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Abstract
The Minimum Dominating Set Problem (MDSP) is
an important NP-Hard optimization problem with
many applications in various domains. This paper
designs two exact algorithms for MDSP that use
the same Branch-and-Bound framework. However,
one uses LP relaxations as lower bounds for prun-
ing the search space, and the other one is a pure
combinatorial algorithm. The two algorithms pos-
sess a distinct advantage. Performance experiments
on several standard datasets reveal that our combi-
natorial algorithm is over 1000 times faster than the
previous state-of-the-art exact algorithm presented
in IJCAI 2023, and our LP Relaxation algorithm
can even enhance the speed of our combinatorial
algorithm by over 100 times. However, our com-
binatorial algorithm still outperform the LP Relax-
ation algorithm on very dense graphs.

1 Introduction
The Minimum Dominating Set Problem (MDSP) is a corner-
stone in combinatorial optimization, with applications span-
ning social network analysis [Dinh et al., 2014], facility lo-
cation [Baı̈ou and Barahona, 2014], and wireless sensor net-
works [Hassani Karbasi and Ebrahimi Atani, 2013]. It aims
to identify the smallest possible subset of vertices in a graph
such that every vertex not in the subset is adjacent to at least
one vertex within the subset.

MDSP is recognized as NP-complete [Karp, 1972; Garey
and Johnson, 1979], implying that an efficient algorithm ca-
pable of solving it exactly for all graphs is unlikely. Using
measure-and-conquer methods, Iwata proposed a branching
algorithm that solves MDSP in O(1.4689n) time and space
on graphs with n vertices. In addition to these theoretical
results, [Jiang and Zheng, 2023] developed a practical ex-
act algorithm that solves MDSP on synthetic unit-disk graphs
with up to 500 vertices within five hours. Their approach in-
volved preprocessing the input graph using a reduction rule
from [Alber et al., 2004], and designing a branch-and-bound
algorithm based on a lower bound derived from independent
sets on two-hop graphs. Quite recently, [Inza et al., 2024]
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designed an implicit enumeration algorithm for MDSP based
on binary searching the solution size and enumerating the ver-
tices in the dominating set with priority.

Approximation algorithms offer a practical approach to
complex problems where finding the exact solution may be
too computationally expensive or time-consuming. While
these algorithms may not always find the optimal solution,
they provide solutions that are theoretically guaranteed to be
within a certain ratio of the optimal solution. A simple greedy
algorithm exists that solves MDSP with an approximation ra-
tio of Hn, where Hn is the n-th harmonic number [Vazirani,
2001]. Assuming P ̸= NP , MDSP cannot be approximated
within any constant factor [Raz and Safra, 1997]. This re-
sult was later improved by [Gast et al., 2015], who proved
that MDSP cannot be approximated within an approximation
ratio of Ω(lnn).

In terms of parameterized complexity, MDSP is consid-
ered intractable for the parameter k being the solution size.
A problem is fixed parameter tractable (FPT) with respect
to parameter k if there exists an algorithm that solves a
problem instance of size n within O(poly(n)f(k)), where
f is an arbitrary computable function. However, FPT algo-
rithms for MDSP do exist for several graph classes, includ-
ing graphs with bounded tree-width [Courcelle, 1990], graphs
with bounded genus [Ellis et al., 2004], and claw-free graphs
[Cygan et al., 2011].

Heuristic algorithms play a pivotal role in solving MDSP,
especially when dealing with large-scale instances where ex-
act algorithms may not be feasible. Over the past decades,
due to the importance of MDSP in practical applications, a
vast number of heuristic algorithms for MDSP have been de-
veloped. These include greedy algorithms [Sanchis, 2002],
which are fast but often yield suboptimal solutions, meta-
heuristic algorithms that combine various search techniques
[Hedar and Ismail, 2010; Jovanovic et al., 2010; Potluri
and Singh, 2013; Chaurasia and Singh, 2015; Lin et al.,
2016], and local search algorithms that start with an ini-
tial solution and progressively move towards better solutions
[Wang et al., 2017; Wang et al., 2018; Fan et al., 2019;
Cai et al., 2020]. These heuristic methods have been success-
fully applied to solve DSP and its variants, providing good
solutions within a reasonable time frame.

Our contribution This paper presents a comprehensive
study of exact methods for MDSP. Indeed, we will consider
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a more general problem EMDSP, where some vertices in the
graph are not required to be dominated and some vertices are
not allowed to be selected to the solution set to dominate other
vertices. We introduce two novel branch-and-bound algo-
rithms for EMDSP, incorporating several simple yet effective
techniques. Both of the two algorithms utilize the same set
of three reduction rules. However, they use different lower
bounds to prune the search space. One algorithm BIBCO
uses two combinatorial lower bounds, and the other algorithm
BIBLP uses linear programming relaxations as lower bounds
for pruning the search space.

We conduct experiments to validate the efficacy of our pro-
posed techniques. [Jiang and Zheng, 2023] is one of the most
recent references, which said in their paper that their algo-
rithm EMOS was the first effective branch-and-bound algo-
rithm for MDSP. Experiments show that our algorithms are
much faster than EMOS on standard datasets. For example,
EMOS solved 294 tested instances within 5 hours, while our
algorithms solved 399 and 302 tested instances, respectively,
within one second. We also mark that there is another recent
reference [Inza et al., 2024] that gave an implicit enumeration
algorithm for MDSP. However, we could not reproduce their
result in the experiments and then we could not compare with
this algorithm. We will show the details in Sec. 4.

Paper organization The structure of this paper is as fol-
lows: Section 2 provides the definitions and notations used
throughout the paper. Section 3 details the techniques and
framework of our proposed algorithm. Section 4 presents ex-
perimental results, comparing our algorithm with the state-of-
the-art exact algorithm for MDSP. Section 5 compares tech-
niques used by our algorithm with existing results.

2 Definitions and Symbols
Let G = (V,E) denote an undirected graph with the set of
vertices V and the set of edges E. An edge (u, v) ∈ E is
an unordered pair of vertices u and v. u and v are called
endpoints of the edge. An edge is called a self-loop if the
two endpoints of it are identical. Two edges with the same
endpoints are parallel. Without explicitly stated, neither self-
loops nor parallel edges exist in the graphs throughout this
paper. Two vertices are adjacent if they are connected by an
edge. The neighbors of a vertex v, denoted by N(v), is the
set of vertices that are adjacent to v. The closed-neighbors of
a vertex v, denoted by N [v], is the union of N(v) and v itself,
i.e., N [v] = N(v) ∪ {v}. A vertex v (resp., a vertex set U ) is
dominated by a vertex set D if v ∈ N [D] (resp., U ⊆ N [D]).
If a vertex set D dominates all vertices in G, we call D a
dominating set of G. The Minimum Dominating Set Problem
(MDSP) aims to find a dominating set of the minimum size
in a graph. In this paper, we will consider a more general
version of MDSP, called the Extended Minimum Dominating
Set Problem (EMDSP). In EMDSP, we are given a graph G =
(V,E), two disjoint set of vertices S,X ⊆ V , and another
set of vertices I ⊆ V . The goal is to find a smallest set D
such that all vertices in V \ I are dominated by D, where
S ⊆ D ⊆ V \ X . The set of vertices I is not required to
be dominated but vertices in it can be selected to dominate
other vertices. The set of vertices X is not allowed to be

selected to the solution set to dominate other vertices. The set
of vertices S should be always in the solution. We use I =
(G,S,X, I) to denote an instance of EMDSP. Obviously, the
problem degenerates to MDSP when S = X = I = ∅.

A vertex in S, X and I is called selected, excluded and ig-
nored, respectively. Furthermore, we call vertices in V \ (S ∪
X) undetermined and vertices in V \(N [S]∪I) undominated.
The set of dominators of an undominated vertex v is defined
as D(v) = N [v] \ X , which is the set of undetermined ver-
tices that dominate v. The coverage of an undetermined ver-
tex v is defined as C(v) = N [v] \ (N [S] ∪ I), which is the
set of undominated vertices that v dominates. We also extend
the functions D(·) and C(·) to a set of vertices. For a set of
vertices Y , we use D(Y ) and C(Y ) to denote the union of
dominators and coverages of the vertices in Y , respectively.

We note that EMDSP enables the modeling of many other
problems as generalizations of the dominating set problem.
For example, the Set Cover Problem can be modeled as an
EMDSP instance on a bipartite graph with the two sides cor-
responding to elements and sets, where all sets should be ig-
nored and all elements should be excluded.

3 The Algorithm Framework

This paper introduces two algorithms for EMDSP, both of
which adhere to the classical branch-and-bound framework.
Initially, these algorithms apply reduction rules to simplify
the instance, thereby finding a partial solution in polynomial
time. If no reduction rules are applicable, the problem is de-
composed into several smaller sub-problems. The algorithm
then traverses the branches of the search tree, each represent-
ing a sub-problem. This operation can exponentially increase
the running time. To optimize the algorithm, some branches
that cannot lead to an optimal solution are pruned. A com-
monly used pruning technique is the lower-bound method for
minimization problems. When evaluating a (sub) problem,
the algorithm compares the best possible solution size of it
with the size of the incumbent best solution. If it does not
contain a better solution than the best one found so far, the
branch is discarded.

There are two critical components in the framework. The
first is the design of effective reduction rules to reduce the
instances as much as possible. The second is the implemen-
tation of efficient branching operations with effective meth-
ods to compute lower bounds. Both the quality of the lower
bound and the computation time must be considered.

We propose three reduction rules, all of which are uti-
lized in our two algorithms. However, the methods to com-
pute lower bounds in our two algorithms differ. The first al-
gorithm, BIBCO, is a pure combinatorial algorithm with a
combinatorial method to compute lower bounds. The sec-
ond algorithm, BIBLP, uses Linear Programming relaxation
of EMDSP to compute the lower bound and prune the search
tree. Although computing a single LP relaxation may be time-
consuming, the bound is usually tight, and we may only need
to branch a small number of times. As a result, we may solve
certain instances faster.
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Algorithm 1: BIBSearch(I, D∗)

Input: An EMDSP instance I = (G,S,X, I) and
D∗, the best solution we have found for G.

Output: A minimum dominating set D∗ of G such
that S ⊆ D∗ ⊆ V −X .

1 I ′ := Reduce(I)
2 if N [S] = V then
3 if |S| < |D∗| then D∗ := S
4 return D∗

5 if |D∗| ≤ LowerBound(I) then
6 return D∗

7 Select a vertex v by the criteria described in Sec. 3.1
8 foreach u ∈ D(v) in descending order of |C(u)| do
9 Iu := (G,S ∪ {u}, X,D∗, I)

10 D := BIBSearch(Iu, D∗)
11 if |D| < |D∗| then
12 D∗ := D

13 X := X ∪ {u}
14 return D∗

3.1 The Algorithm

The pseudo-code in Alg. 1 explains the same algorithm
framework of our two algorithms. The algorithm takes an
instance I = (G,S,X, I) of EMDSP and a feasible solution
D∗ as the input, where D∗ = V \ X initially. The algo-
rithm first applies the reduction rules described in Sec. 3.2
to reduce the input instance. We use Reduce(I) on Line 1
in Alg. 1 to denote the reduction operation. After applying
reduction rules, the algorithm checks whether the instance is
already solved. If so, the algorithm updates the best solu-
tion, then returns the best solution to the caller. If the in-
stance is not solved, the algorithm computes a lower bound
of the best possible solution size of the input instance. We
use LowerBound(I) to denote the function of compute the
lower bound of the instance I. Our two algorithms only dif-
fer in the function LowerBound(I) in Line 5, i.e., the method
for computing the lower bound. We will describe the details
of LowerBound(I) in Sec. 3.3. The algorithm returns when
the lower bound is no less than the incumbent best solution.
Otherwise, the algorithm recursively solves the sub-problems
generated by the following branching method.

1. Pick the undominated vertex v that minimizes the num-
ber of dominators, |D(v)|.

2. If there is a tie, pick the vertex that maximizes the sum
of the coverage size of its dominators,

∑
u∈D(v) |C(u)|.

3. If there is still a tie, pick the smallest-indexed vertex.

The algorithm sort the dominators of v, D(v) by descend-
ing order of their coverage size, since vertices with the larger
coverage size is intuitively more likely to be included by the
smallest solution. When there is a tie, break the ties arbitrar-
ily. Then we enumerate the first vertex in the sorted D(v) to
be included by the optimal, as shown in Lines 14-16 in Alg. 1.

3.2 Reduction Rules
Now we explain our function Reduce(I), which will con-
sider three rules. Consider an instance I = (G,S,X, I)
of EMDSP. The problem is considered solved when either
S ∪ X = V , indicating that there are no undetermined ver-
tices, or when N [S] = V , signifying that there are no un-
dominated vertices. Our approach aims to reduce the number
of undetermined and undominated vertices by designing rules
to expand the sets S,X . We propose three reduction rules to
add vertices to S,X , and I , respectively. Although expand-
ing the set I does not directly affect the termination condition,
it increases the likelihood of applying other reduction rules,
thereby indirectly reducing the problem scale.

Rule 1 (Single Dominator). Given an instance I =
(G,S,X, I) of EMDSP, if an undominated vertex v has only
one dominator u, we add u to S.

Rule 2 (Subset Coverage). For an instance I = (G,S,X, I)
of EMDSP, if there exist two distinct undetermined vertices
u, v such that the coverage of u is a subset of N [v], i.e.,
C(u) = N [u] \ (N [S] ∪ I) ⊆ N [v], we add u to X .

Proof. We assert that I admits an optimal solution that ex-
cludes u. Suppose every minimum dominating set under I
contains u and let D be any one of them. Let Z = V \(N [D\
{u}]∪I) be the vertices that are not dominated after removing
u. Since D is a valid dominating set, any vertex in Z is adja-
cent to u, implying Z ⊆ N [u]. We have Z ∩N [S] = ∅ since
S ⊆ D\{u}. By the definition of Z, we also have Z∩I = ∅,
therefore Z ⊆ N [u]−\(N [S]∪I). By the definition of u and
v, we have Z ⊆ N [u]− \(N [S] ∪ I) ⊆ N [v], which implies
D′ = (D \ {u}) ∪ {v} is a solution of I. Therefore, there
exists a solution D′ of the same size and excludes u.

Rule 3 (Ignorable Vertices). For an instance I =
(G,S,X, I) of EMDSP, if there exist two distinct undomi-
nated vertices u, v such that D(u) = N [u] \ X ⊆ N [v],
we add v to I .

Proof. We claim that adding v to I does not alter the solution
set of I. That is, a vertex set Y such that S ⊆ Y ⊆ V −
X dominates V − (N [S] ∪ I) if and only if Y dominates
V − (N [S] ∪ I ∪ {v}). Let Y be a vertex set such that S ⊆
Y ⊆ V − X and Y dominates V − (I ∪ {v}). Since u
is undominated in I, we have u /∈ I and Y dominates u.
Therefore u ∈ V − (I ∪ {v}), which implies there exists
y ∈ Y such that y ∈ D(u). By the definition of u and v,
we have D(u) ⊆ N [v], therefore y ∈ N [v], and v is also
dominated by Y . As a result, Y dominates V − I , and the
reverse side is obvious.

Time Complexity We intergrate our reduction rules into
an algorithm that exhaustively applies the rules, as depicted
in Algorithm 2. The implementation of the single domi-
nator rule for the entire graph requires O(|V | + |E|) time.
This is achieved by enumerating each vertex u and examin-
ing its neighbors. For the subset coverage rule, we note that
C(u) ⊆ N [v] is equivalent to v ∈ N [w] for all w ∈ C(u).
We can select a vertex w0 from C(u) and verify if there exists
a v ∈ N [w0] that meets the above condition. Let ∆ represent
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Algorithm 2: Reduce(I)
Input: An EMDSP instance I = (G,S,X, I).
Output: A reduced EMDSP instance I ′.

1 repeat
2 foreach u ∈ V \ (X ∪ S) do
3 if ∃v ∈ N [u] that D(v) = {u} then
4 S := S ∪ {u}

5 foreach u ∈ V \ (X ∪ S) do
6 if ∃v ∈ V that C(u) ⊆ N [v] then
7 X := X ∪ {u}

8 foreach u ∈ V \ (N [S] ∪ I) do
9 foreach v ∈ V that D(u) ⊆ N [v] do

10 I := I ∪ {v}

11 until no changes have been made to I in this iteration
12 return I

the maximum vertex degree of G and w0(u) be the vertex
chosen from C(u) when attempting to exclude u. The time
complexity of this procedure is as follows:

∑
u∈V \(N [S]∪I)

|N [w0(u)]||C(u)| ≤
∑
u∈V

∆|N [u]| = 2|E|∆

Consequently, the subset coverage rule can be imple-
mented in O((|V |+ |E|)∆) time for the entire graph.

We employ a similar method to implement the ignorable
vertices rule, as D(u) ⊆ N [v] is also equivalent to v ∈ N [w]
for all w ∈ D(u). The only difference is that we need to
iterate through every v ∈ N [w0] and check whether v satisfies
the above condition, where the previous procedure exits when
it finds any vertex v such that C(u) ⊆ N [v]. However, the
worst-case time complexity remains the same. Thus, we can
implement the ignorable vertices rule in O((|V | + |E|)∆)
time for the entire graph.

In each iteration of the loop, we either increase the size of
S, X , I , or we exit the loop. Since the maximum sizes of
S, X , and I are O(|V |), the total time complexity to exhaus-
tively apply these rules is O(|V ||E|∆) in the worst case, as
we either exit the loop due to no changes to the instance or
apply the rules after each iteration.

3.3 Lower Bounds
In this section, we present the lower bounds employed in our
two algorithms , i.e., explain the function LowerBound(I).
The first algorithm, BIBCO, utilizes two lower bounds: the
Disjoint Dominators Lower Bound (DDLB) and the Maxi-
mum Coverage Size Lower Bound (MCSLB). On the other
hand, the second algorithm, BIBLP, solely uses the LP-
Relaxation based Lower Bound (LPRLB). For the combinato-
rial algorithm, we return the maximum value among the two
bounds it employs.

Lower Bound 1 (Disjoint Dominators Lower Bound). Let
I = (G,S,X, I) be an instance of EMDSP. We define a set
Y of undominated vertices as disjoint if any two vertices in Y

have disjoint dominators. We denote by L1(I) the maximum
size over all disjoint vertex sets. Consequently, any dominat-
ing set under I must have a size of at least |S|+ L1(I).

Proof. Let Y = {y1, . . . , y|Y |} be a disjoint vertex set. Any
dominating set under I must include at least one vertex from
D(yi) for each 1 ≤ i ≤ |Y | since they are not dominated by
S. Given that D(yi) are pairwise disjoint and any D(yi) is
disjoint to S, the minimum dominating set of I must have a
size of at least |S|+ L1(I).

Calculating the largest disjoint set is equivalent to solving
the Maximum Set Packing Problem, which is proven to be
NP-Hard and therefore impractical for our algorithm. To en-
able this lower bound, we use a greedy algorithm that con-
structs the disjoint set by selecting the undominated vertex
with the fewest number of dominators iteratively. Domina-
tors of the selected vertex will be marked, and the algorithm
never selects an undominated vertex with marked dominators.
This algorithm can be implemented in O(|E| + |V | log |V |)
by sorting the vertices in ascending order of the number of
dominators, then checking each vertex in order for the pres-
ence of an unmarked dominator.
Lower Bound 2 (Maximum Coverage Size Lower Bound).
Let I = (G,S,X, I) be an instance of EMDSP and
v1, v2, . . . , v|V−X| be the undetermined vertices under I
sorted in descending order of their coverage size. We denote
by L2(I) the minimum number such that

∑L2(I)
i=1 |C(vi)| ≥

|V \(N [S]∪I)|. That is, we need to select at least L2(I) ver-
tices such that the sum of their coverage size is no less than
the number of undominated vertices under I. Any dominating
set under I must have a size of at least |S|+ L2(I).

Proof. The sum of the coverage size of the vertices in any
dominating set of I should be at least |V − \(N [S] ∪ I)|.
To achieve this goal, one has to select at least L2(I) vertices
from V −X , therefore the minimum dominating set of I must
have a size of at least |S|+ L2(I).

Lower Bound 3 (LP-Relaxation Lower Bound). Let I =
(G,S,X, I) be an instance of EMDSP and let L3(I) be the
optimal solution of the following linear program P . Any dom-
inating set under I must have a size of at least |S|+⌈L3(I)⌉.

min
x

∑
v∈V−S−X

xv (1)

∑
u∈N [v]−X

xu ≥ 1 v ∈ V − (N [S] ∪ I) (2)

0 ≤ xv ≤ 1 v ∈ V − S −X (3)
Proof. We claim that the ILP P ′ obtained by replacing (3)
with xv ∈ {0, 1} for all v ∈ V − S − X is equivalent to
EMDSP instance I = (G,S,X, I). For any undetermined
vertex v ∈ V − S − X , the value of xv denotes whether v
is included in the solution, and the objective is to minimize
the number of selected vertices. Constraint (2) ensures that
for any vertex v not dominated by S, at least one vertex in
D(v) = N [v] − X is selected into the solution. Since the
replacement of (3) tightened the constraint, the correctness of
this lower bound is obvious.
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4 Experiments
This section presents an evaluation of the effectiveness of the
techniques incorporated into our algorithms. We conducted
experiments on four datasets that are commonly used in the
literature [Potluri and Singh, 2011; Jovanovic et al., 2010;
Cai et al., 2020; Jiang and Zheng, 2023; Inza et al., 2024] to
assess the performance of our algorithms.
UDG (Unit Disk Graphs) : This dataset comprises 120
random graphs, divided into two families. These families are
used to model wireless networks [Potluri and Singh, 2011].
Each family includes graphs of varying scales, with each
scale containing 10 unique graphs generated with random
seeds ranging from 0 to 9.
T1 : This dataset includes 530 randomly connected graphs
of various scales and densities, as generated in [Jovanovic et
al., 2010]. The generation parameters for the graphs in T1
include the number of vertices and edges, and a random seed
that ranges from 0 to 9.
Network Repository : We selected 8 categories of net-
works, totaling 120 graphs, from the well-known Network
Repository1[Rossi and Ahmed, 2015]. This selection allows
us to evaluate our techniques on real-world graphs that have
close ties to applications.
BD3/BD6 : In [Inza et al., 2024], the authors generated sev-
eral sets of random graphs with various densities to evaluate
their algorithms for MDSP. However, among all graphs men-
tioned in its experiment section of [Inza et al., 2024], we were
only able to find 38 graphs from the link2 provided by the au-
thors. BD3 and BD6 correspond to graphs No. 1-18 in Table
4 and graphs No. 1-20 in Table 3 of [Inza et al., 2024], re-
spectively.
Settings Our algorithms are implemented in C++ and com-
piled using gcc version 9.4.0 with the -O3 flag enabled. We
use HiGHS [Huangfu and Hall, 2018] as the LP solver in
our algorithms. The authors of [Jiang and Zheng, 2023] have
made their source code for EMOS, along with the UDG and
T1 datasets, publicly available on Github3. All experiments
were conducted on a server equipped with an Intel Xeon Gold
6226R CPU and 512 GB of memory, running Ubuntu Server
20.04 LTS. Our codes and the experimental results are pub-
lished here4. The time limit for each trial is set to 5 hours,
consistent with [Jiang and Zheng, 2023].
Algorithms We test BIBCO and BIBLP, along with the
state-of-the-art exact algorithm EMOS for MDSP in [Jiang
and Zheng, 2023]. To compare the effectiveness of our re-
duction rules with the existing rules proposed in [Cai et al.,
2020], we replaced the reduction operations in our two algo-
rithms with the three inference rules proposed in [Cai et al.,
2020]. We re-implemented these rules faithfully to fit into our
algorithm framework. The names of these two variants have
the suffix ‘-IF’. A comparison between our rules and existing
rules is also presented in Sec. 5.2.

1https://networkrepository.com/
2https://doi.org/10.17632/rr5bkj6dw5.4
3https://github.com/huajiang-ynu/ijcai23-mds/
4https://anonymous.4open.science/r/IJCAI24-MDS-0570/

0

100

200

300

400

500

600

700

0.001 0.01 0.1 1 10 100 1000 10000

N
um

be
r o

f s
ol

ve
d 

in
st

an
ce

s

Running time in seconds

BIBLP
BIBDM
BIBLP-IF
BIBDM-IF
EMOS

Figure 1: Cumulative numbers of instances solved by the tested al-
gorithms. The horizontal axis is in log scale.

We also note the recently proposed algorithm BDS in [Inza
et al., 2024]. However, we did not include it in our experi-
ments due to the difficulties in reproducing their results. Al-
though we were able to compile their code, their program did
not halt in two days even on the smallest case in Table 2. For
the same test case (where |V | = 600), their reported optimal
solution containing 10 vertices. This is contrary to the solu-
tion found by our algorithms and EMOS, which consists of
only 9 vertices. Please refer to Table 2 for the results pro-
duced by our algorithms.

4.1 Results and Analysis
Figure 1 presents the number of instances solved by the al-
gorithms within a specified time frame. Among all graphs in-
cluded by the experiment, BIBLP and BIBCO solved 399 and
302 instances, respectively, within one second. In contrast,
EMOS only managed to solve 294 instances within a five-
hour time limit. Table 1 lists the running times of the tested
algorithms on T1, UDG, and Network Repository graphs.
We have omitted results on graphs with fewer than 100 ver-
tices for T1 and graphs with fewer than 50 vertices for UDG.
For the remaining omitted graph categories in the T1 dataset,
none of the tested algorithms have solved graphs where the
number of vertices is less than the number of edges.

Powered by LPRLB, BIBLP and BIBLP-IF solved the
highest number of instances among these three datasets.
BIBLP and BIBCO solved 338 and 230 instances in T1 within
the time limit, while EMOS solved only 164 instances. In T1,
these two algorithms have similar performance, with BIBLP
being approximately 1.5 times faster than BIBLP-IF. When
comparing the methods to compute lower bounds, BIBCO is
significantly slower than BIBLP in relatively sparse graphs
of T1. The performance gap between these two algorithms
decreases as the density increases, indicating that the gap
between the combinatorial lower bounds and the LP-based
lower bounds also decreases with increasing graph density.

In UDG, the difference between BIBLP and BIBLP-IF
scales to 10 times due to the structural properties of unit disk
graphs. This demonstrates the potential of the new Reduction
rules proposed in this paper for real-world applications mod-
eled as unit disk graphs. Both BIBLP and BIBCO solved all
instances in UDG within the time limit, while EMOS solved
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Dataset: T1
|V | |E| BIBLP BIBCO BIBLP-IF BIBCO-IF EMOS
150 150 0.01 0.01 0.01 633.06(2) 25.03
150 250 0.03 1.41 0.03 28.02 334.58
150 500 8.18 2203.54(4) 10.46 1903.10(4) 2919.74(9)
150 750 11.17 2386.31(5) 12.37 1134.20(2) 3000.00(10)
150 1000 23.97 2224.23(4) 25.76 665.26(1) 3000.00(10)
150 2000 9.89 97.62 9.16 15.92 1851.73
150 3000 9.11 23.66 9.00 4.18 270.71
200 250 0.01 0.12 0.02 1840.26(5) 2900.47(7)
200 500 307.25(1) 2927.73(9) 18.07 3000.00(10) 3000.00(10)
200 750 166.89 3000.00(10) 200.27 3000.00(10) 3000.00(10)
200 1000 789.56 3000.00(10) 984.52 3000.00(10) 3000.00(10)
200 2000 1450.30 3000.00(10) 1559.50 3000.00(10) 3000.00(10)
200 3000 656.70 3000.00(10) 602.74 3000.00(10) 3000.00(10)
250 250 0.01 0.01 0.01 3000.00(10) 3000.00(10)
250 500 13.83 2783.49(9) 19.06 3000.00(10) 3000.00(10)
250 750 1030.34(1) 3000.00(10) 1054.77(1) 3000.00(10) 3000.00(10)
250 1000 2504.13(7) 3000.00(10) 2508.30(7) 3000.00(10) 3000.00(10)
300 300 0.01 0.01 0.01 3000.00(10) 3000.00(10)
300 500 5.80 2852.50(9) 5.36 3000.00(10) 3000.00(10)
300 750 1751.27(3) 3000.00(10) 2081.97(6) 3000.00(10) 3000.00(10)
800 1000 23.51 3000.00(10) 32.57 3000.00(10) 3000.00(10)

Dataset: UDG
|V | Type BIBLP BIBCO BIBLP-IF BIBCO-IF EMOS
250 A 0.01 0.01 0.08 1518.49(4) 443.42
250 B 0.01 0.01 0.03 54.80 9.70
500 A 0.05 1.16 0.96 3000.00(10) 3000.00(10)
500 B 0.02 0.08 0.07 1143.27(3) 1869.86(5)
800 A 0.06 0.96 0.53 3000.00(10) 3000.00(10)
800 B 0.29 96.77 7.94 3000.00(10) 3000.00(10)

1000 A 0.07 2.60 0.55 3000.00(10) 3000.00(10)
1000 B 0.78 577.89 43.06 3000.00(10) 3000.00(10)

Dataset: Network Repository
Class # BIBLP BIBCO BIBLP-IF BIBCO-IF EMOS

bio 30 1043.72(3) 1576.04(5) 1846.86(6) 6004.69(20) 6276.41(20)
eco 6 0.01 0.01 0.01 0.01 0.01

econ 15 5.48 1200.00(4) 1.98 1200.03(4) 1208.10(4)
email 6 27.58 300.00(1) 300.01(1) 600.03(2) 600.01(2)

fb 9 0.01 0.01 0.01 0.01 2700.00(9)
ia 20 322.88(1) 600.06(2) 576.26(1) 2400.04(8) 1932.27(6)

prox 13 300.01(1) 300.03(1) 555.91(1) 600.00(2) 300.23(1)
soc 21 1865.57(6) 1804.32(6) 1532.08(5) 3308.17(11) 4162.67(13)

Table 1: Time consumed by running the tested algorithms on UDG,
T1, and real-world graphs retrieved from Network Repository, mea-
sured in minutes. Each group of T1 and UDG contains exactly 10
graphs generated with different random seeds. For Network Repos-
itory, number of graphs in each category is listed separately in the
(#) column. The number of cases that the algorithm failed to solve
within the time limit is parenthesized after the total running time.
For each failed case we add the time limit (300 minutes) to the ac-
cumulative time to simplify the comparison.

only 65 instances. Among the large graphs of UDG, BIBCO
is approximately 2500 times faster than EMOS, and BIBLP
is about 100 times faster than BIBCO.

Although it is hard to approximate MDSP in power-law
graphs [Gast et al., 2015], which is a popular model for mod-
eling real-world graphs, BIBLP, BIBCO, BIBLP-IF, BIBCO-
IF, and EMOS, powered by the reduction rules, solved 92, 92,
89, 68, and 50 real-world instances in 1 second, respectively.

We also tested our algorithms on random graphs that
are extremely dense. The graph density, calculated as
2|E|/|V |(|V | − 1) of the BD3 and BD6 datasets is approxi-
mately 0.9 and 0.8, respectively. In BD3, BIBCO is about 4
times faster than BIBLP. As observed in the T1 dataset, we
conjecture that the pruning effect of LPRLB and MCSLB is
very close when the graph is dense. DDLB is ineffective in
this case since almost every two vertices have common neigh-
bors on these clique-like graphs.

The latest heuristics [Cai et al., 2020] can also find most
optimal solutions for the tested graphs within a reasonable

Dataset: BD3
Graph |V | OPT BIBLP BIBCO BIBLP-IF BIBCO-IF
Grafo111 600 9 1328.20 200.65 7370.95 205.48
Grafo113 610 9 1788.78 235.23 8134.04 515.26
Grafo115 620 9 2870.49 740.37 9310.53 590.75
Grafo117 630 9 1657.88 247.16 8137.22 354.10
Grafo119 640 9 1866.73 296.23 10777.83 498.55
Grafo121 650 7 2815.75 525.16 3507.69 108.38
Grafo123 660 7 2566.70 323.90 3391.31 105.72
Grafo125 670 7 2645.39 328.75 3838.27 111.19
Grafo127 680 9 9927.35 4834.13 13205.36 1008.49
Grafo129 690 7 31423.13 17273.19 16225.74 1565.25
Grafo131 700 9 4868.43 1295.20 13700.40 967.99
Grafo133 710 7 4111.80 589.15 5074.82 145.90
Grafo135 720 N/A N/A N/A N/A N/A
Grafo137 730 9 12201.85 5852.46 fail 1520.00
Grafo139 740 9 3967.32 482.95 16573.49 716.58
Grafo141 750 N/A N/A N/A N/A N/A
Grafo143 760 N/A N/A N/A N/A N/A
Grafo145 770 9 5301.70 695.51 fail 1145.64

Dataset: BD6
Graph |V | OPT BIBLP BIBCO BIBLP-IF BIBCO-IF
Grafo457 1012 5 0.59 3.88 0.48 3.00
Grafo458 1014 5 0.73 4.08 0.41 3.27
Grafo460 1018 5 1.49 23.16 1.49 3.65
Grafo462 1022 5 0.77 3.93 0.45 3.17
Grafo464 1026 5 1.25 18.74 1.44 3.59
Grafo466 1030 5 1.48 26.36 1.16 2.89
Grafo469 1036 5 0.72 3.55 0.41 2.54
Grafo471 1040 5 0.82 4.45 0.55 3.57
Grafo472 1042 5 1.50 22.70 1.14 3.21
Grafo474 1046 5 0.65 3.43 0.36 3.24
Grafo480 1058 5 1.31 21.69 1.05 3.89
Grafo483 1064 5 0.86 4.01 0.49 3.27
Grafo484 1066 5 1.48 25.27 1.29 3.30
Grafo485 1068 4 0.43 0.30 0.26 2.52
Grafo488 1074 5 1.27 25.67 1.53 3.17
Grafo491 1080 5 0.86 4.35 0.62 3.24
Grafo492 1082 5 1.53 28.93 1.82 4.36
Grafo494 1086 5 1.47 25.02 1.50 3.30
Grafo499 1096 5 0.96 5.41 0.58 2.99
Grafo500 1098 5 0.82 3.91 0.50 2.84

Table 2: Solution size(OPT) and running time of running the al-
gorithms on BD3/BD6 datasets. The running time is measured by
seconds for better comparison with the experimental data in [Inza
et al., 2024]. When the algorithm fails to solve the instance within
the time limit, the cell is marked as ‘N/A’. We omit EMOS since it
failed to produce any results on these datasets within the time limit.

time. However, the main value of exact methods is that, when
our algorithm halts after 2 minutes, we know that we get the
optimal solutions; while the heuristics do not terminate after
reaching the optimal.

4.2 Evaluating the Lower Bounds
We note that the computational cost of combinatorial bounds
is much less than that of LP bounds. For some cases (e.g.,
the BD3 dataset), a significant computational cost is required
to obtain a slightly better (or even the same) bound, which
actually reduces the efficiency of the algorithm. Therefore,
we need to do some trade-offs, as both bound types have their
own scenarios for use.

We also conduct experiments to demonstrate the necessity
of both combinatorial lower bounds. We generate random
graphs with 100 vertices under the Erdős-Rényi model in 11
different densities. For each density we generate 10 different
graphs. For the BIBCO algorithm, we disable DDLB and
MCSLB seperately and test it on the 110 graphs. As shown
in Fig. 2, DDLB is the most effective when the density is
relatively low. When the density is high, MCSLB is more
effective than DDLB. For middle-sparse graphs, disable any
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Figure 2: Excess proportion of search nodes w.r.t. BIBCO when
using DDLB or MCSLB to compute the lower bound solely.

of them enlarges the search space by 1.5-2x.

5 Relation to Existing Works
This section discuss the relations of the techniques proposed
by this paper with existing results in MDSP.

5.1 Existing Exact Algorithms
Previous strongest theoretical results on exact algorithms
for MDSP include two branching algorithms proposed by
[Iwata, 2011], one in O(1.4864n) time and polynomial space,
and one O(1.4689n) time and space. Recently, [Jiang and
Zheng, 2023] proposed an exact algorithm EMOS for MDSP
based on the branch-and-bound framework and a novel lower
bound, which is efficient in practice. The main difference be-
tween EMOS and our algorithms is the running context of
the branching algorithm, where EMOS does not consider X
and I throughout the branching procedure. Based on binary
search and heuristic prioritized enumeration of dominating
sets, [Inza et al., 2024] designed an exact implicit enumera-
tion algorithm for MDSP. However, as mentioned above, we
could not reproduce their result.

5.2 Existing Reduction Rules
In [Alber et al., 2004], two reduction rules for MDSP
are proposed in a kernelization algorithm for MDSP in
planar graphs. The simpler one are frequently used in
the recent literatures [Jiang and Zheng, 2023; Inza et al.,
2024]. In [Cai et al., 2020], the authors use a mapping
V → {0, 1, undetermined} to represent a partial solution
of MDSP. Vertices with value 0 and 1 corresponds to the
excluded and selected vertices in the definition of EMDSP.
Among the 4 inference rules proposed in their article, 3 are
used in their implementation to reduce the problem instance.
We note that our Reduction rules extend their 3 implemented
rules. The reasons are listed below.
Isolated vertex rule This rule is a special case of our Single
Dominator rule when v = u.
Leaf rule Let v be the vertex adjacent to only one vertex
u. In this case, we have C(v) = {u, v} ⊆ N(u) and by the
Subset Coverage rule we may exclude v from the solution.
Subsequently, we have D(v) = N(v) \X = {u}, and by the
Single Dominator rule we must include u into the solution.

v1 v2 v3

v4 v5 v6

Undominated vertices

Dominated vertices

Excluded vertices

Selected vertices

Figure 3: An exemplary EMDSP instance I = (G,S = {v2}, X =
{v5}, I = ∅) that demonstrates the superiority of the Disjoint Set
Lower Bound. The algorithm is branching on the dominators of v2,
and the branch that selects v5 is already explored, and the incumbent
solution is {v3, v5}. Since G2 is the complete graph K6, ISLB al-
ways yield 1 for any vertex set U ⊆ V . For DDLB, the dominators
of v4 and v6 are {v1} and {v3}, respectively. In this case, the output
of DDLB is 3 since the dominators of v4 and v6 are disjoint, and v2
is already selected into the solution.

For the case that every vertex in N(v)\u are excluded, this
rule needs condition C(v) = {u, v} ⊆ N(u) to hold.
Triangle rule Let {u, v, w} be a triangle in the graph that
N [{u, v}] = {u, v, w}. Since C(u) = {u, v, w} \ N [S] ⊆
N [w], we exclude u (and v, for the same reason) from the
solution by the Subset Coverage rule. Then we have D(u) =
N [u] \ X = {w} and we must select w into the solution by
the Single Dominator rule.

5.3 Existing Lower Bounds
Given a graph G. A subgraph of G is a graph G′ = (V ′, E′)
such that V ′ ⊆ V and E′ ⊆ E. The subgraph induced by
I ⊆ V is the graph obtained by removing all vertices other
than I from G and their incident edges, denoted by G[I].
The 2-hop graph of G is the graph obtained by connecting
every pair of vertices in G who have at least one common
closed neighbor. The 2-hop graph of G is denoted by G2. In
[Jiang and Zheng, 2023], an intricate branching algorithm is
designed by the authors with the following lemma:
Lemma 3 [Jiang and Zheng, 2023] Given a graph G =
(V,E) and its G2. Let U be a subset of V and S be an in-
dependent set in G2[U ]. For any subset D ⊆ V that can
dominate U in G, it holds that |D| ≥ |S|.

This lower bound is designed specifically for MDSP. For
an EMDSP instance I = (G,S,X, I), DDLB is equivalent
to ISLB when we set U = N [S] \ I and X = ∅. However, on
the general case that X ̸= ∅, DDLB is always at least, or even
more tighter then ISLB. The reason is that any two vertices
that share dominators are 2-hop adjacent, but not vice versa.
See Fig. 3 for an example.

6 Conclusion
In this work, we introduce a novel branch-and-bound frame-
work together with three reduction rules and three lower
bounds for solving EMDSP. Based on these techniques, we
propose two algorithms that shares the reduction rules but dif-
fers in the lower bounds they use. One of them is the purely
combinatorial algorithm BIBCO, and the other one that uses
LP to tighten the bound is named BIBLP. When compared to
the state-of-the-art exact algorithm EMOS, both algorithms
demonstrates superior empirical speed and solves a signifi-
cantly larger number of instances within the 5 hour time limit.
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