-
ize this problem as finding a budget-constrained set of edges
to remove such that the number of attacker entry points is
minimized. First, we observe that this problem is new to
graph theory, but it falls into a class of problems called ju-
dicious partitioning. We prove that our problem, like other
judicious partitioning problems, is NP-hard. For most cyber
security use cases, solutions do not need to be perfect, only
good and fast enough for timely remediation actions. Based
on this observation, we develop the first practical algorithm
for this judicious partitioning formulation of the problem. It
is an anytime algorithm that significantly outperforms Monte
Carlo Tree Search (MCTS) and integer linear programming
(ILP).
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Our key contributions are:

* A new graph theoretical and combinatorial optimization
problem under the class of judicious graph partitioning.
It is a rarely studied problem. We motivate the problem
through a practical use case of hardening AD systems.

* We prove that the problem is NP-hard and develop a set
of anytime algorithms instead of traditional algorithms
for balancing the trade-off between the timeliness and
the optimality of a solution.

* A new graph connectivity concept—source connectiv-
ity. We adopt source connectivity for an ordering of sub-
graphs, which is the key enabler for our algorithms.

* A novel anytime algorithm: the spiral algorithm. The
algorithm iteratively runs several sub-algorithms; a so-
lution can be found at the end of each iteration. The
computation progresses spirally and the optimality of the
solution monotonically improves over iterations.

Our new algorithm is able to converge on optimal solu-
tions within minutes on large AD graphs. In contrast, an op-
timized MCTS produces solutions that are an order of mag-
nitude worse after an hour. Our algorithm is also orders of
magnitude faster than solving the problem directly using ILP.
Our algorithm is the only one able to find good solutions on
AD networks of practical sizes.

2 Problem Definition and Related Work

2.1 Problem Definition

Problem 1. Given a directed graph G = (V, E), a set of
source nodes S = {s1,82,...,8:}, S CV,|S| = k and one
sink nodet € V,t ¢ S. Acutc = {(u,v) € E : u €
Vi,v € Vu} partitions V into V4 and V,, V3 UV, = V and
Vi N V4 = (. Given an integer budget b, the objective is to
find an optimal ¢* for a maximum S* = S N V] that satisfies
lc*| <b.

Theorem 1. Problem I is NP-hard.

Proof. We prove that our problem is NP-hard by reducing
from the k-cluster problem. Given an undirected graph, a k-
cluster is defined as a subgraph with k vertices that has the
number of edges maximized. The k-cluster problem has been
proven to be NP-complete [Corneil and Perl, 1984].

Suppose there exists an undirected graph G’ = (V' E’).
We construct a directed graph G = (V| E) by first creating
one node s, for each edge e € E’, and we call this set of
nodes V,. Next, we create a node 7, for each node v € V'
and denote this set of nodes as V;. Lastly, we add a target
node ¢t. Combining these nodes, we have V =V, UV, U {t}.
Now, for each edge e = (u,v) € E’, we direct an edge in G
from s, to ¢, and another edge from s, to i,,, and we use E;
to denote this set of edges. Then, we direct an edge from ¢,
to t for each v € V"’ and call this set of edges Fs. In this way,
E = FE; U Ey. We complete the construction of G based on
G’. An example is given in Figure 1.

We define V,, to be the set of source nodes. We continue
using c to denote the cut that partitions V into V; and Vs,
and S* as a maximum S N V;. In the directed graph G, it
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Figure 1: An example of constructing a directed graph given an
undirected graph.

is apparent that we can always find an optimal ¢ for a maxi-
mum S* from FEs. The identified ¢ can be assumed to contain
only edges from E5 without loss of generality. Even if ¢ con-
tains edges from F, they can be replaced by edges from Fo
without affecting | S*|. Suppose there were a solution to Prob-
lem 1. We could find a cut ¢ consisting of at most b edges in
E to remove that would maximize |S*|. This ¢ would simul-
taneously cut at most b nodes in V5. This corresponds to b
nodes in the undirected graph G’ and edges incident on the
b nodes being maximized, which is equivalent to solving the
k-cluster problem. As the k-cluster problem is NP-complete,
our problem of finding an optimal ¢ for a maximum S* would
be NP-hard. O

2.2 Related Work

Cyber attack graphs model the chain of events (conceptual
or physical) that lead to successful cyber attacks. The term
“attack graph” was first introduced around 1998 [Phillips
and Swiler, 1998; Schneier, 1999; Ortalo et al., 1999], and
since then there have been more than 90 different definitions
of attack graphs and methods to construct them, see for ex-
ample: [Ritchey and Ammann, 2000; Sheyner et al., 2002;
Ou et al., 2006; Barik et al., 2016; Lallie et al., 2020]. One of
the most prominent and actively used attack graph models is
the Active Directory (AD) attack graph that models identity-
based snowball attacks in Windows systems, first proposed
in [Dunagan et al., 2009], developed further in [Bouillot and
Gras, 2014] and then commercialized by the BloodHound
tool [Robbins et al., 2016]. In an AD attack graph, multi-
farious network entities including user accounts, computers,
security groups, Organizational Units (OUs), and Group Pol-
icy Objects (GPOs) are modeled as nodes, and a myriad of
exploitable interrelationships and dependencies are modeled
as directed edges.

Being able to audit, identify, and remove attack paths in an
AD environment is crucial for containing and limiting the im-
pact of security breaches in an organization. There are many
existing solutions for attack path management including the
commercial BloodHound Enterprise [Robbins er al., 2016].
BloodHound and similar defensive attack path management
solutions rely heavily on the identification and removal of
edges in the AD attack graphs. The underlying idea at the
core of all those solutions is to find edges whose removals
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will cut as many shortest attack paths as possible. These so-
lutions are widely used in the cyber security industry but do
not guarantee that no attack paths exist after the cleanup. We
focus in this work on solutions that could completely remove
any paths between an entry point and the high-value target.
To date, there rarely exists literature that studies our prob-
lem. Here, we provide a review of problems that are related
or similar to our problem.

Removing edges so that source nodes and the target node
are divided into two disconnected subgraphs is related to the
graph partitioning problem, which studies the problem of par-
titioning the graph into several vertex classes so that the sum
of weights on vertices in each vertex class satisfies some con-
straints, or the sum of weights on edges across vertex classes
is optimized [Fjéllstrom, 1998]. It becomes a bipartitioning
problem when the graph is to be divided into only two vertex
classes. Minimum cut and max cut problems are two clas-
sic graph bipartitioning problems. The minimum cut prob-
lem is about finding a cut such that a source node and a sink
node are in different vertex classes, and the sum of weights
on edges in the cut is minimized. The minimum cut problem
is polynomial-time solvable based on the max-flow min-cut
theorem [Korte and Vygen, 2012]. In the max cut problem,
on the other hand, the goal is to find a cut with a total weight
larger than a specified value. This is a well-established NP-
hard problem [Garey et al., 1976].

In our problem, not only is the size of the cut being opti-
mized, but we also expect the number of nodes from a partic-
ular set to be maximized in a vertex class after the partition.
When there are several parameters to be optimized simulta-
neously, it becomes a judicious partitioning problem [Scott,
2005; Bollobds and Scott, 2002; Lee et al., 2016]. A typical
judicious partitioning problem is an extension of the max cut
problem. When the number of edges between vertex classes
is maximized, it can be expected that the number of edges in
each vertex class is reduced simultaneously. The judicious
partitioning problem derived from this is the minimization of
the number of edges in each vertex class. The majority of past
research focused on the extremal study of the problem, which
can provide information for the development and analysis of
algorithms. Additional constraints on the graph like graph
degree are usually added for the derivation of the bound [Bol-
lobas and Scott, 2004]. However, there hardly exists studies
on efficient algorithms for solving the judicious partitioning
problem, and having the maximization of source nodes in a
different vertex class from the target node as the second opti-
mization objective is also a rarely explored subbranch under
the judicious partitioning category.

Another branch of study closely related to this problem is
the maximum flow interdiction problem. It is about removing
a limited number of edges to minimize the maximum flow
between a source and a sink, which is equivalent to minimiz-
ing the minimum cut because of the max-flow min-cut theo-
rem. The max flow interdiction problem has been proven to
be strongly NP-hard for non-planar networks [Wood, 1993].
Furthermore, reducing the minimum cut cannot provide a re-
duction in the number of sources and therefore cannot solve
our problem.

Despite the connections these problems share with our
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problem, the majority of them are NP-hard. More impor-
tantly, existing solutions to those problems are not directly
applicable to our problem. A thorough investigation of our
problem and efficient solutions remains a significant gap.

3 Spiral—A Practical Anytime Algorithm for
Judicious Partitioning of Graphs

3.1 Algorithm Design

The basic structure of our algorithm is to iteratively improve
a compressed set of variables created to solve Problem 1. As
we will show, several insights about the problem are required
to formulate the algorithm. Note that our algorithm is any-
time, which means it can produce a solution whenever it is
interrupted. This makes it practical in real-world situations.

We first start with an Integer Linear Programming (ILP)
approach to find the maximum number of source nodes that
could be disconnected by removing a limited number of
edges. Note that ILP algorithms do not guarantee polyno-
mial time termination for judicious partitioning. Our ILP for-
mulation is similar to [Ngo ef al., 2024] and works on edges
instead of nodes that are to be removed for the maximization
of |.S*|. Our ILP formulation is provided in Equation (1).

max |S|— Zvar(s)

ses

st war(u) > var(v) —var((u,v)), V(u,v) € FE
Z var((u,v)) < b,
(u,v)EE
var((u,v)) € {0,1}, Y(u,v) € E
var(t) =1,
var(v) € {0, 1}, Yo eV —{t}

)

In this ILP, we create binary variables for all nodes and
edges in G. If an edge (u, v) is cut, its corresponding variable
var((u,v)) becomes 1. Conversely, if a node u cannot reach
t, its variable var(u) becomes 0. var(t) should be fixed at
1. A node u can reach ¢ as long as one of its outgoing edges
leads to t. The outgoing edge (u, v) can connect u to ¢ if v can
reach ¢t and var((u,v)) = 0. The first constraint ensures that
var(u) becomes 1 if either one of u’s outgoing edges (u, v)
has var(v) = 1 and var((u,v)) = 0. The objective function
models the maximization of disconnected source nodes. As
an entry node’s variable equals 1 if it can reach ¢, the sum of
variables for source nodes is minimized for the maximization
of |.S*|.

The computational efficiency of the ILP solver suffers as
the network size expands. One way to improve the scalability
of an ILP solution to an NP-hard problem is to contain the
explosion of the number of variables associated with the input
size. The concept of source connectivity can help us achieve
that. We explain this novel concept in the next section.

3.2 Source Connectivity

Definition 3.1 (k-source connectivity). Given a directed
graph G, a set of source nodes S and a target node ¢, we de-
fine G to be k-source-connected if a total of k£ source nodes
have at least one path to t.
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We can order the subgraphs of GG in terms of source con-
nectivity. Suppose there are two subgraphs G} and G in G.
If the number of source nodes that have a path to ¢ in G is
larger than that in G, we say that G has larger source con-
nectivity than G. In this way, subgraphs of a graph G can be
ordered in decreasing order of source connectivity.

We say that a k-source-connected subgraph is eliminated
if at least one edge in that subgraph is cut: after the edge is
removed from G, any k-source-connected subgraph we find
from G must not have the removed edge and therefore cannot
be the same. In this sense, finding an optimal cut to max-
imize disconnected source nodes S* is equivalent to elimi-
nating subgraphs in decreasing order of source connectivity
so that the last k-source-connected subgraph we find has &
minimized.

Based on this idea of subgraph elimination, we can see that
a k-source-connected subgraph provides an edge space from
which we find an optimal cut ¢* to maximize |.S*|. This edge
space can be further reduced if we scale down a k-source-
connected subgraph by allowing only one path from each of
the k source nodes to ¢. In this way, it becomes a k-source-
connected tree. In the following discussions, a k-source-
connected tree will be referred to as a k-tree and denoted as
Ty.

To sample a T}, we adopt Dijkstra’s algorithm to find a
shortest (s, t)-path for k connected s € S. The path length is
calculated as the number of edges so that the number of edges
in a T}, can be further reduced.

Although Dijkstra’s algorithm is typically adopted for find-
ing one shortest (s, t)-path, we can easily adapt it so that one
shortest path from each connected node to ¢ is recorded in one
traversal. We can then construct a k-tree with shortest paths
between k source nodes and ¢t. We use T'(G, S, ¢, k) to denote
this procedure.

3.3 Using Source Connectivity to Solve Judicious
Partitioning

Suppose b = 1 and initially all nodes in .S have at least one
path to ¢t in G. If §* C S can be disconnected by removing
one edge, then any |.S|-tree must contain this edge: if a node
s € S* is cut, all of its paths must be cut, any one of the
(s, t)-paths must have that one edge as c¢*, including the path
in the enumerated |S|-tree. We can see that the problem is
actually polynomial-time solvable when b = 1.

However, according to Theorem 1, the problem becomes
an NP-hard combinatorial optimization problem when we al-
low more than one edge in ¢*. Different combinations of
edges need to be evaluated as a cut to find the maximum
S*. Some source nodes may also require removing more than
one edge to disconnect. Therefore, a greater number of trees
with some specified source connectivity should be enumer-
ated for a larger pool of edge candidates to find the optimal
c*. An enumerated tree may also have more than one edge to
be added to c*.

With the above observation, we can see that it is not neces-
sary to create variables for all edges in G. An optimal ¢* for
maximizing S* can be found in a small set of trees with cer-
tain source connectivity. We only need to enumerate a subset
of trees in decreasing order of source connectivity and create
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variables for edges in those trees to give to ILP. We denote
the set of edges found in the enumerated trees as E*.

Edges not in E*, which are not to be created as variables,
can have values fixed at O in the ILP to model the fact that
the edge is not considered for a cut and always allows a path.
In the following discussion, we use ILP(E*) to denote the
ILP running with edge candidates E*. ILP(E*) returns the
maximum |S*|. We can also retrieve the optimal ¢* for the
maximized result after ILP converges.

3.4 Spiral Anytime Algorithm

We propose an anytime algorithm that maximizes S* in a
spiral pattern with the above observations. It has two sub-
algorithms running alternately and cooperatively to move the
optimality upward. ILP constitutes one sub-algorithm that is
responsible for finding a cut ¢ under the budget that maxi-
mizes S* with edge candidates E* that are provided. The
other sub-algorithm limits the number of variables given to
ILP by conservatively finding unexplored edges to add into
E*. An unexplored edge is an edge that is not in £'*.

The optimization process progresses incrementally in a
layered manner. Each time, the algorithm focuses only on
enumerating k-trees with the exact source connectivity of k to
test whether |S*| can be optimized to | S| — k+ 1. We call this
examination of k-trees a layer in the spiral optimization pro-
cess. A layer contains several k-tree enumeration iterations.
If ILP(E*) < |S| — k and there exists a k-tree that has at
least one unexplored edge, the optimization cannot progress
to the next layer because there exist some k-trees that are not
eliminated.

If ILP(E™*) > |S| — k, the algorithm progresses to the next
layer and starts examining (|S| — ILP(E*) — 1)-trees. E* can
be cleared at the start of the new layer to reduce the space of
edges being considered and improve the speed of ILP.

If |S*| is the maximum number of source nodes that the
budget can cut, it implies that the budget cannot eliminate all
(|S] = |S*|)-trees, therefore the examination of (|S| — |S*|)-
trees would be the last layer before termination. To terminate,
the algorithm would eventually need to add all edges from E
to ™.

With the above-mentioned process, the algorithm itera-
tively improves ¢ and has the number of disconnected source
nodes, namely |S*|, monotonically increase over time.

Proposition 2. [f ILP(E*) > |S| — k, then the converged c
eliminates all k-trees even if |E*| < | E|.

Proof. Even though only edges in E* are created as variables
in ILP, ILP is running on the complete graph where edges that
are not created as variables invariably allow a path. If there
exists a k-tree that is not eliminated, &£ source nodes must
remain connected to ¢ and the ILP would return |S| — k. O

Proposition 3. If all k-trees can be eliminated under budget,
all subgraphs with source connectivity larger than k are also
eliminated using the same cut.

Proof. Larger trees contain smaller trees as subtrees. That
is, every k-tree is contained inside a (k + z)-tree, > 0.
If all k-trees can be eliminated under budget, then all (k +
x)-trees would be eliminated simultaneously. Even when the
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examination of k-trees is the last layer before termination,
the algorithm would find edges for cutting all (k + x)-trees,
as the algorithm would not have progressed to examining k-
trees otherwise. O

The pseudocode for the algorithm is given in Algorithm 1.
In Line 9, ILP provides us with the maximized number of dis-
connected source nodes |S*| = x, and the cut c that achieves
this result given the edge candidates £*. In Line 10, x is
used to determine whether the algorithm progresses to the
next layer and starts examining trees with smaller source con-
nectivity. The latest c that gives the largest max_disconnected
would be returned when the algorithm is interrupted. Oth-
erwise, the algorithm terminates of its own accord when all
edges in E are added into E*.

Algorithm 1 Spiral anytime algorithm
Input: G={V,E}, S,t,b
L B+« {}
max_disconnected < 0
c— 10
while within time limit do
if £* = F then
return c
k = |S| — max_disconnected — 1
E* + E* U edge_sampling (k)
9: (z,c) + ILP(E™)
10: if © > max_disconnected then
11: max_disconnected < x
12: E* «{}
13: return c

In Algorithm 1, edge_sampling(k) finds a k-tree that has
unexplored edges. Ideally, the k-trees sampled over itera-
tions should have a consistent amount of unexplored edges so
that E* expands steadily, and the anytime algorithm makes
gradual headway. However, this problem is NP-hard even for
sampling a simple path with only one unexplored edge.

Problem 2. Given a directed graph G = (V, E), a set of
source nodes S, a target node ¢, a constant k, and a set of
edges E* C E. The objective is to find a k-source-connected
tree from G that has at least one edge in £ — E*.

Proposition 4. Problem 2 is NP-hard.

Proof. First, we prove that finding a simple path that goes
through a specific edge is NP-hard. It can be proven by reduc-
ing from the 2 Edge-disjoint Paths problem [Tholey, 2006].

In the 2 edge-disjoint paths problem, we are given four dis-
tinct nodes s, u, v, t and we determine whether there exist two
edge-disjoint paths, P; from s to v and P, from v to ¢.

Assume for contradiction that there exists an algorithm A
that can find a simple path from s to ¢ that goes through a
specific edge (u,v) in polynomial time. Now, for any given
instance of the 2 edge-disjoint paths problem, add a new edge
(u,v) to the graph. We can use A to find a path from s to ¢
that goes through (u, v).

Algorithm A also solves the problem of finding 2 edge-
disjoint paths P; and P», which means that the problem of

finding a simple (s, ¢)-path that goes through edge (u, v) is at
least as hard as the 2 edge-disjoint problem, and is therefore
NP-hard.

We can reduce finding a simple (s, t)-path through a forced
edge (u, v) to Problem 2. Construct an input over the original
graph containing a single source S = {s}, a target ¢, a source
connectivity of kK = 1, and where £ — E* = {(u,v)}. This
reduction is polynomial and concludes the proof that Prob-
lem 2 is NP-hard. O

To simplify the edge-sampling problem, we specify that
the sampling algorithm only needs to try its best at sampling
edges that can form a k-tree, and the sampled edges only
need to include at least one unexplored edge. We adopt Di-
jkstra’s algorithm as part of this approximate edge-sampling
algorithm. It is the same procedure as T'(G, S, t, k) given in
Section 3.2. However, we calculate the path length with edge
weights instead of the number of edges for the sampling of
unexplored edges. Here, we use T7(G, S, t, k) to denote this
procedure.

We use w(e) to denote the weight value on edge e. All
unexplored edges should have a weight value of 0. At the be-
ginning of each layer, we set w(e) = 0 for all edges in E.
After an unexplored edge e is sampled by edge_sampling(k),
we increment w(e) by 1. The path length is calculated in
terms of the sum of edge weights so that edges with zero
weights, namely unexplored edges, are more likely to be sam-
pled. However, zero-weight edges are not invariably on short-
est paths. As we have established in Problem 2, finding a k-
tree that has at least one unexplored edge is NP-hard. When
Dijkstra’s algorithm cannot find zero-weight edges, we ran-
domly sample z unexplored edges from E so that the algo-
rithm is guaranteed to make progress in expanding £* in each
iteration. The pseudocode can be found in Algorithm 2.

Algorithm 2 Dijkstra-based edge sampling
Input: G={V,E},S,t,b
Require: At the start of each layer in the spiral algorithm,

setw(e) =0foralle e £
1: function EDGE_SAMPLING(k)

2 unexplored < {}

3 if de € £ : w(e) = 0 then
4 T, =T'(G, S,t, k)

5: for e € T}, do

6 if w(e) = 0 then

7 unexplored.add(e)
8 if unexplored = () then
9: unexplored < uniform_sample(E — E*, 2)
10: for e € unexplored do
11: w(e) « w(e) +1
12: return unexplored

4 Experimental Results

We test the algorithms on four simulated AD networks of dif-
ferent sizes, all of which are generated with ADSimulator'.

"https://github.com/nicolas-carolo/adsimulator
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Information on the sizes of the graphs is given in Table 1.
The source nodes S consist of low-privileged user accounts
and computers in the AD network, which are at higher risk
of becoming attack entries in a cyber attack. The target node
t is selected to be DomainAdmins—a security group manag-
ing high-privileged admin users that can give the hacker full
control of the system once compromised.

GraphID Nodes Edges Source Nodes
Gy 3191 28565 505
Go 6191 57831 1091
Gs 12191 123583 2061
Gy 30191 347370 4868

Table 1: Graph instances for the experiments

4.1 Baseline—MCTS and ILP

We developed two baseline MCTS-based algorithms for com-
parison. The first algorithm (MCTS1) is a straightforward
adaptation of MCTS for judicious partitioning, in which each
state represents a set of edges c evaluated as a cut under bud-
get, and a state transitions to another by sampling an addi-
tional edge from E to add to c. Initially, ¢ = ). c represents a
termination state if |¢| = b. The second algorithm (MCTS2)
is a significant modification of MCTS1. It adopts source con-
nectivity for reducing the action space in each state. Both al-
gorithms use the Upper Confidence Bound [ Auer et al., 2002]
for balancing the exploitation of a promising set of edges and
the exploration of other sets.

We also implemented the pure ILP solution provided in
Equation (1). It runs on the complete graph where all nodes
and edges are created as variables.

4.2 Results

We first examine the algorithms’ performance at improving
|S*| within some time limit. For this experiment, we only
test the algorithm’s performance in G; and G4, with a budget
of 5 and 20. We set various time limits spanning from 60s
to 18000s, and run each algorithm 100 times. The recorded
results are displayed in Figure 2, from which we can see that
MCTS is relatively slow at improving |.S*|; even MCTS2 can-
not give distinctive improvement to the performance. One
potential reason could be that the search space in our prob-
lem is too big that it is difficult for MCTS algorithms to make
any meaningful progress. On the other hand, the spiral any-
time algorithm improves the optimality of the result at a much
faster speed.

Next, we show a comparison between the pure ILP and
the spiral algorithm in Table 2. ILP is capable of finding
c* with exact optimality. However, it struggles to converge
as the graph size expands. To evaluate the spiral algorithm,
we take the optimal |S*| returned by ILP and record the
amount of time elapsed for the spiral anytime algorithm to
reach the same |S*|. Results suggest that the spiral algorithm
can rapidly reach the optimal |S*|, and its advantage over ILP
becomes distinctive in larger graphs.
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For problem instances where ILP cannot converge under
one hour, we tested how the spiral algorithm improves |S*
in the course of one hour. The results are given in Figure 3,
which provides more evidence that the algorithm can bring a
great jump in optimality rapidly within seconds. Compared
with ILP which cannot provide a solution until it terminates
of its own accord, the spiral algorithm can be more useful in
resolving urgent security issues in the real world where hav-
ing a satisfactory solution promptly is more important than
guaranteed optimality.

100
— G3 b20
go| — G4_b10
— G4 bls
60 — G4.b20
.
(2}
40
201
0 . . . .
0 10° 107! 102 103

run_time(seconds)

Figure 3: For problem instances in Table 2 where ILP cannot find
a solution under time limit, spiral anytime algorithm makes great
strides at improving |S™| within seconds.

In the above experiments, the spiral algorithm exhibits a
high level of diminishing returns: the improvement in solu-
tion quality improves rapidly in the early stage and reaches
stagnation until termination. This is a desirable quality in an
anytime algorithm. For absolute optimality, the spiral algo-
rithm needs to finish the last layer by eventually adding all
edges into £*. The last layer would take the longest time.
The speed at which E* expands affects the run time of the
last layer: the slower the expansion speed is, the more iter-
ations ILP needs to run. As E* gets larger, the ILP’s speed
deteriorates and can severely impact the run time of each iter-
ation. Nevertheless, when the algorithm stalls at a particular
|S*| for a long time, there is a high chance that the algorithm
has arrived at the optimal result, and our confidence in the
optimality of the result strengthens as the run time extends.

Compared with MCTS, because of the spiral algorithm’s
capability to make fast improvements in optimality, it pro-
vides security-hardening suggestions of higher quality under
the same run-time budget and therefore more helpful in re-
solving a security crisis.

The hardening of AD security has been studied as the
shortest path interdiction problem in the past [Guo et al.,
2022; Guo et al., 2023; Zhang et al., 2023], which is for maxi-
mizing the shortest path length by removing a limited number
of edges under budget. The double oracle algorithm [Zhang
et al., 2023] is an efficient heuristic for solving the shortest
path interdiction problem on AD attack graphs. In Table 3,
we show a comparison of the number of disconnected source
nodes under the same budget using the double oracle algo-
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Figure 2: A comparison of the three algorithms’ performance at improving |S™| within some time limit.

GraphID b=5 . b=10. b=15 . b=20.
ILP Spiral ILP Spiral ILP Spiral ILP Spiral
G, 1.89 1770 1550  10.87 19.61 19.78 54.11 19.57
Go 23.79 2341 116,53 2573 431.28  33.04 382.09 33.14
Gs 87.76  33.87 143.69 40.60 1943.52 127.44 > 3600 -
Gy 1099.05 69.36 > 3600 - > 3600 - > 3600 -

Table 2: Run time (seconds) for optimal results. The spiral algorithm takes the optimal result given by ILP to record the amount of time

elapsed for it to reach the same result.

rithm and the spiral algorithm. We allow 60 seconds of run
time for the spiral algorithm, and specify a budget of 5 and 10
respectively. As we can see in the table, approaching the AD
security-hardening problem as the shortest path interdiction
problem cannot help the security engineer reduce the number
of attack sources.

5] Double Oracle |S*| Spiral | S*|
b=5 b=10 b=5 b=10
Gi 505 9 18 37 52
Gy 1091 2 9 37 52
Gs 2061 14 21 42 58
Gy 4868 2 6 38 54

Table 3: A comparison of the number of disconnected sources be-
tween the spiral algorithm and the double oracle algorithm (b =
5,10).

5 Conclusion

In this paper, we studied judicious partitioning of directed
graphs as a security-hardening measure for Active Directory

(AD) systems. We formulated the judicious partitioning prob-
lem in a novel way that is rarely studied in the past, a thorough
investigation of our problem remains a significant gap. We
first provided a proof that our problem is NP-hard. Optimal
solutions are not practical for most AD graphs, therefore we
studied anytime algorithms that are fast and provide good so-
lutions for timely remediation actions. We proposed the spi-
ral anytime algorithm that has a novel anytime optimization
paradigm. Currently, it is the only practical algorithm avail-
able for our problem. Compared with the pure Integer Linear
Programming solution and two Monte Carlo Tree Search so-
Iutions we investigated as the baseline, our spiral algorithm
has significantly better performance in improving the opti-
mality of the result on large AD graphs.
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