
A Swap Relaxation-Based Local Search for the Latin Square Completion Problem

Zhenxuan Xie1 , Zhipeng Lü1 , Zhouxing Su1∗ , Chu-Min Li2 , Junwen Ding1 , Yuxuan Wang1

1School of Computer Science and Technology, Huazhong University of Science and Technology, China
2MIS, Universite de Picardie Jules Verne, France

{zhenxuan xie, zhipeng.lv, suzhouxing}@hust.edu.cn, chu-min.li@u-picardie.fr,
{junwending, wyx smartlab}@hust.edu.cn

Abstract

The Latin square completion (LSC) problem aims
to assign n symbols to the empty cells of a partially
filled Latin square such that in each row and each
column, each symbol appears exactly once. In this
paper, we propose a swap relaxation-based fast lo-
cal search algorithm called SRLS for solving the
LSC problem. First, it introduces a novel search
space definition, which forbids row conflicts based
on which a swap-based neighborhood is defined.
Second, a color domain relaxation technique is em-
ployed in the swap-based neighborhood by tem-
porarily accepting the violation of some constraints
to connect high-quality solutions. Third, two effec-
tive scoring functions are adopted to select neigh-
borhood moves minimizing the number of conflict-
ing edges as well as the number of color domain vi-
olations. Finally, SRLS employs an adaptive restart
mechanism to balance the exploitation and explo-
ration of the search. Extensive experiments on
1819 public benchmark instances demonstrate that
SRLS outperforms the state-of-the-art algorithms
in the literature in terms of both success rate and
computational efficiency.

1 Introduction
Let n be a positive integer. A Latin square of order n is an
n × n grid of cells in which each cell is filled with a symbol
from 1 to n so that each symbol appears exactly once in each
row and each column. One can be given a n×n grid in which
some cells are already filled with a symbol but other cells are
empty. The Latin Square Completion (LSC) problem of order
n consists in filling each empty cell with a symbol to form a
Latin square.

The LSC problem was first introduced by Hall [1948] and
Ryser [1951]. Besides its theoretical significance as a canon-
ical NP-complete problem [Colbourn, 1984], the LSC prob-
lem has wide applications in various domains, ranging from
optical networks [Barry and Humblet, 1993], scheduling [Ku-
mar et al., 1999], error correcting codes [Colbourn et al.,

∗Co-corresponding author.

2004], as well as combinatorial design [Lovász et al., 2003;
Colbourne and Dinitz, 2007], etc.

As a challenging combinatorial problem, the LSC has at-
tracted a lot of attention from academic society in recent
decades. Among them there are several exact algorithms:
Gomes and Shmoys [2002] proposed three complete solu-
tion approaches for solving the LSC problem by encoding the
problem into constraint satisfaction (CSP) formulation, hy-
brid linear programming/CSP formulation and boolean sat-
isfibility (SAT) formulation. In addition, Ansótegui et al.
[2004] performed a systematic comparison of SAT and CSP
models for the LSC problem.

Apart from exact algorithms, several metaheuristic algo-
rithms have been proposed for solving the LSC problem to
obtain high-quality solutions for large scale instances within
reasonable time. Haraguchi [2016] presented four effective it-
erated local search algorithms with different neighborhoods.
Jin and Hao [2019] proposed a population-based memetic
algorithm called MMCOL for solving the LSC problem by
transforming the n × n grid of cells to a domain-constrained
Latin square graph. Pan et al. [2022] proposed a fast lo-
cal search algorithm called FastLSC which is based on a re-
duction reasoning technique, a novel conflict value selection
heuristic as well as a history information perturbation mech-
anism, after modelling the LSC problem as a graph coloring
problem. To the best of our knowledge, FastLSC significantly
outperforms other metaheuristic algorithms. However, there
are still rooms for improvement in terms of the success rate
on very hard instances.

In this paper, we also consider the LSC problem as a graph
coloring problem, but directly solve it by utilizing its specific
features. Specifically, we propose a swap relaxation-based
local search (SRLS) algorithm, which incorporates a new
search space definition, a swap relaxation-based neighbor-
hood, two scoring functions and an adaptive restart mecha-
nism. One of the key features of SRLS is that its search space
is significantly smaller than that of MMCOL and FastLSC.

Our main contributions can be summarized as follows:

1. We propose two novel reduction rules to reduce the color
domains, which can dominate the previous ones.

2. We introduce a new search space definition which im-
poses that each symbol appears exactly once in each row,
and then this restricted search space allows us to define a

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7047

swap-based neighborhood which exchanges the symbols
of two cells on the same row and always keeps conflict-
free on each row.

3. By introducing a color domain relaxation technique, we
expand the search space of the swap-based neighbor-
hood such that the search can easily connect high-quality
solutions via the solutions with color domain violations.
Besides, two effective scoring functions are employed
to select a neighboring solution with immediate and po-
tential impacts, which can simultaneously optimize the
number of conflicting edges as well as the number of
color domain violations.

4. We present a mechanism to restart the local search from
the best found solution when the current solution quality
is relatively poor. In addition, the threshold of judging
whether the solution quality is relatively poor is adap-
tively updated as the local search proceeds, which bal-
ances the exploitation and exploration of the search.

5. Tested on 1819 public benchmark instances widely used
in the literature, the proposed SRLS outperforms the
state-of-the-art algorithms on all the tested instances in
terms of both success rate and computational efficiency.

6. We conduct an ablation study to justify the merits of the
key components of our SRLS algorithm, including the
color domain relaxation technique, the secondary scor-
ing function and the adaptive restart mechanism.

2 Preliminaries
A partial Latin square Lp of order n can be associated with
a so-called Latin square graph G = (V,E) [Jin and Hao,
2019], where V = {vij | 1 ≤ i ≤ n, 1 ≤ j ≤ n} is the set
of all cells and vij denotes the cell on the ith row and the jth
column, andE denotes the edge set where (u, v) ∈ E iff cells
u and v are on the same row or column. Clearly, |V | = n2

and |E| = n2 (n− 1), because there are n(n−1)/2 edges for
each row or each column. The set of the cells on the kth row is
denoted as RVk = {vkj | 1 ≤ j ≤ n} and the set of the cells
on the kth column is denoted as CVk = {vik | 1 ≤ i ≤ n}.

The LSC problem is essentially a graph coloring problem
on the associated Latin square graph G = (V,E) defined
above, with the symbols in Latin square being considered as
the colors for G. Let D (v) denote the color domain of cell
v in the graph. If cell v is filled with symbol k (1 ≤ k ≤ n),
the color domain D (v) is a single-value domain {k}, while
the (initial) color domain of each unfilled cell u is D (u) =
{1, . . . , n}. The LSC problem is then to find a color mapping
C : V → {1, . . . , n} such that for all v ∈ V , C (v) ∈ D (v)
and for each (u, v) ∈ E, C (v) 6= C (u), which is a special
case of the precoloring extension problem [Biró et al., 1992].

For any (u, v) ∈ E, if C (u) = C (v), u and v are
called conflicting cells and (u, v) is called a conflicting edge.
The set of conflicting edges of solution C is represented
as CE (C). The quality of the solution is evaluated by
|CE (C) |. For a conflicting edge (u, v), if u and v are on
the same row, (u, v) is called a row conflict. Otherwise,
(u, v) is called a column conflict. For the situation where
a cell v is colored with the color not in its color domain, i.e.,

C (v) /∈ D (v), it is called a color domain violation. DV (C)
denotes the set of the cells which lead to color domain viola-
tions of solution C.

Based on the above notations, the LSC problem after re-
laxation can be formulated as follows:

min |CE (C) |, (1)
s.t. C (v) ∈ D (v) , ∀v ∈ V. (2)

Objective (1) aims to minimize the number of conflicting
edges. Obviously, a feasible solution of the original LSC
problem must be the optimal solution of this model, i.e.,
|CE (C) | = 0. Constraint (2) stipulates that the color of each
cell must be selected from its color domain. Thus, the LSC
problem is transformed from a constraint satisfaction problem
to an optimization problem.

3 Swap Relaxation-Based Local Search
A Latin square is an n-coloring without any row conflict or
column conflict. Therefore, if we always keep the solution
without row conflicts, and change the solution only by swap-
ping the colors of two cells on the same row, the LSC problem
is simplified to only eliminating the column conflicts, so that
the search space is greatly restricted.

In this study, we propose a swap relaxation-based local
search algorithm called SRLS for the LSC problem, by adopt-
ing the restricted search space, which is quite different from
the previous one which changes the color of one cell to an-
other color at each iteration to eliminate both row and column
conflicts. Next, we will first present the main framework of
SRLS, and then describe its key components.

3.1 Main Framework
The main framework of the proposed SRLS algorithm is pre-
sented in Algorithm 1. A distinguishing feature of SRLS is
that it always forbids row conflicts. Thus, the number of the
cells with each color is exactly n, because each color occurs
exactly once in each row, and the focus of the algorithm is
on eliminating the existing column conflicts. The use of a
limited search space enables the definition of a swap-based
neighborhood that is tailored to exclusively address column
conflicts. By narrowing the search space, a more effective
and targeted solution to this issue can be devised. SRLS first
applies two newly proposed reduction rules to simplify the
problem instances and randomly generates an initial solution
without row conflicts (line 1). Then, it iteratively improves
the solution by the local search procedure (lines 3-11). At
each iteration, it first evaluates the neighborhood of the cur-
rent solution and selects the best move based on two scoring
functions and a tabu strategy (line 4). Then, it performs the
best move for the current solution (line 5). Afterwards, if the
current solution C is a legal Latin square, i.e., |CE (C) | = 0,
the current solution is returned (lines 6-7). Otherwise, it com-
pares the quality of the current solution C with the best found
solution C∗ (lines 8-11). If C is not worse than C∗, i.e.,
|CE (C) | ≤ |CE (C∗) |, then C∗ is replaced with C (lines
8-9). Otherwise, the local search is adaptively restarted from
the best found solution if necessary (lines 10-11). Finally,

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7048

Algorithm 1 The main framework of the SRLS algorithm
Input: A Latin square graph G = (V,E)
Output: A coloring solution C

1: A coloring solution C ← Initialize (G) // Algorithm 2
2: The best found solution C∗ ← C
3: while elapsed time < time limit do
4: Select the best move m (u, v) based on the neighbor-

hood evaluation and tabu strategy
5: C ← C ⊕m (u, v) // swap the colors of u and v
6: if |CE(C)| = 0 then
7: return C
8: else if |CE(C)| ≤ |CE(C∗)| then
9: C∗ ← C // replace the best found solution

10: else
11: C ← AdaptiveRestart (C,C∗) // Algorithm 3
12: return C∗

Algorithm 2 Initialization
Input: A Latin square graph G = (V,E), vertex set FC for
whose colors were fixed
Output: A coloring solution without row conflicts C

1: Initialize a color domain D (v) for each cell v ∈ V
2: for i = 1 to n do
3: RCi ← {1, . . . , n} // initialize row conflict-free color
4: RV ′i ← RVi // copy the row cells
5: while ∃v ∈ FC was not propagated do
6: Propagate based on FC to update color domains
7: for ∀v /∈ FC and |D(v)| = 1 do
8: FC ← FC

⋃
{v}

9: for ∀vij ∈ FC with color domain D(vij) = k do
10: RV ′i ← RV ′i \{vij} , RCi ← RCi \{k} // update row

cells and row conflict-free colors
11: for i = 1 to n do
12: for all v ∈ RV ′i do
13: Select a random color c from RCi

14: C (v) = c // assign a random row conflict-free color
to the uncolored cell

15: RCi ← RCi \ {c}
16: return C

once the elapsed time exceeds the time limit, SRLS termi-
nates and returns the best solution C∗ (line 12).

3.2 Initialization
We propose two reduction rules to reduce the color domains
of some cells. Note that if the color domain of a cell is re-
duced to a single value, the color of the cell is fixed.

Reduction Rule 1: Let SV be a set of cells in a row (col-
umn) and DS =

⋃
v∈SV D (v). If |DS| = |SV |, then the

colors in DS cannot be used to color other cells in the same
row (column), and should be removed from the domains of
these cells.

Reduction Rule 2: Let SV be a set of cells in a row (col-
umn) and CS be a set of colors. If |CS| = |SV | and the
colors in CS can only be used to color the cells in SV and
cannot be used to color other cells in the same row (column),
then the colors not inCS should be removed from the domain

of each cell of SV .
Note that the three reduction rules proposed in MMCOL

[2019] and FastLSC [2022] are the special cases of our rules
for |SV | = 1.

Rule 1 and Rule 2 can be implemented by calling the
constraint programming solver, such as Choco [Prud’homme
et al., 2019] with all-different constraints. We construct
the model with 2n all-different constraints and repeatedly
propagate the constraints until there are no more cells whose
colors can be fixed. Experiments showed that our reduction
rules can reduce more color domains, and can fix more cells
than the previous reduction rules.

Let RCi (i = 1, . . . , n) denote the set of colors, called row
conflict-free colors, such that coloring any cell on the ith row
with any color in RCi will not lead to a row conflict. The
initialization procedure is shown in Algorithm 2. SRLS re-
peatedly applies the all-different propagator to update the
color domains until no cell can be colored with a fixed color
(lines 5-8). After that, SRLS updates the row conflict-free
colors based on the cells whose colors are fixed (lines 9-10).
Then, an initial solution without row conflicts is randomly
generated (lines 11-15). Specifically, for each uncolored cell
uij , it is colored with a random color c from RCi (line 14),
and then RCi is updated (line 15). Finally, an initial solution
without row conflicts is returned (line 16).

3.3 Neighborhood Structure and Evaluation
In order to improve the initial solution, we employ a swap-
based neighborhood structure. Denoted by m (u, v), a swap
move produces a neighboring solution C ⊕ m (u, v), by ex-
changing the colors of cells u and v on the same row whose
colors are not fixed. For a move m (u, v), u and v are called
operation cells. Different from the strategies in previous lit-
eratures which always satisfy the color domain constraint,
i.e., Constraint (2), we relax this constraint when perform-
ing a swap move. Specifically, for a move m (u, v), even if
C (v) /∈ D (u) (resp. C (u) /∈ D (v)), cell u(resp. v) can
still be colored with C (v) (resp. C (u)). Note that the relax-
ation of the color domain is essential in our algorithm since it
allows the search to connect high-quality solutions via the so-
lutions with color domain violations. The problem with color
domain relaxation can be formulated as follows:

min |CE (C) |, (3)
s.t. C (v) ∈ D (v) , {v | |D (v) | = 1}, (4)

1 ≤ C (v) ≤ n, {v | |D (v) | 6= 1}, (5)⋃
v∈RVi

C (v) = {1, . . . , n}, 1 ≤ i ≤ n. (6)

Note that Constraint (6) stipulates that the row conflict is
always forbidden.

The neighborhood evaluation is the most time-consuming
part in a trajectory-based metaheuristic algorithm. For a typ-
ical local search algorithm which adopts the best improve-
ment policy, it evaluates all feasible moves at each iteration,
and performs the best move to optimize the scoring objec-
tives as much as possible. If we evaluate the whole neigh-
borhood, i.e., exchanging the colors of any two cells on the
same row, there will be O

(
n3
)

swap moves, which is huge

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7049

1 2 3

4 3 1

3 1 2

4

2

4

2 3 4 1

1 2 3

4 3 1

3 1 4

4

2

2

2 3 4 1

Figure 1: Illustration of the relaxation-based swap move.

for large instances. Therefore, in order to reduce the scale of
the neighborhood and preserve most high-quality neighbor-
ing solutions, we only evaluate the moves where at least one
operation cell is conflicting. Note that a legal solution can be
obtained by only performing on the conflicting cells, because
a legal Latin square is an n-coloring of the associated Latin
square graph without conflicting cells. Thus, if the number of
conflicting cells whose colors are not fixed in the current so-
lution is p, the size of the neighborhood will beO (pn) which
is far smaller than O

(
n3
)
.

Figure 1 presents an example of the relaxation-based swap
move including a partial Latin square of order 4 with 4 filled
cells. The numbers in cells represent the colors of the cells.
The numbers in triangle denote that the colors are fixed, while
the numbers in circle denote that the cells are conflicting and
the edges connecting them represent the conflicting edges.
One can observe that movem (v33, v34) can produce a neigh-
boring solution which reduces one conflicting edge. Note that
since the color of cell v14 is fixed, this move leads to a color
domain violation, i.e., C (v34) /∈ D (v34).

In the local search procedure, the neighborhood evaluation
is an important ingredient. To obtain the best neighboring
solution and improve the incumbent solution C, two scor-
ing functions are employed by SRLS. Since the number of
conflicting edges is the optimization objective, the primary
scoring function is defined as minimizing the number of con-
flicting edges |CE (C) |. For a move m (u, v) producing a
neighboring solution C ′, it is evaluated as follows:

∆f1 (u, v) = |CE (C ′) | − |CE (C) | (7)

In order to distinguish multiple swap moves with the same
primary scoring function value, SRLS adopts a secondary
scoring function which plays an important role in the search.
A secondary scoring function can successfully mitigate the
gradient vanishing issue and guide the search to a promising
direction in many local search algorithms [Chen et al., 2021;
Li et al., 2020; Zhang et al., 2022]. For a cell v, if the color
domain of cell v is violated, i.e., C (v) 6∈ D (v), it implies
that cell v is conflicting with another cell whose color is fixed,
and this will lead to an illegal solution no matter what colors
of the remaining cells are. For two solutions having the same
number of conflicting edges, the one with fewer color domain
violations is usually easier to be repaired to a legal solution.
Therefore, the secondary scoring function is defined as min-
imizing the number of color domain violations |DV (C) |.
Specifically, for a movem (u, v) producing a neighboring so-
lution C ′, it is calculated as follows:

∆f2 (u, v) = |DV (C ′) | − |DV (C) | (8)

Algorithm 3 Adaptive Restart
Input: Current solution C, the best found solution C∗
Output: Input solution C for the next round of local search

1: Initialize at the first call: accu← 0, rt← rt0 // initialize
the restart threshold

2: if |CE(C)| − |CE(C∗)| > rt then
3: C ← C∗ // restart from the best found solution

// increase the threshold rt by one for every accuub
restarts from C∗ without exceeding rtub

4: if rt < rtub then
5: accu← accu+ 1
6: if accu = accuub then
7: accu← 0 // reset
8: rt← rt+ 1
9: return C

The intuitions of ∆f1 and ∆f2 lie in the fact that ∆f1 re-
flects the immediate impact, while ∆f2 can be considered as
the potential impact. In detail, at each iteration, SRLS picks
a move with the smallest ∆f1 value, and ties are broken by
choosing the one with the smallest ∆f2 value. If ∆f2 values
are still the same, ties are broken randomly. For more explo-
ration, if all the neighboring solutions increase the number of
conflicting edges, i.e., ∆f1 > 0, SRLS will randomly choose
a conflicting cell v and select the best move associated with v
based on the scoring functions. By combining these two scor-
ing functions, SRLS can not only easily connect high-quality
solutions via the solutions with color domain violations, but
also minimize the number of color domain violations as soon
as possible as the local search proceeds.

3.4 Tabu Search
We employ a tabu strategy in our local search. Tabu search
usually incorporates a recency-based tabu list to avoid re-
evaluating the just-visited solutions [Glover and Laguna,
1998]. For the tabu list, once a move is performed, the con-
flicting operation cell is forbidden to be recolored with the
original color for the next l iterations. Specifically, for a move
m (u, v), if u (v) is a conflicting cell, (u,C (u)) ((v, C (v)))
is recorded in the tabu list. Here, the tabu tenure l is deter-
mined by l = α ∗ |CE (C) | + r(10), where r (10) takes a
random number in {1, . . . , 10} [Galinier and Hao, 1999].

A move m (u, v) is declared to be tabu if coloring one cell
with the color of another one is in the tabu list, i.e., (u,C (v))
or (v, C (u)) is in the tabu list. Besides, we adopt a simple
aspiration criterion that a move is permitted to be selected in
spite of being tabu if it leads to a solution better than the best
found solution. Note that we select the best tabu move and
the best non-tabu move both based on the two scoring func-
tions mentioned above. At each iteration, the best tabu move
is selected as the final move only if it is better than the best
non-tabu move and it can lead to a solution whose number of
conflicting edges is smaller than that of the best found solu-
tion. Otherwise, the best non-tabu move is selected.

3.5 Adaptive Restart Mechanism
Different from the classic graph coloring problem [Garey and
Johnson, 1979], the symmetry of the LSC problem solution

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7050

Parameter Description Tested values Value

α Tabu tenure parameter {0.2,0.3,0.4,0.5} 0.4
rt0 Initial value of rt {8,10,12} 10
rtub Upper bound of rt {12,15,18,21} 15
accuub Updating threshold {500,1000,1500} 1000

Table 1: Settings of important parameters.

is weak since the colors of some cells have been fixed. Thus,
it is more difficult for the LSC problem to escape from a
poor solution trap than the classic graph coloring problem.
A restart mechanism can often help the search to break such
predicaments [Lü and Hao, 2012; Wu and Hao, 2013]. There-
fore, if the solution quality becomes poor enough, we em-
ploy an adaptive restart mechanism to intensify the search by
restarting from the best solution found so far.

Algorithm 3 implements such an adaptive restart mecha-
nism using three parameters rt0, rtub and accuub. The key
of the mechanism is a restart threshold rt. When the gap of
the number of conflicting edges between the current solution
C and the best solution found so far C∗ exceeds rt, SRLS
gives up C and restarts the local search from C∗ (lines 2-3).
Meanwhile, the tabu list will be cleared after restarting. For
balancing the exploitation and exploration of the search, rt is
initialized to a small value rt0, and increased by one for ev-
ery accuub such restarts without exceeding rtub to make the
search restart from C∗ less often (lines 4-10).

4 Experiments and Analysis
To assess the performance of the proposed SRLS algorithm,
we conduct comprehensive experiments on totally 1819 pub-
lic benchmark instances. We compare the results of our al-
gorithm with two exact solvers, Gurobi 11.0.0 and CP-SAT
solver in OR-tools 9.7.2996, and six state-of-the-art heuris-
tics, including four iterated local search algorithms (i.e., 1-
ILS*, 2-ILS, 3-ILS and Tr-ILS*) [2016], MMCOL [2019]
and FastLSC [2022], which are the best-performing algo-
rithms to the best of our knowledge for the LSC problem.

4.1 Experimental Protocol
Our proposed SRLS algorithm1 is implemented in C++ and
compiled by Visual Studio 2017. The code for the reference
algorithms was kindly provided by their respective authors.
All experiments are carried out on Intel Xeon E5-2698v3
@ 2.30GHz CPU with 192GB RAM under Windows Server
2012 x64 and only a single thread is used per run.

There are mainly two sets of benchmark instances for the
LSC problem. The first set consists of 1800 random LSC
benchmark instances2 which are classified into 18 types, each
type containing 100 instances [Haraguchi, 2016]. Each type
is named QWH-n-r, where n denotes the order of Latin
square and r denotes the ratio of filled cells over the n×n grid
of cells. The second set consists of 19 traditional benchmark

1The executable code of SRLS algorithm is online available at
https://github.com/cardal1/SRLS.

2https://github.com/YanJINFR/Latin-Square-Completion

Instance OR-tools Gurobi SRLS

Type SR(%) tavg (s) SR(%) tavg (s) SR(%) tavg (s)

QWH-50 82.83 120.92 50.83 409.18 99.94 3.08
QWH-60 36.33 243.04 17.00 14.50 100.00 1.30
QWH-70 16.83 8.75 16.67 1.68 100.00 1.70
COLOR03 52.63 15.32 36.84 108.12 92.81 51.14

Table 2: Results of Gurobi, OR-tools and SRLS on all instances with
the time limit of 1000 seconds.

instances from the COLOR03 competition3. For each in-
stance, our algorithm is executed independently for 30 times
with random seeds ranging from 1 to 30 under two time lim-
its: 10 and 1000 seconds.

The parameters of SRLS are tuned using the automatic
configuration tool, irace [López-Ibáñez et al., 2016]. We
randomly select 300 instances as the training set which are
chosen from all of the 1819 instances. The tuning process is
given a budget of 9000 runs, each with a time limit of 1000
seconds. The final parameter values obtained by irace are
shown in Table 1. Additionally, experiments were conducted
on all possible combinations of the parameter values on the
training subset, which revealed that the best parameter set-
tings have an average of 1.02% higher success rate than other
combinations of parameters. This underscores the robustness
of our SRLS algorithm against parameter variations.

4.2 Computational Results
The comparison results of SRLS and the reference algorithms
are presented in Tables 2-6. Note that “tl” represents the
time limit. Column “#solv” denotes the total number of
solved runs under the time limit. Column “SR(%)” displays
the percentage of solved runs under the time limit. Column
“t (s)” describes the mean computational time over the runs
where a legal solution is obtained by the algorithm. Column
“tavg (s)” indicates the average value of t (s), which is calcu-
lated over the instances in the same instance type. The num-
bers in bold stand for the best solution.

Table 2 displays the results obtained with a time limit of
1000 seconds by OR-tools, Gurobi and our SRLS on all in-
stances. One can observe that our SRLS algorithm achieves
over 90% success rate across all instance types, while for
the state-of-the-art exact solvers, they solved much fewer in-
stances on all the instance types, especially when n is large.

Table 3 presents the results obtained on 1800 random in-
stances with a time limit of 10 seconds. One can observe that
our SRLS algorithm achieves the highest success rate across
all instance types, especially for the instances which are filled
with 70% cells. Furthermore, SRLS demonstrates an average
speedup of 8-106 times over the state-of-the-art algorithms.
Notably, the performance of SRLS, FastLSC and MMCOL
dominates that of the remaining four algorithms (i.e., 1-ILS*,
2-ILS, 3-ILS and Tr-ILS*). This phenomenon also happens
under other time limits or on other benchmarks. Therefore, in
the following part, we mainly compare SRLS with FastLSC
and MMCOL.

3http://mat.gsia.cmu.edu/COLOR03/

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7051

https://github.com/cardal1/SRLS
https://github.com/YanJINFR/Latin-Square-Completion
http://mat.gsia.cmu.edu/COLOR03/

Instance 1-ILS* 2-ILS 3-ILS Tr-ILS* MMCOL FastLSC SRLS

Type #solv tavg (s) #solv tavg (s) #solv tavg (s) #solv tavg (s) #solv tavg (s) #solv tavg (s) #solv tavg (s)

QWH-50-30 2998 3.19 3000 0.49 2881 4.66 3000 3.44 3000 0.17 3000 0.56 3000 0.05
QWH-50-40 2974 2.29 3000 0.39 2739 4.59 2986 2.63 3000 0.13 3000 0.52 3000 0.04
QWH-50-50 2675 2.57 2987 0.66 1780 5.78 2805 3.24 3000 0.17 3000 0.53 3000 0.03
QWH-50-60 364 5.95 1609 3.72 43 7.68 430 6.42 2995 1.54 3000 1.19 3000 0.05
QWH-50-70 0 N/A 0 N/A 0 N/A 0 N/A 53 5.78 539 6.36 2189 3.63
QWH-50-80 3000 0.83 3000 <0.01 3000 0.83 3000 0.82 3000 <0.01 3000 <0.01 3000 <0.01
QWH-60-30 2893 7.33 3000 1.54 953 8.37 2569 7.75 3000 0.40 3000 1.02 3000 0.13
QWH-60-40 2929 5.11 2996 1.05 1010 7.54 2834 6.03 3000 0.32 3000 0.92 3000 0.10
QWH-60-50 2410 5.10 2954 1.32 395 7.66 2160 6.40 3000 0.39 3000 0.89 3000 0.07
QWH-60-60 100 7.19 1440 4.35 0 N/A 84 7.78 2801 3.34 2983 2.48 3000 0.11
QWH-60-70 0 N/A 0 N/A 0 N/A 0 N/A 7 4.25 288 7.28 2429 3.88
QWH-60-80 2972 1.84 2991 0.07 2971 1.93 2981 1.85 3000 <0.01 3000 <0.01 3000 <0.01
QWH-70-30 0 N/A 2998 3.78 0 N/A 0 N/A 3000 0.83 3000 1.75 3000 0.29
QWH-70-40 821 9.20 2988 2.40 36 9.40 303 9.19 3000 0.65 3000 1.49 3000 0.21
QWH-70-50 1391 8.42 2862 2.50 0 N/A 418 8.78 3000 0.85 3000 1.49 3000 0.15
QWH-70-60 17 8.56 975 5.18 0 N/A 0 N/A 1961 4.64 2846 3.88 3000 0.19
QWH-70-70 0 N/A 0 N/A 0 N/A 0 N/A 1 5.02 134 7.59 2180 4.37
QWH-70-80 2819 4.37 2935 0.53 2724 6.22 2850 4.76 3000 0.05 3000 <0.01 3000 <0.01
avg. speed-up 65.13 22.09 106.24 75.53 8.35 11.12 1.00

Table 3: Results of SRLS and other reference algorithms on 1800 random instances under the time limit of 10 seconds.

Instance MMCOL FastLSC SRLS

Type #solv tavg (s) #solv tavg (s) #solv tavg (s)

QWH-50-60 3000 1.56 3000 1.19 3000 0.05
QWH-50-70 2793 243.04 2905 84.46 2990 18.31
QWH-60-60 3000 4.01 3000 2.53 3000 0.11
QWH-60-70 2930 284.40 2999 47.65 3000 7.36
QWH-70-60 3000 9.33 3000 4.35 3000 0.19
QWH-70-70 2865 386.83 3000 52.07 3000 9.33

avg. speed-up 35.02 14.39 1.00

Table 4: Results of MMCOL, FastLSC and SRLS on 600 random
instances under the time limit of 1000 seconds.

Table 4 shows the comparison results tested under the time
limit of 1000 seconds on the random instances. Instances that
can be solved by all the algorithms under the 10-second limit
are excluded. One can observe that SRLS solves for all runs
except for 10 runs on QWH-50-70, which shows its superi-
ority over the state-of-the-art algorithms. Furthermore, the
average computational time of SRLS is significantly shorter
than that of other reference algorithms.

Table 5 presents the detailed results on 13 challenging in-
stances, out of the 1800 random instances, on which both
MMCOL and FastLSC are unable to solve for all runs under
the 1000-second time limit. The results indicate that SRLS is
able to solve 12 out of the 13 challenging instances for all 30
runs, while for the remaining one instance (i.e., QWH-50-70-
57), SRLS still outperforms MMCOL and FastLSC, with 20
runs solved compared to 4 and 8 runs, respectively.

Table 6 displays the experimental of MMCOL, FastLSC
and SRLS on the 19 traditional instances with the time lim-
its of 10s and 1000s. SRLS outperforms both MMCOL and
FastLSC with higher success rates and shorter computational
time on almost all these instances. In particular, for the

Instance MMCOL FastLSC SRLS

#solv t (s) #solv t (s) #solv t (s)

QWH-50-70-100 9 498.17 23 296.34 30 50.5
QWH-50-70-13 13 495.78 21 356.11 30 93.05
QWH-50-70-20 6 654.84 13 373.29 30 160.67
QWH-50-70-21 21 398.85 28 244.98 30 46.42
QWH-50-70-26 6 574.38 15 423.16 30 229.72
QWH-50-70-57 4 671.55 8 366.92 20 330.63
QWH-50-70-58 13 653.35 26 323.11 30 40.70
QWH-50-70-70 29 347.67 28 220.32 30 27.31
QWH-50-70-74 17 598.83 24 417.73 30 112.23
QWH-50-70-8 14 582.35 25 252.79 30 42.19
QWH-50-70-90 22 386.87 29 190.14 30 27.79
QWH-50-70-98 27 403.02 28 100.08 30 10.96
QWH-60-70-50 16 568.99 29 250.36 30 51.39

Table 5: Results of MMCOL, FastLSC and SRLS on 13 challenging
instances under the time limit of 1000 seconds.

extremely difficult instance (i.e., qwhdec.order50.holes750
[Kautz et al., 2001]) where both MMCOL and FastLSC failed
to solve within 1000s, SRLS achieves a success rate of 7/30,
demonstrating its effectiveness and efficiency.

4.3 Analysis and Discussion
In order to evaluate the merits of the reduction rules, the color
domain relaxation technique, the secondary scoring function
and the adaptive restart mechanism employed in the SRLS al-
gorithm, we conducted experiments on three difficult and rep-
resentative instances (i.e., QWH-50-70-100, QWH-50-70-26
and QWH-60-70-50) by comparing SRLS against its alterna-
tive variants with specific components disabled.

These variants include SRLS RD (use previous reduc-
tion rules proposed in FastLSC [2022] to reduce color do-
mains instead of those proposed in this paper and used in

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7052

tl=1000s tl=10s

Instance MMCOL FastLSC SRLS MMCOL FastLSC SRLS

#solv t (s) #solv t (s) #solv t (s) #solv t (s) #solv t (s) #solv t (s)

qwhdec.order18.holes120 30 <0.01 30 <0.01 30 <0.01 30 <0.01 30 <0.01 30 <0.01
qwhdec.order30.holes316 30 0.17 30 0.23 30 0.01 30 0.17 30 0.23 30 0.01
qwhdec.order30.holes320 30 0.47 30 0.36 30 0.04 30 0.47 30 0.36 30 0.04
qwhdec.order33.holes381 30 189.32 30 50.59 30 11.39 1 7.40 4 6.60 18 5.15
qwhdec.order35.holes405 30 13.16 30 5.78 30 0.85 17 3.97 28 4.94 30 0.85
qwhdec.order40.holes528 30 14.97 30 3.93 30 0.57 12 5.02 28 3.44 30 0.57
qwhdec.order5.holes10 30 <0.01 30 <0.01 30 <0.01 30 <0.01 30 <0.01 30 <0.01
qwhdec.order50.holes750 0 N/A 0 N/A 7 549.77 0 N/A 0 N/A 0 N/A
qwhdec.order50.holes825 30 115.25 30 20.75 30 1.61 0 N/A 8 7.29 30 1.61
qwhdec.order60.holes1080 0 N/A 2 431.40 12 386.60 0 N/A 0 N/A 1 4.78
qwhdec.order60.holes1152 29 431.11 30 65.64 30 9.43 0 N/A 3 8.61 18 4.61
qwhdec.order60.holes1440 30 2.40 30 1.96 30 0.09 29 2.17 30 1.96 30 0.09
qwhdec.order60.holes1620 30 0.82 30 1.20 30 0.06 30 0.82 30 1.20 30 0.06
qwhdec.order70.holes2450 30 0.82 30 1.51 30 0.14 30 0.82 30 1.51 30 0.14
qwhdec.order70.holes2940 30 0.64 30 1.46 30 0.20 30 0.64 30 1.46 30 0.20
qg.order100 30 10.96 30 9.98 30 3.51 0 N/A 17 9.26 30 3.51
qg.order30 30 0.03 30 0.03 30 <0.01 30 0.03 30 0.03 30 <0.01
qg.order40 30 0.14 30 0.12 30 0.04 30 0.14 30 0.12 30 0.04
qg.order60 30 0.95 30 0.80 30 0.28 30 0.95 30 0.80 30 0.28
avg. speed-up 18.84 9.31 1.00 8.78 8.44 1.00

Table 6: Results of MMCOL, FastLSC and SRLS on 19 traditional instances under different time limits.

0 200 400 600 800 10000

5

10

15

20

25

30

So
lv

ed
 ru

ns

Time(s)

 SRLS
 SRLS_RD
 SRLS_RS1
 SRLS_RS2
 SRLS_RL
 SRLS_f2

(a) QWH-50-70-100

0 200 400 600 800 10000

5

10

15

20

25

30

So
lv

ed
 ru

ns

Time(s)

 SRLS
 SRLS_RD
 SRLS_RS1
 SRLS_RS2
 SRLS_RL
 SRLS_f2

(b) QWH-50-70-26

0 200 400 600 800 10000

5

10

15

20

25

30

So
lv

ed
 ru

ns

Time(s)

 SRLS
 SRLS_RD
 SRLS_RS1
 SRLS_RS2
 SRLS_RL
 SRLS_f2

(c) QWH-60-70-50

Figure 2: Evolution of the solved runs of instances by SRLS and the alternative variants on three difficult instances.

SRLS), SRLS RL (disable the color domain relaxation tech-
nique), SRLS f2 (deactivate the secondary scoring func-
tion), SRLS RS1 (disable the adaptive restart mechanism)
and SRLS RS2 (restart the local search every 105 iterations).

Figure 2 depicts the evolution of the solved runs of
instances as the search proceeds by SRLS, SRLS RD,
SRLS RL, SRLS f2, SRLS RS1 and SRLS RS2. Each point
(x, y) on the curves represents that the instance is solved for
y runs within x seconds. One can observe that all these three
strategies play important roles in the overall performance of
SRLS. In particular, the simplified version without the color
domain relaxation technique (i.e., SRLS RL) performs the
worst. The reason for this phenomenon might be that the
connectivity of the solution space in SRLS RL is poor, while
the relaxation of the color domain significantly improves the
connectivity of the search space. Moreover, although the sim-
plified versions of SRLS are outperformed by SRLS, some of
them are still highly competitive compared with the state-of-
the-art algorithms listed in Table 5.

5 Conclusion

This paper presented a swap relaxation-based local search al-
gorithm to solve the LSC problem. By forbidding row con-
flicts, we define a novel search space and an associated swap-
based neighborhood. In addition, we relax the color domain
to expand the search space, which enables the search to eas-
ily connect high-quality solutions. Finally, we solve the LSC
problem by combining two effective scoring functions and
a novel adaptive restart mechanism. Tested on 1819 public
benchmark instances, SRLS outperforms the state-of-the-art
algorithms in terms of both success rate and computational ef-
ficiency. Since the LSC is essentially a classical multiple per-
mutation problem of which the structure is common in CSP
[Walsh, 2001; Hnich et al., 2004], we plan to adapt the tech-
niques proposed in this paper (such as the relaxation-based
neighborhood, the secondary scoring function and the adap-
tive restart mechanism) to solve other challenging combina-
torial optimization problems in the future.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7053

Acknowledgments
This work was supported in part by the National Natural Sci-
ence Foundation of China (NSFC) under Grants 72101094
and 62202192, and the Special Project for Knowledge Inno-
vation of Hubei Province under Grant 2022013301015175.

References
[Ansótegui et al., 2004] Carlos Ansótegui, Alvaro del Val,

Iván Dotú, Cesar Fernández, and Felip Manya. Modeling
choices in quasigroup completion: SAT vs. CSP. In Pro-
ceedings of the Nineteenth AAAI Conference on Artificial
Intelligence, AAAI, pages 137–142, 2004.

[Barry and Humblet, 1993] Richard Barry and Pierre Hum-
blet. Latin routers, design and implementation. Journal of
Lightwave Technology, 11(5/6):891–899, May 1993.

[Biró et al., 1992] Miklós Biró, Mihály Hujter, and Zs Tuza.
Precoloring extension. I. Interval graphs. Discrete Mathe-
matics, 100(1-3):267–279, 1992.

[Chen et al., 2021] Jiejiang Chen, Shaowei Cai, Shiwei Pan,
Yiyuan Wang, Qingwei Lin, Mengyu Zhao, and Minghao
Yin. Nuqclq: an effective local search algorithm for max-
imum quasi-clique problem. In Proceedings of the Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI,
pages 12258–12266, 2021.

[Colbourn et al., 2004] Charles Colbourn, Torleiv Klove,
and Alan Ling. Permutation arrays for powerline com-
munication and mutually orthogonal latin squares. IEEE
Transactions on Information Theory, 50(6):1289–1291,
2004.

[Colbourn, 1984] Charles Colbourn. The complexity of
completing partial latin squares. Discrete Applied Math-
ematics, 8(1):25–30, April 1984.

[Colbourne and Dinitz, 2007] Charles Colbourne and Jeffrey
Dinitz. Handbook of Combinatorial Designs. CRC press
Boca Raton, FL, 2007.

[Galinier and Hao, 1999] Philippe Galinier and Jin-Kao
Hao. Hybrid evolutionary algorithms for graph color-
ing. Journal of Combinatorial Optimization, 3(4):379–
397, 1999.

[Garey and Johnson, 1979] Michael R Garey and David S
Johnson. Computers and intractability. A Guide to the
Theory of NP-completeness, 1979.

[Glover and Laguna, 1998] Fred Glover and Manuel La-
guna. Tabu search. In Handbook of Combinatorial Op-
timization, pages 2093–2229. Springer, 1998.

[Gomes and Shmoys, 2002] Carla Gomes and David
Shmoys. Completing quasigroups or latin squares: A
structured graph coloring problem. In Proceedings of
the Computational Symposium on Graph Coloring and
Generalizations, pages 22–39, 2002.

[Hall, 1948] Marshall Hall. Distinct representatives of sub-
sets. Bulletin of the American Mathematical Society,
54(10):922–926, 1948.

[Haraguchi, 2016] Kazuya Haraguchi. Iterated local search
with trellis-neighborhood for the partial latin square ex-
tension problem. Journal of Heuristics, 22(5):727–757,
October 2016.

[Hnich et al., 2004] Brahim Hnich, Barbara Smith, and Toby
Walsh. Dual modelling of permutation and injection prob-
lems. Journal of Artificial Intelligence Research, 21:357–
391, 2004.

[Jin and Hao, 2019] Yan Jin and Jin-Kao Hao. Solving the
latin square completion problem by memetic graph col-
oring. IEEE Transactions on Evolutionary Computation,
23(6):1015–1028, 2019.

[Kautz et al., 2001] Henry Kautz, Yongshao Ruan, Dimitris
Achlioptas, Carla Gomes, Bart Selman, and Mark Stickel.
Balance and filtering in structured satisfiable problems. In
Proceedings of the Seventeenth International Joint Con-
ference on Artificial Intelligence, IJCAI, pages 351–358,
2001.

[Kumar et al., 1999] Ravi Kumar, Alexander Russell, and
Ravi Sundaram. Approximating latin square extensions.
Algorithmica, 24(2):128–138, 1999.

[Li et al., 2020] Bohan Li, Xindi Zhang, Shaowei Cai,
Jinkun Lin, Yiyuan Wang, and Christian Blum. Nucds:
an efficient local search algorithm for minimum con-
nected dominating set. In Proceedings of the Twenty-
NinthInternational Joint Conference on Artificial Intelli-
gence, IJCAI, pages 1503–1510, 2020.

[López-Ibáñez et al., 2016] Manuel López-Ibáñez, Jérémie
Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari,
and Thomas Stützle. The irace package: iterated racing for
automatic algorithm configuration. Operations Research
Perspectives, 3:43–58, 2016.

[Lovász et al., 2003] László Lovász, József Pelikán, and
Katalin Vesztergombi. Discrete Mathematics: Elementary
and Beyond. Springer Science & Business Media, 2003.

[Lü and Hao, 2012] Zhipeng Lü and Jin-Kao Hao. Adaptive
neighborhood search for nurse rostering. European Jour-
nal of Operational Research, 218(3):865–876, 2012.

[Pan et al., 2022] Shiwei Pan, Yiyuan Wang, and Minghao
Yin. A fast local search algorithm for the latin square com-
pletion problem. In Proceedings of the Thirty-Sixth AAAI
Conference on Artificial Intelligence, AAAI, pages 10327–
10335, 2022.

[Prud’homme et al., 2019] Charles Prud’homme, Jean-
Guillaume Fages, and Xavier Lorca. Choco solver.
Website, March, 2019.

[Ryser, 1951] Herbert John Ryser. A combinatorial theorem
with an application to latin rectangles. Proceedings of the
American Mathematical Society, 2(4):550–552, 1951.

[Walsh, 2001] Toby Walsh. Permutation problems and chan-
nelling constraints. In International Conference on Logic
for Programming Artificial Intelligence and Reasoning,
pages 377–391. Springer, 2001.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7054

[Wu and Hao, 2013] Qinghua Wu and Jin-Kao Hao. An
adaptive multistart tabu search approach to solve the maxi-
mum clique problem. Journal of Combinatorial Optimiza-
tion, 26:86–108, 2013.

[Zhang et al., 2022] Qingyun Zhang, Zhouxing Su, Zhipeng
Lü, and Lingxiao Yang. A weighting-based tabu search
algorithm for the p-next center problem. In Proceedings of
the Thirty-First Joint Conference on Artificial Intelligence,
IJCAI, pages 4828–4834, 2022.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7055

	Introduction
	Preliminaries
	Swap Relaxation-Based Local Search
	Main Framework
	Initialization
	Neighborhood Structure and Evaluation
	Tabu Search
	Adaptive Restart Mechanism

	Experiments and Analysis
	Experimental Protocol
	Computational Results
	Analysis and Discussion

	Conclusion

