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Abstract
Submodular function maximization has been stud-
ied extensively in recent years due to its numerous
applications in machine learning and artificial in-
telligence. We study a natural online variant of
this problem on massive streaming data in which
elements arrive one-by-one and the algorithm has
to maintain a solution under cardinality constraint,
i.e., k. Upon arrival of an element, the algorithm to
maximize a monotone submodular function has to
decide whether to accept the element and may re-
place a previously chosen element. Existing algo-
rithms cannot simultaneously achieve optimal per-
formance in terms of competitive ratio, memory
complexity and running time. Also, the algorithm
with best competitive ratio performs poorly in prac-
tice. In this paper, we propose a new algorithm
ONLINEADAPTIVE with optimal performance by
exploiting adaptive thresholds to decide the accep-
tance of arriving elements by replacement. We
prove that the competitive ratio of ONLINEADAP-
TIVE is at least 1/4, and the ratio is about 0.2959
when k ≥ 4 and approaches 0.3178 when k tends
to infinity. In addition, ONLINEADAPTIVE only
needs O(k) memory and just performs one oracle
per element. Experiments on diverse datasets con-
firm that ONLINEADAPTIVE outperforms existing
algorithms in both quality and efficiency.

1 Introduction
Submodularity exhibits the diminishing return property of
set functions arising in numerous machine learning and ar-
tificial intelligence applications, such as data summariza-
tion [Mirzasoleiman et al., 2016; Kumari and Bilmes, 2021],
active learning [Wei et al., 2015], feature selection [Schlegel
et al., 2017], influence maximization [Becker et al., 2022],
and user recommendation [Ashkan et al., 2015]. A set func-
tion f : 2V → R+ with a ground set V is submodular if
f(A ∪ {e}) − f(A) ≥ f(B ∪ {e}) − f(B) for all sets
A ⊆ B ⊆ V and every element e ∈ V \B. The sub-
modular function f is monotone if for all A ⊆ B we have
f(A) ≤ f(B). As a natural extension, online submodu-
lar maximization on monotone functions plays an important

role on ubiquitous streaming data in real-world applications.
Consider an example of a soccer team manager recruiting k
players for the 2026 World Cup. When getting an additional
application from a new potential player, the manager needs
to make decision whether to recruit the player. When the
number of the players in his team exceeds k, e.g., k = 11,
a replacement occurs for satisfying the cardinality constraint
k. The goal of the manager is to maximize the quality of
the team which is indeed a submodular function of the cho-
sen players [Buchbinder et al., 2015]. As another example,
in online or reinforcement learning, to avoid the inefficiency
of kernel prototype selection for multiple passes over the
dataset and maintaining a large number of parallel solutions,
the prototypes are selected in the online manner [Schlegel et
al., 2017]. Specifically, when a prototype from an infinite
or even uncountable space of observations is given, the al-
gorithm needs to immediately decide whether to include the
prototype. The objective is to maximize the coverage time
to achieve the optimal solution of the chosen kernel proto-
types. Also, similar scenarios can be found in many appli-
cations. In this paper, we consider the online monotone sub-
modular maximization problem with replacement subject to
cardinality constraint k. An immediate decision is made for
an arriving element and the discarded elements will never be
considered, and the accepted elements may be replaced by
oncoming elements when better results can be achieved.

Currently, the representative streaming submodular max-
imization algorithms, such as STREAMGREEDY [Gomes
and Krause, 2010], SIEVE-STREAMING [Badanidiyuru et
al., 2014] and SIEVE-STREAMING++ [Kazemi et al.,
2019], SALSA [Norouzi-Fard et al., 2018], QUICKSTREAM
[Kuhnle, 2021], and THREESIEVES [Buschjäger et al., 2021]
cannot meet the requirements of the above applications since
these algorithms need to cache some elements for later evalu-
ation. Our considered problem is also different from the clas-
sical submodular secretary problem [Hajiaghayi et al., 2004;
Bateni et al., 2013] for the accepted elements may be re-
placed by oncoming elements when the algorithm achieves
better solutions. Existing online submodular maximization
algorithms in the online setting with replacement cannot si-
multaneously perform well in the three aspects, i.e., com-
petitive ratio, memory complexity and running time. INDE-
PENDENTSETIMPROVEMENT [Chakrabarti and Kale, 2015],
STREAMINGGREEDY [Chekuri et al., 2015] and PREEMP-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7065



TION [Buchbinder et al., 2015; Buchbinder et al., 2019] do
not achieve the best competitive ratio and they all have the
competitive ratio 1/4. Moreover, STREAMINGGREEDY and
PREEMPTION need O(k) oracles (function calls) for each
element thus leading to more time consumption. The cur-
rent state-of-the-art theoretical result for online submodular
maximization with replacement is achieved by the FREEDIS-
POSAL algorithm [Chan et al., 2017; Chan et al., 2018]. How-
ever, the memory complexity of FREEDISPOSAL is O(n)
which is intolerable for large-scale datasets in practice.
Our contributions. We design a novel algorithm ONLIN-
EADAPTIVE simultaneously providing the best competitive
ratio, memory complexity and running time for the online
monotone submodular maximization problem with replace-
ment. More precisely, we consider the optimization problem

max
S⊆V,|S|=k

f(S),

where V is a possibly infinite ground set where the elements
of V = {v1, v2, ..., vn} are revealed one-by-one and S ⊆ V
is a solution set which is initialized to an empty set and the
revealed elements are added to S according to the elaborately
designed thresholds. At any timestamp t (1 ≤ t ≤ n), St is
the feasible solution set after element vt is revealed. When
|S| < k, the elements are selected into S by the thresholds.
For the revealed element vt when |S| = k, a replacement may
occur to get a better result set. We assume that f is given as
an evaluation oracle: when we specify S ⊆ V , the oracle
returns the value of f(S).

Our ONLINEADAPTIVE algorithm achieves a competitive
ratio about 0.2959 when k ≥ 4 by using adaptive thresholds
for replacement and the competitive ratio approaches 0.3178
when k tends to infinity which are the same to the current
state-of-the-art results. Besides this, ONLINEADAPTIVE only
needsO(k) memory by building a relationship to the set of all
previously accepted elements. Moreover, for each revealed
element, ONLINEADAPTIVE only needs O(1) oracles.

We also conduct experiments on diverse datasets and the
experimental results show that the quality, i.e., submodular
function value of our ONLINEADAPTIVE algorithm is com-
parable to other algorithms. Furthermore, ONLINEADAP-
TIVE runs faster than existing algorithms and the number of
oracles is much less than those of the other algorithms.

2 Related Work
After the seminal work [Nemhauser et al., 1978] exhibits
nice properties of submodular functions which are apt to
obtain near-optimal solutions by a simple greedy algorithm
GREEDY with 1−1/e approximation ratio, these decades wit-
ness the flourish of the study on submodular function maxi-
mization [Krause and Golovin, 2014; Bilmes, 2023]. Follow-
ing we only review the literature of the monotone submod-
ular function maximization over streaming data. Note that
the studied problem of [Streeter et al., 2009; Si-Salem et al.,
2024] with the same name focuses to reveal the submodular
functions and is with different process and objective. Thus, it
is completely different from ours.

To deal with the massive streaming data, STREAM-
GREEDY [Gomes and Krause, 2010] extends the GREEDY al-

gorithm by simply accepting the first k elements and continu-
ing to accept the elements if the improvement of replacing an
element in the current solution set surpasses a fixed thresh-
old. STREAMGREEDY achieves a 1/2 − ε approximation
only if multiple passes over the streaming data are allowed,
where ε is related to the number of passes and some specified
parameters. The first proper streaming algorithm with the
same theoretical guarantee is SIEVE-STREAMING [Badani-
diyuru et al., 2014] which maintains a number of parallel so-
lutions using different sizes of “sieves” and at arbitrary time
period the solution with the maximum function value is re-
turned as the result set. To make SIEVE-STREAMING more
efficient or practical, several enhancements are provided. The
SIEVE-STREAMING++ algorithm [Kazemi et al., 2019] re-
duces the number of sieves by offering a better lower bound
for the function value. Moreover, SIEVE-STREAMING++
only requires O(k/ε) memory instead of O(k log k/ε) of
SIEVE-STREAMING. The SALSA algorithm [Norouzi-Fard
et al., 2018] also achieves 1/2 − ε approximation but only
needs O(k log k) memory by the assumption that the ele-
ments in data streams arrive in a random order. The QUICK-
STREAM [Kuhnle, 2021] and THREESIEVES [Buschjäger et
al., 2021] algorithms aim at decreasing the number of oracles
to improve efficiency. QUICKSTREAM evaluates the func-
tion f every c elements and achieves a 1/(4c) − ε approx-
imation while THREESIEVES only accepts informative ele-
ments in data streams leading to O(1) oracles per element
and O(k) memory, and the approximation further improves
to (1− ε)(1−1/e) in high probability. Since these streaming
algorithms need to maintain parallel solutions, i.e., the ele-
ments are cached without immediate decision, they are not
suitable for the online setting.

To meet the requirements of the online submodular max-
imization, some of the single-pass streaming algorithms
are indeed applicable to the online scenarios, such as
STREAMINGGREEDY [Chekuri et al., 2015] and INDE-
PENDENTSETIMPROVEMENT [Chakrabarti and Kale, 2015].
They share the same structure that the first k elements
are directly accepted and replacement occurs when the
marginal gain of an arriving element doubles the minimum
marginal gain among the elements in the solution set. They
both achieve a competitive ratio of 1/4 and O(k) mem-
ory complexity by recording the marginal gains, INDEPEN-
DENTSETIMPROVEMENT only conducts one oracle per el-
ement instead of O(k) oracles for each element of the
STREAMINGGREEDY algorithm. The PREEMPTION algo-
rithm [Buchbinder et al., 2015; Buchbinder et al., 2019] is
explicitly designed for the submodular function maximiza-
tion in the online setting. PREEMPTION also accepts the first
k elements and continues to accept the elements if the im-
provement of replacing an element in the current solution
surpasses the average value of the elements in it. PREEMP-
TION achieves the same competitive ratio and memory com-
plexity as STREAMINGGREEDY and INDEPENDENTSETIM-
PROVEMENT but its theoretical analysis is much simpler than
those. The FREEDISPOSAL algorithm [Chan et al., 2017;
Chan et al., 2018] achieves the current state-of-the-art com-
petitive ratio by delicately designing the acceptance condi-
tions with the help of an auxiliary set storing all ever ac-
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cepted elements. FREEDISPOSAL has a competitive ratio at
least 0.2959, and the ratio approaches 0.3178 when k tends
to infinity at the cost of O(n) memory to store the auxiliary
set. For larger-scale streaming data, the memory consump-
tion is intolerable which makes FREEDISPOSAL inapplicable
in real-world applications. By the analysis of the existing
algorithms for online monotone submodular function maxi-
mization, none of the algorithms can simultaneously achieve
the optimal competitive ratio, acceptable memory complexity
and the fewest number of oracles which usually results in the
least running time.

3 Preliminaries
In this section, we present some definitions and observations
that are helpful in our analysis.

Let [e] denote the timestamp when element e arrives. We
first provide the definitions of marginal gain and incremental
value of e where e ∈ St−1, i.e., [e] < t.

Definition 1. The marginal gain of e over its solution set
S[e]−1 is defined as ∆f (e|S[e]−1) = f(S[e]−1 ∪ {e}) −
f(S[e]−1).

Definition 2. The incremental value of e over its solution set
S[e]−1 and current solution set St is defined as ∆f (e|S[e]−1∩
St−1) = f(S[e]−1 ∩ St−1 ∪ {e})− f(S[e]−1 ∩ St−1).

Let m(e) and ct(e) denote the marginal gain and the incre-
mental value of e respectively, and we have ct(e) ≥ m(e) due
to submodularity of f . To give a lower bound of f(St), we
use the trivial definition that f(∅) ≥ 0 and accumulate the
marginal gains of elements in St, then we naturally obtain:

Lemma 1. For a timestamp t ∈ {1, 2, . . . , n}, the solution
set is St, and its value is at least

f(St) ≥
∑
e∈St

m(e).

To achieve the optimal competitive ratio for the algorithm,
we observe that it is related to the cardinality constraint, i.e.,
k. Moreover, we only consider k ≥ 4 because the trivial al-
gorithm that only selects the singleton with the largest value
achieves a 1/k competitive ratio. For a fixed k value, we de-
fine three constants: ζ := log2 log1.2 k, η denoting the pos-
itive root of the equation (1 + x)(k+1) = kx + x + 2 and
β0 := 1+kη

(1+η)k−1 . Next, based on these we define three param-
eters αt, βt and τt varying along with t similar to [Chan et al.,
2017; Ene and Nguyen, 2022]: αt := exp(( |St|k )ζ · log r) · η,
βt := 1+kαt

(1+αt)
k−1 , and τt :=

∑|St|
i=1[(1 + αt)

i−1 · m(ei)],
where r is an adjusting parameter andm(ei) is the i-th largest
marginal gain in {m(e) : e ∈ St}. After these definitions, we
observe that our defined threshold τt satisfies monotonicity
property.

Lemma 2. τt is monotone non-decreasing with timestamp t,
i.e., for the timestamp t ∈ {1, 2, . . . , n}, we have τt−1 ≤ τt.

Lemma 2 apparently holds due to non-decreasing of αt and
m(ei).

Algorithm 1: The ONLINEADAPTIVE algorithm
Input: Cardinality constraint k, parameters β0, ζ, η, r.
Output: The solution set St at timestamp t.

1 S0 ← ∅, τ0 ← 0.
2 foreach arriving element vt do
3 m(vt) = ∆f (vt|St−1).
4 if m(vt) ≥ βt−1

k · τt−1 then
5 if |St−1| < k then
6 St ← St−1 ∪ {vt}.
7 else
8 Let v′t = arg mine∈St−1

m(e).
9 St ← St−1 ∪ {vt} \ {v′t}.

10 αt ← exp(( |St|k )ζ · log r) · η.
11 βt ← 1+kαt

(1+αt)
k−1 .

12 τt ←
∑|St|
i=1[(1 + αt)

i−1 ·m(ei)], where
m(ei) is the i-th largest marginal gain in
{m(e) : e ∈ St}.

13 return St

4 The ONLINEADAPTIVE Algorithm
In this section, we present our ONLINEADAPTIVE algorithm
for maximizing monotone submodular functions in the online
setting. We first show the advantages of our adaptive thresh-
olding strategy. Then ONLINEADAPTIVE is provided based
on the constants and parameters defined before.
Replacement condition. For the arriving element vt, our
adaptive thresholding strategy can be simply expressed as

m(vt) ≥
βt−1
k
· τt−1.

By expanding the marginal gainm(vt) and the threshold τt−1
as defined, we obtain the general form of the replacement
condition:

∆f (vt|St−1) ≥ βt−1
k

|St−1|∑
i=1

[(1 + αt−1)
i−1 ·∆f (ei|St−1)],

where ei is with the i-th largest marginal gain in {m(e) :
e ∈ St−1}. The thresholds based on the delicate constants
and parameters pave the way to achieving the state-of-the-art
competitive ratio.
The algorithm. Algorithm 1 shows the details of our pro-
posed ONLINEADAPTIVE algorithm. Different from previ-
ous online algorithms such as STREAMINGGREEDY, INDE-
PENDENTSETIMPROVEMENT and PREEMPTION, the first k
elements are not directly accepted but need to satisfy the
replacement condition (Lines 4-6) which guarantees the ac-
cepted elements have enough contributions when |St| < k.
In our ONLINEADAPTIVE algorithm, the element in St−1
with least contribution is replaced when |St| = k (Lines 8-
9). After that, the parameters αt, βt and τt are updated along
with the solution set St (Lines 10-12) and αt and βt remain
unchanged when |St| = k. Note that αt is adjusted by an
additional parameter r (r > 1) for m(ei) decreases with the
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increase of i and a larger weight denoted as (1+αt)
i−1 (Line

12) to a smaller m(ei) means we do not neglect the accepted
elements with small marginal gains. With the help of this
adjusting parameter r, the quality of the solution set will be
improved which is also verified in the experiments.
Advantages. In contrast to existing algorithms for online
submodular maximization, our adaptive thresholding strat-
egy in Algorithm 1 simultaneously has three advantages:
a) improving the competitive ratio. Compared to the algo-
rithms STREAMINGGREEDY, INDEPENDENTSETIMPROVE-
MENT and PREEMPTION, the adaptivity of the thresholds
along with t is apt to achieve a higher competitive ratio than
1/4. b) memory- and computation-efficiency. Reexamining
the constants and parameters used in our adaptive strategy, we
find they are only related to the user-specified cardinality con-
straint k and the elements in the solution set, instead of the set
of ever accepted elements as FREEDISPOSAL did. We know
that for FREEDISPOSAL, which is with best competitive ra-
tio, the size of the set of ever accepted elements is O(n) in
the worst case. Thus, compared to FREEDISPOSAL, our pro-
posed thresholding strategy is much more efficient in memory
and time consumption. c) less number of oracles. Since we
record the marginal gains of e as to the solution set St−1 for
later reuse, many oracles are avoided which is more efficient
especially when the function calls are time-consuming.

5 Theoretical Analysis
In this section, we provide the competitive ratio of our ON-
LINEADAPTIVE algorithm as well as the memory and com-
putation complexities.

As provided in Lemma 2, τt is monotone non-decreasing.
More precisely, we quantify the difference between the two
adjacent thresholds. It is obvious that when |St−1| < k, τt ≥
τt−1 + m(vt). When |St−1| = k, we know that αt remains
unchanged and αt−1 = αt = rη. The difference between
τt−1 and τt is quantified by Lemma 3.
Lemma 3. When |St−1| = k, let τt−1 and τt be two adjacent
thresholds, we have

(a) τt ≥ τt−1 +m(vt)− (1 + rη)k−1m(v′t)

and
(b) τt ≤ (1 + rη)τt−1 +m(vt)− (1 + rη)km(v′t)

where vt is the arriving element replacing v′t and v′t =
arg mine∈St−1

m(e).

Proof. When the replacement occurs, i.e., vt replaces v′t
when m(vt) exceeds the threshold, the set of the marginal
gains changes. Let m(vt) be the p-th largest marginal gain in
{m(e) : e ∈ St}. After the replacement, assume the elements
in τt−1 and τt are ordered by the marginal gains. We observe
that the first p-1 elements in τt remain unchanged as to τt−1.
The p-th element has changed to (1 + rη)p−1m(vt) and the
i-th element in τt (p + 1 ≤ i ≤ k) is the (i-1)-th element in
τt−1 multiplied by the coefficient 1 + rη. Thus, we have
τt − τt−1 = (1 + rη)p−1m(vt)− (1 + rη)k−1m(v′t)

+
k∑

i=p+1

[(1 + rη)i−1 − (1 + rη)i−2]m(ej). (1)

Since 1 + rη > 1 and m(ei) ≥ 0, Inequality (a) obviously
holds. Further, we know that m(vt) ≤ m(ei) when 1 ≤ i ≤
p, we have

k∑
i=p+1

((1 + rη)
i−2

)m(ei)

= τt−1 − (1 + rη)
k−1

m(v′t)−
p−1∑
i=1

((1 + rη)
i−1

)m(ei)

≤ τt−1 − (1 + rη)
k−1

m(v′t)−
p−1∑
i=1

((1 + rη)
i−1

)m(vt)

= τt−1 − (1 + rη)
k−1

m(v′t) +
1− (1 + rη)

p−1

rη
m(vt).

(2)

By Equations 1 and 2, Inequality (b) holds.

Next, we show βτ is also monotone non-decreasing.
Lemma 4. Let τt−1 and τt be two adjacent thresholds
and βt−1, βt be the corresponding parameters. We have
βt−1τt−1 ≤ βtτt, i.e., βτ is monotone non-decreasing.
Moreover, if |St−1| < k, we have

βtτt − βt−1τt−1 ≥ βtτt−1.

Proof. When |St−1| = k, βt−1τt−1 ≤ βtτt trivially holds
since βt−1 = βt and τt−1 ≤ τt (Lemma 2). When |St−1| <
k, by Algorithm 1 we have

βtτt − βt−1τt−1 ≥ βt(τt−1 +m(vt))− βt−1τt−1

≥ βt(τt−1 +
βt−1
k

τt−1)− βt−1τt−1 ≥ βtτt−1.

Then, let S∗t and At be the optimal solution set and the set
of all the ever accepted elements respectively at timestamp t.
We obtain the upper bound of S∗t .
Lemma 5. An upper bound of the optimal solution S∗t is

f(S∗t ) ≤
∑
e∈At

m(e) + βtτt.

Proof. By monotonicity and submodularity of f and St ⊆
At, we have

f(S∗t ) ≤ f(S∗t ∪At)

≤ f(At) +
∑

e∈S∗\At

∆f (e|A[e]−1)

=
∑
e∈At

∆f (e|A[e]−1) +
∑

e∈S∗
t \At

∆f (e|A[e]−1)

≤
∑
e∈At

∆f (e|S[e]−1) +
∑

e∈S∗
t \At

∆f (e|S[e]−1)

=
∑
e∈At

m(e) +
∑

e∈S∗
t \At

m(e).
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Since the elements in S∗t \At are all rejected by the algorithm
and by Lemma 4, we further obtain

f(S∗t ) ≤
∑
e∈At

m(e) +
∑

e∈S∗
t \At

β[e]−1τ[e]−1

k

≤
∑
e∈At

m(e) + βtτt.

We are now ready to prove the competitive ratio of ONLIN-
EADAPTIVE.
Theorem 1. Algorithm 1 is 1

ρk,r
-competitive, where

ρk,r = 1 + krη +
1 + krη

(1 + rη)k − 1
.

Proof. We first consider the case that |St−1| < k and At =
St. We have

f(S∗t ) ≤
∑
e∈At

m(e) + βtτt =
∑
e∈St

m(e) + βtτt

=

|St|∑
i=1

m(ei) + βt

|St|∑
i=1

[(1 + αt)
i−1 ·m(ei)]

≤ (1 + βt(1 + αt)
k−1

)

|St|∑
i=1

m(ei).

By Lemma 1 and monotonicity of αt, we obtain

f(S∗t ) ≤ (1 +
1 + kαt

(1 + αt)
k − 1

(1 + αt)
k−1

)f(St)

≤ (1 + kαt +
1 + kαt

(1 + αt)k − 1
)f(St)

≤ (1 + krη +
1 + krη

(1 + rη)k − 1
)f(St).

Next, we consider the case |St−1| = k. For simplicity, let
Ut =

∑
e∈At m(e) + βtτt denote the upper bound of f(S∗t )

and Lt =
∑
e∈St m(e) denote the lower bound of f(St).

Since we have proved f(S∗t ) ≤ Ut ≤ ρk,rLt ≤ ρk,rf(St)
for the case: |St−1| < k, it is enough to prove the case:
|St−1| = k by induction. If ONLINEADAPTIVE rejects
vt, we have Ut = Ut−1 and Lt = Lt−1, then we obtain
f(S∗t ) ≤ Ut = Ut−1 ≤ ρk,rLt−1 = ρk,rLt ≤ ρk,rf(St). If
the algorithm accepts vt, we have

f(S∗t ) ≤ Ut = Ut−1 +m(vt) + βtτt − βt−1τt−1
= Ut−1 +m(vt) + βt(τt − τt−1)

≤ Ut−1 + (1 + βt)m(vt) + βtrητt−1 − βt(1 + rη)km(v′t)

≤ Ut−1 + (1 + βt)m(vt) + krηm(vt)− βt(1 + rη)km(v′t)

= Ut−1 + ρk,rm(vt)− ρk,rm(v′t)

≤ ρk,rLt−1 + ρk,rm(vt)− ρk,rm(v′t)

= ρk,r(Lt−1 +m(vt)−m(v′t)) = ρk,rLt ≤ ρk,rf(St).

Here, the second and third inequalities hold by Lemma 3 and
Algorithm 1 respectively, and the fourth inequality is induced
from the case |St−1| < k. Overall, the competitive ratio of
our ONLINEADAPTIVE algorithm is at least 1

ρk,r
.

Corollary 1. For r = 1, the competitive ratio of ONLIN-
EADAPTIVE is at least 1

4 . Moreover, the competitive ratio is
at least 0.2959 when k ≥ 4, and 0.3178 when k approaches
infinity.

Proof. Due to the proof of Theorem 1, ρk,r is set to the max-
imum of g(η) = 1 + kη + 1+kη

(1+η)k−1 where η is the positive

root of the equation (1+x)(k+1) = kx+x+2. When k = 1,
we have η = 1, and the competitive ratio is at least 1

ρ1,1
= 1

4 .
When k = 4, we have η ≈ 0.2756, so the competitive ratio
is at least 1

ρ4,1
≈ 1

3.3784 ≈ 0.2959. When k approaches infin-
ity, we can easily have ρk,r ≥ g(ηk ). Thus, we estimate the
maximum of g(ηk ) = 1 + η+ 1+η

(1+ η
k )
k−1 . When k approaches

infinity, we have (1 + η
k )k ≈ eη , g(ηk ) = 1 + η + 1+η

eη−1 and
g(ηk ) reaches its maximum 3.1461 at η ≈ 1.1461. Hence,
when k approaches infinity, the competitive ratio is at least

1
3.1461 ≈ 0.3178.

Finally, we provide the memory complexity and the num-
ber of oracles of ONLINEADAPTIVE.

Corollary 2. Algorithm 1 usesO(k) memory and the number
of oracles is just one per element.

The results can be easily derived from the process of Al-
gorithm 1. Moreover, we maintain the result set by a priority
queue where the marginal gains are ordered in the queue.

6 Experimental Evaluation
In this section, we experimentally evaluate our proposed ON-
LINEADAPTIVE algorithm on three applications correspond-
ing to five real-world datasets, i.e., the first three datasets
to the first application and the last two datasets to the sec-
ond and third applications respectively. We begin by com-
paring ONLINEADAPTIVE with its non-adaptive version to
assess the advantages of exploiting adaptive thresholds, and
subsequently compare ONLINEADAPTIVE with five well-
established algorithms to evaluate its quality and efficiency.
All the experiments were conducted on a machine running
Ubuntu 20.04 with an Intel(R)Xeon(R) E3-1225 3.30GHz
CPU and 16 GB main memory.

Name Size Dim. Reference

ForestCover 286,048 10 [Liu et al., 2008]
CreditCardFraud 284,807 29 [Pozzolo et al., 2015]
KDDCup99 48,113 79 [Campos et al., 2016]

YouTube 9,010 4 [Kazemi et al., 2019]

Twitter 42,104 - [Kazemi et al., 2019]

Table 1: Five datasets corresponding to the listed applications.
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Figure 1: Comparison between ONLINEADAPTIVE and its non-
adaptive version ONLINENONADAPTIVE for different rs when k =
30 on the ForestCover and YouTube datasets. Note that the second
row shows the relative performance to ONLINENONADAPTIVE. We
omit the results on number of oracles for they are the same.

6.1 Applications and Datasets
We maximize the corresponding submodular functions in the
following three applications.
Online Kernel Prototype Selection. In this application, we
want to select a set S with k kernel prototypes from each
in the three datasets as shown in the top group in Table ??,
and each element e of the datasets is a multi-dimensional
representative vector. The goal is to maximize the log-
determinant f(S) = 1

2 log det(I + κMS) using Gaussian

kernelKG(x, y) = exp(− ||x−y||
2
2

2σ2 ). Here, I denotes the iden-
tity matrix, κ, σ ∈ R+ are parameters, and MS denotes the
kernel matrix based on all pairs of the elements in S, where
MS [i][j] = KG(ei, ej) for a pair of elements (ei, ej). This
function is shown to be submodular [Schlegel et al., 2017],
and we set κ = 1 and σ = 1

2
√
d

in our experiments, where d
denotes the dimensionality of the element in each dataset.
Online Video Summarization. In this application, we
want to select a set S with k representative frames from
the YouTube dataset as shown in Table ??, and each ele-
ment e of the dataset is a 4-dimensional representative vec-
tor compressed from a frame. The goal is to maximize the
log-determinant f(S) = log det(I + κMS) using Lapla-
cian kernel KL(x, y) = exp(− ||x−y||2σ ), where MS [i][j] =
KL(ei, ej). Note that the submodular function and the kernel
function used here are different from those used in the first
application, and we set κ = 10 and σ = 1 in our experiments.
Online Text Summarization. In this application, we want
to select a set S with k tweets from the Twitter dataset as
shown in Table ??. Each element e in the ground set V is a

tweet with a group of keywords We and a number of retweets
Ne. The score of a word w ∈ We for a tweet e is defined by
val(w, e) = Ne and val(w, e) = 0 if w /∈ We. LetW be the
general set including all the words in the ground set V . The
goal is to maximize f(S) =

∑
w∈W

√∑
e∈S val(w, e) and

it is shown to be submodular [Kazemi et al., 2019].

6.2 Baselines and Evaluation Metrics
In the first experiment, we use the non-adaptive version
of ONLINEADAPTIVE, called ONLINENONADAPTIVE for
comparison. For all the timestamps t ∈ {1, 2, . . . , n}, ONLI-
NENONADAPTIVE sets all αts to the constant rη. Thus, βts
also remain unchanged. In the second experiment, we use
the classical offline algorithm GREEDY and the four above-
mentioned online algorithms, INDEPENDENTSETIMPROVE-
MENT, STREAMINGGREEDY, PREEMPTION, and FREEDIS-
POSAL for comparison. The GREEDY algorithm is not an on-
line algorithm but with the best solution quality, and we put
GREEDY here to show how far the online algorithms are from
it. Moreover, since PREEMPTION accepts a parameter c and
achieves a competitive ratio c

(c+1)2 , we set c = 1 to achieve
its best ratio 1

4 in our experiments.
To comprehensively evaluate the performance of the algo-

rithms, we employ the following four metrics:
• Function Value: The function value of the selected so-

lution set S, i.e., f(S), which intuitively reflects the al-
gorithm’s variation trends and its performance in terms
of effectiveness.

• Relative Performance: The relative performance in
terms of function value to the specified algorithm, i.e.,
ONLINENONADAPTIVE or GREEDY, which facilitates
the comparison among the algorithms for effectiveness.

• Runtime: The total runtime in seconds, which provides
an intuitive reflection of the algorithms’ efficiency and
feasibility.

• Number of Oracles: The number of total oracles, which
reflects efficiency and feasibility of the algorithms.

Note that larger values are preferred for the first two met-
rics while smaller values are better for the last two metrics.
In addition, runtime cannot be wholly substituted by number
of oracles since for different applications, the running time of
an oracle varies a lot. Our code is publicly available 1.

6.3 Performance of Our Algorithm
To illustrate the advantages of employing the adaptive thresh-
olding strategy, we first compare ONLINEADAPTIVE with
its non-adaptive version ONLINENONADAPTIVE by varying
r ∈ {1, 3, 5, 7, 9} while fixing the solution size k to 30.
Since they have exactly the same number of total oracles,
we omit the results with respect to this metric. As shown
in Figure 1, their function values all exhibit their minimums
at r = 1 and increase with r, which once again emphasizes
the phenomenon that using theoretically optimal parameter,
i.e. r = 1, does not result in the best actual performance.
The reason is that the thresholds for filtering elements be-
come progressively more suitable to increase f(S) with the
growth of r which improves the quality of the solution set.

1https://github.com/dcsjzh/OnlineAdaptive
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Figure 2: Comparison between GREEDY(an offline algorithm), INDEPENDENTSETIMPROVEMENT, STREAMINGGREEDY, PREEMPTION,
FREEDISPOSAL, and ONLINEADAPTIVE by varying cardinality constraint k. Note that the second row shows the relative performances of
the online algorithms to GREEDY, and since FREEDISPOSAL fails to finish within the specified time, i.e., three days, on the first four datasets,
i.e., ForestCover, CreditCardFraud, KDDCup99 and YouTube, we only present its results on the last dataset, i.e., Twitter.

Since ONLINENONADAPTIVE selects at least k elements
earlier, it has better solution quality when r is small, e.g.,
r = 3. However, when both of the algorithms have se-
lected k elements, the adaptive thresholding strategy of ON-
LINEADAPTIVE results in superior quality for the ONLIN-
EADAPTIVE algorithm only accepts the elements above the
thresholds and is with a smaller number of replacements.
Thus, ONLINEADAPTIVE consumes less time than the ON-
LINENONADAPTIVE algorithm.

To evaluate the effectiveness and efficiency of ONLIN-
EADAPTIVE, we compare it with five well-established al-
gorithms by varying solution size k ∈ {10, 20, 30, 40, 50}.
Here, we use ONLINEADAPTIVE with r = 9 and ONLIN-
EADAPTIVE with r = k, where the former is due to its
good performance as shown in Figure 1 and the latter comes
from a simple fact that users are not required to specify r.
Note that since FREEDISPOSAL uses the set of all ever ac-
cepted elements to evaluate each arriving element, it fails to
finish within the specified time, i.e., three days, on the first
four datasets. Thus, we only present its results on the Twit-
ter dataset. As shown in Figure 2, except the offline algo-
rithm GREEDY, our ONLINEADAPTIVE(r = 9) and ONLIN-
EADAPTIVE(r = k) algorithms both exhibit superior perfor-
mance in terms of function value, runtime and number of or-

acles. As k increases, it can be observed that ONLINEADAP-
TIVE(r = 9), ONLINEADAPTIVE(r = k) and FREEDIS-
POSAL maintain relatively good performance compared to
GREEDY, while the relative performances of the other algo-
rithms tend to decrease. This is due to the fact that their com-
petitive ratios increase with k. Moreover, ONLINEADAP-
TIVE(r = k) performs almost the best among them.

7 Conclusion
In this paper, we investigated the online submodular maxi-
mization problem under cardinality constraint. We proposed
the ONLINEADAPTIVE algorithm with the adaptive thresh-
olding strategy that not only simultaneously achieved the cur-
rent state-of-the-art in terms of competitive ratio, memory
complexity, running time and number of oracles, but also
demonstrated significantly better empirical performance in
real-world applications than existing online algorithms. Es-
pecially, the competitive ratio of ONLINEADAPTIVE is at
least 1/4, and is about 0.2959 when k ≥ 4 and approaches
0.3178 as k tends to infinity. Besides, it just uses O(k) mem-
ory and performs one oracle per element. An interesting fu-
ture work is to generalize the ONLINEADAPTIVE framework
to weakly submodular functions in the online setting.
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