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Abstract

The maximum k-plex problem (MKPP) is a sig-
nificant relaxation version of the maximum clique
problem with extensive applications. Recently, lots
of researchers have proposed many heuristic al-
gorithms based on various methods to solve the
MKPP. In this work, to further improve the perfor-
mance of solving the MKPP, we propose an effi-
cient local search algorithm based on three main
ideas. First, we propose a relaxed bounded config-
uration checking strategy that considers two kinds
of historical searching information to relax the re-
stricted strength of configuration checking and the
forbidden condition of candidate vertices for the
Add operation, respectively. Second, we present
a novel solution information-based vertex selection
strategy based on two kinds of solution information
to select high-quality candidate vertices. Third, we
define the solution core and then introduce a core-
based perturbation strategy to help the algorithm
jump out of local optima. The experimental results
show that the proposed algorithm significantly out-
performs the state-of-the-art MKPP algorithms in
almost all the instances.

1 Introduction
Cohesive subgroups are subsets of actors among whom there
are relatively strong, direct, intense, frequent, or positive ties.
In graph theory, the model of cohesive subgroups is usually
used to analyze some real-world applications, especially in
social network analysis [Wasserman and Faust, 1994]. The
earliest mathematical model of a cohesive subgroup was the
clique. Formally, a clique is a subset of vertices of an undi-
rected graph such that every two distinct vertices in the clique
are adjacent. The ideal characteristic of the clique is the re-
sult of requiring a complete subgraph. However, this kind of
model is overly restrictive in practice [Seidman and Foster,
1978]. Thus, to deal with real-world scenarios, researchers
have proposed several clique relaxation problems, such as k-
plex [Chen et al., 2020], k-club [Shahinpour and Butenko,
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2013] and k-quasi-clique [Chen et al., 2021], which can re-
lax specific properties of the clique to overcome its mod-
eling limitations. In this paper, we focus on studying the
maximum k-plex problem (MKPP), which has been success-
fully applied in social network analysis [Kondo et al., 2012;
Pattillo et al., 2013; Xiao et al., 2017], especially in com-
munity detection [Conte et al., 2018; Zhu et al., 2020]. For
example, when detecting potential money laundering crimes,
a common approach is to construct a graph representation of
wire transfer databases, where each edge represents the flow
of money [Balasundaram, 2007]. In this application, the pri-
mary focus is often on the edge information, and the flow of
money information may be unclear or incomplete. Therefore,
the aforementioned application can be formulated as k-plex
and effectively addressed using k-plex algorithms.

Given a graph G = (V,E) and a fixed positive integer k,
a k-plex S is a subset of vertices that each vertex is at least
adjacent with |S| − k vertices. The MKPP aims to find a k-
plex with the maximum size. As is known, the MKPP has
been proven to be an NP-hard problem [Balasundaram et al.,
2011]. Therefore, solving this problem is not an easy task.
Both exact and heuristic algorithms have been studied.

The exact algorithms for the MKPP mainly comprise three
categories: integer programming based algorithms [Balasun-
daram et al., 2011], branch and bound algorithms [McClosky
et al., 2012; Moser et al., 2012; Xiao et al., 2017; Gao et al.,
2018; Wu et al., 2019; Zhou et al., 2021; Jiang et al., 2021;
Chang et al., 2022; Jiang et al., 2023; Wang et al., 2023] and
Russian doll search [Trukhanov et al., 2013; Shirokikh, 2013;
Gschwind et al., 2018]. These exact algorithms can guarantee
the optimality of their solutions, but they can hardly perform
very well for some hard instances within a reasonable time.
To settle this issue, researchers usually resort to designing
heuristic algorithms to obtain a good solution.

Generally speaking, the heuristic algorithms for the MKPP
can be divided into hybrid metaheuristic algorithms [Gujjula
et al., 2014; Miao and Balasundaram, 2017], learning-based
algorithm [Jin et al., 2022], and local search algorithms [Zhou
and Hao, 2017; Chen et al., 2020; Pullan, 2021]. According
to the literature, the current best heuristic algorithms for the
MKPP are DCCplex [Chen et al., 2020] and KLS [Pullan,
2021].

Motivated to contribute to further improving the perfor-
mance of solving the MKPP, in this study, we present an effi-
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cient local search algorithm named Nukplex based on three
novel ideas. First, we propose a new variant of the con-
figuration checking (CC) strategy. CC is a commonly used
strategy for the cycling problem and has been used in vari-
ous combinational optimization problems [Cai et al., 2011;
Wang et al., 2020; Chen et al., 2022; Chen et al., 2023].
Considering the characteristic of the MKPP and the three ba-
sic operations of local search algorithms for the MKPP, we
propose a relaxed bounded configuration checking strategy
(RBCC). In the proposed strategy, we relax the restricted
strength of configuration checking by considering the ver-
tices’ frequency information and allow more candidate added
vertex to be selected by using a traditional tabu mechanism
[Glover, 1989] during the search procedure.

Second, different from the random selection method and
the structure-based selection method adopted by previous
local search algorithms [Zhou and Hao, 2017; Chen et
al., 2020; Pullan, 2021], we propose a novel solution
information-based vertex selection strategy based on two
novel scoring functions. The first scoring function takes the
structure information of a given instance (i.e., degree value)
and the current solution into account, whereas the second
scoring function considers the historical information of the
search procedure (i.e., local best solution). Note that these
scoring functions measure the gain of adding a vertex from
different perspectives.

Third, a core-based perturbation strategy is proposed to di-
versify the search direction. It extracts a cohesive subset from
a candidate solution based on the definition of the solution
core and then adds several vertices to extend this subset into
a new perturbed solution until the perturbed solution differs
from the original solution to a certain extent.

To evaluate the effectiveness of the proposed algorithm,
extensive experiments are carried out on the benchmarks
adopted by the previous literature for the MKPP. Experimen-
tal results show that the proposed algorithm outperforms the
state-of-the-art heuristic and exact algorithms in almost all
benchmarks, and the proposed strategies play an essential role
in the excellent performance of the proposed algorithm.

In the next section, we introduce some necessary back-
ground knowledge. After that, we present our proposed three
ideas and our algorithm. Experimental results are shown in
Section 7. Finally, we make conclusions.

2 Preliminaries
Let G = (V,E) be an undirected graph, where V is a vertex
set with n vertices and E is an undirected edge set with m
edges. Each edge e ∈ E has two endpoints, denoted as e =
{v, u}. The density of graph G is defined as dens(G) =
|E|
(|V |

2 )
. For a vertex v ∈ V , the set of its neighbors is defined

as N(v) = {u ∈ V | {u, v} ∈ E} and its degree deg(v) is
defined as the number of its neighbors, denoted as deg(v) =
|N(v)|. For a vertex set S ⊆ V , N(S) =

⋃
v∈S N(v) \ S.

The induced subgraph G[S] = (S,ES) is a subgraph of G
whose vertex set is S and whose edge set includes all the
edges in E that have both endpoints in S.

Given a graph G and a positive integer k, a subset S of V is
a k-plex such that |N(v) ∩ S| ≥ |S| − k for each v ∈ S. Ob-

viously, each vertex of a k-plex S must be adjacent to at least
|S| − k vertices in the subgraph G[S]. The maximum k-plex
problem (MKPP) is to find a k-plex with the most vertices.

During the search process, we use S to denote the fea-
sible candidate solution (i.e., being a k-plex). For a vertex
v ∈ S, if |N(v) ∩ S| = |S| − k, v is called a saturated ver-
tex. We define C(S) as the set of all saturated vertices in S.
Local search algorithms for MKPP usually modify the feasi-
ble candidate solution S iteratively through three basic oper-
ations, including Add, Swap, and Drop [Zhou and Hao, 2017;
Chen et al., 2020]. With the current solution denoted by S,
we introduce three candidate sets for each of the three opera-
tions.

• AddSet(S) = {v ∈ N(S) | |N(v) ∩ S| > |S| −
k,C(S) \N(v) = ∅}

• SwapSet(S) = {v ∈ N(S) | |N(v) ∩ S| ≥ |S| −
k, |C(S) \ N(v)| = 1} ∪ {v ∈ N(S) | |N(v) ∩ S| =
|S| − k, |C(S) \N(v)| = ∅}

• DropSet(S) = S

AddSet(S) refers to adding a vertex v ∈ N(S) into a can-
didate solution, provided that the vertex is adjacent to more
than |S| − k neighbors and any saturated vertex is excluded
in the set of v’s non-neighbors. It is obvious that the op-
eration Add can increase the cardinality of the solution by
one, and thus this operation always leads to a better solution.
SwapSet(S) contains a pair of vertices which is eligible for
exchanging only if it satisfies one of the following two con-
ditions: (i) v is adjacent to at least |S| − k vertices in S and
the set of v’s non-neighbors includes only one saturated ver-
tex; (ii) v is adjacent to exactly |S| − k vertices in S and
the set of v’s non-neighbors does not contain any saturated
vertex. During the search process, the algorithm will add a
vertex v ∈ SwapSet(S) into the candidate solution and ran-
domly remove one vertex from the candidate solution, ensur-
ing that the candidate solution is still a k-plex. Specifically,
if |N(v) ∩ S| ≥ |S| − k and |C(S) \ N(v)| = 1, the sat-
urated vertex connected to v will be removed. Otherwise, if
|N(v) ∩ S| = |S| − k and |C(S) \ N(v)| = ∅, a vertex
in S \ N(v) will be randomly selected and then removed.
DropSet(S) includes all the vertices in S. The Drop oper-
ation is considered only when Add and Swap operations are
unavailable.

3 Relaxed Bounded Configuration Checking
Strategy

Configuration checking (CC) as a diversification strategy has
been widely used to avoid the cycling problem in local search
[Cai et al., 2011]. It works as follows: for v /∈ S, if its con-
figuration has not changed since v’s last removal from S, it
is forbidden to be added back to S. Typically, the configura-
tion of a vertex refers to the state of its neighboring vertices.
The CC strategy is usually implemented with an array named
conf , where conf(v) = 1 means v is allowed to be added to
the candidate solution, and conf(v) = 0 means it should not
be added.
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3.1 Review of CC Strategies for Clique Relaxation
Problems

Recently, three versions of CC have been proposed for clique
relaxation problems, including dynamic-threshold configura-
tion checking (DCC) [2020] for the MKPP, bounded con-
figuration checking (BoundedCC) [2021] for the maximum
quasi-clique problem, and stratified threshold configuration
checking (STCC) [2022] for the maximum k-club problem.
The CC strategies mentioned above all maintain an integer
threshold thred to control the forbidding strength. Only
when conf(v) ≥ thred(v), v is allowed to be added back
to S.

BoundedCC and STCC can be considered as two vari-
ants of DCC. (1) BoundedCC sets an upper bound on the
threshold of the DCC condition, which can avoid the fre-
quently operated vertices forbidden for a long time. In detail,
when thred(v) reaches the predefined upper bound denoted
as ub thre, it will be reset to 1. (2) STCC considers the spe-
cific feature of the maximum k-club problem and more details
can be seen [Chen et al., 2022].

3.2 The RBCC Strategy
When the threshold of vertex v (i.e., thred(v)) reaches the
upper bound ub thre, indicating that the vertex has been for-
bidden for a period of time, BoundedCC simply resets its
threshold value to 1. According to the preliminary experi-
ment, this updating way would mislead the search by forbid-
ding some promising candidate vertices. To address it, we de-
sign a novel updating rule by taking the vertices’ frequency
into account, which can be considered as a kind of search
information indicating the accumulative effectiveness of the
search on each vertex.

In detail, each vertex v ∈ V has an additional property, fre-
quency, denoted by freq(v). The freq value of each vertex
is initialized to 1. During the search process, the freq value
of each vertex is used to record the total number of times that
the vertex has been added or removed. Here we suppose that
the algorithm adds vertex v1 into the candidate solution and
its threshold value is larger than ub thre. Intuitively, in this
case, we observe that if freq(v1) is not too high compared to
some other vertices, then we should further relax its forbid-
den strength. To implement it, we randomly sample t vertices
and put these vertices into a frequency candidate set denoted
as FreqSet = {vf1 , v

f
2 , . . . , v

f
t } where the positions of ver-

tices are arranged in a descending order of the frequency val-
ues. If freq(v1) is less than freq(vf⌊0.8×t⌋), we think that the
CC condition of the vertex v should be relaxed, i.e., setting
thred(v1) to 0.

Based on the above discussion, we modify BoundedCC
into a more relaxed version, which is called relaxed bounded
configuration checking (RBCC) strategy. This strategy is
specified by the following four rules.

RBCC Initial Rule. At the beginning of search process,
for each v ∈ V , conf(v) and thred(v) are initialized to 1.

RBCC Add Rule. When v is added into the candidate
solution, thred(v) and conf(v′) are increased by 1 for each
v′ ∈ N(v). If thred(v) ≥ ub thre, we randomly select t
vertices to generate a frequency candidate set FreqSet =

{vf1 , v
f
2 , . . . , v

f
t }. There are two cases: (1) if freq(v1) <

freq(vf⌊0.8×t⌋), then thred(v1) is reset to 0; (2) Otherwise,
thred(v1) is reset to 1.

RBCC Swap Rule. When u is removed and v is added
into the candidate solution, conf(u) is switched to 0.

RBCC Drop Rule. When removing a vertex u from the
candidate solution, conf(u) is set to 0.

Two Constrained Candidate Sets
From experimental observation, we learnt that in local search
algorithms for MKPP, each operation (i.e., Add, Swap, and
Drop) has different effects on a candidate solution. The op-
eration Add can directly improve the quality of the candidate
solution, whereas the operation Swap can be seen as a form
of diversification by leading the search switch to another can-
didate solution near the current one. Thus, we believe the ver-
tices in the AddSet should be encouraged to be added to the
candidate solution. Different from DCC, BoundedCC, and
STCC that enforce a uniform CC constraint for the operations
Add and Swap, we use a classic tabu mechanism [Glover,
1989] as an auxiliary way to relax the CC constraint for the
operation Add. Specifically, for each vertex v ∈ V , age(v) is
used to record the number of steps since the last time it was
removed from the candidate solution.

In the following, we employ the tabu and RBCC to redefine
the candidate sets for the operations Add and Swap.

• ConstrAddSet(S) = {v ∈ AddSet(S) | conf(v) ≥
ub thre} ∪ {v ∈ AddSet(S) | age(v) > Lt}

• ConstrSwapSet(S) = {v ∈ SwapSet(S) |
conf(v) ≥ ub thre}

Where Lt is a parameter for the tabu mechanism.

4 A Novel Solution Information-Based Vertex
Selection Strategy

In this section, we first review previous vertex selection
strategies used to solve the MKPP. Then, we make use of
the information of the current solution and previous gener-
ated local best solutions to measure each candidate vertex in
the respective candidate sets, resulting in two novel scoring
functions. Finally, we design a novel solution information-
based vertex selection strategy.

4.1 Previous Vertex Selection Strategies
Before introducing our proposed scoring functions, we re-
view two previous methods to select the added and swapped
vertices, namely random-based and structure-based methods.

The random-based method is used by previous MKPP al-
gorithms such as FD-TS [Zhou and Hao, 2017] and DCCplex
[Chen et al., 2020]. To overcome the cycling problem, the
algorithms usually use tabu [Glover, 1989] or CC strategies
[Cai et al., 2011] to reduce the AddSet and SwapSet. Dur-
ing the adding and swapping processes, if the corresponding
reduced candidate set has any vertices, the algorithm chooses
a random vertex from the candidate set.

As for the second structure-based method, such as KLS
[Pullan, 2021], the algorithm also uses a tabu mechanism
to reduce the candidate set and then uses a common scoring
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function, denoted as dS , to select a candidate vertex. Given
a current candidate solution S ⊆ V , the adjacency dS(v) of
a vertex v ∈ N(S) is the number of vertices in S that are
connected to v, which is defined as below.

dS(v) = |N(v) ∩ S|

4.2 Current Solution Information-Based Scoring
Function

It is obvious that adding a vertex with a high dS value usually
leads to few saturated vertices. Thus, in our work, we mainly
consider the dS as the selection basis to design our first scor-
ing function. Besides, dS(v) = deg(v) − dS(v) represents
the number of vertices in V \ S that connects v after adding
v into S. The dS(v) value denotes the potential capacity of
expanding S after adding v. In the following, we present a
novel current solution information-based scoring function.

scorecsi(v) = dS(v)× (1 +
ρ× dS(v)

|V |
)

Where ρ is a parameter whose range is from 0 to 1. On the
one hand, based on the definition of scorecsi, we can easily
obtain that dS(v) has the greatest influence on the value of
scorecsi. On the other hand, because we utilize ρ×dS(v)

|V | as

the coefficient of the dS(v), dS can be viewed as the second
influencing factor of scorecsi and ρ

|V | is used to balance the

influence between these two factors, i.e., dS and dS .
The intuition underlying the scorecsi is to fully explore the

information of current solutions. In detail, scorecsi considers
the immediate impact (i.e., dS) and subsequent extendibility
capacity (i.e., dS) of S when adding a vertex.

4.3 Local Best Solution Information-Based
Scoring Function

Local search algorithms for the MKPP usually adopt a classic
restart search framework [Chen et al., 2021; Pullan, 2021],
which consists of two procedures: construction and search
procedures. In each round, the construction procedure itera-
tively generates an initial solution, and the search procedure
improves the initial solution and then returns a local best solu-
tion. The local best solution information-based scoring func-
tion scorelbs is designed by utilizing the historical local opti-
mal solutions. Its corresponding rules are given as below.

Initial Rule. At the beginning, scorelbs(v) is initialized to
1, for every v ∈ V .

Update Rule. When the local search procedure returns
a local best solution denoted as Slbest, for every v ∈ V ,
scorelbs(v) is increased by dSlbest

(v).
The designing of scorelbs is inspired by the backbone

structure of combinational optimization problems [Wu and
Hao, 2015]. It indicates that for many optimization prob-
lems, high-quality solutions usually share some same com-
ponents. The intuition evaluation criterion of the backbone is
the number of times that a variable occurs in the local optimal
solutions. In our work, we generalized this idea as the accu-
mulative values of the number of connections between v and
each local optimal solution, i.e., scorelbs.

4.4 Our Proposed Vertex Selection Strategy
Based on the above two scoring functions, we design two
novel vertex selection rules as follows.

Add Rule. Adding one vertex v ∈ ConstrAddSet(S)
with the highest value of scorecsi(v) into S, breaking ties
randomly.

Swap Rule. The vertex selection rule for
ConstrSwapSet(S) considers two conditions as below.

• The first case dens(G) > α. Selecting one vertex
v ∈ ConstrSwapSet(S) with the highest value of
scorelbs(v) into S, breaking ties randomly.

• The second case dens(G) ≤ α. Selecting a vertex v
with the lowest freq(v) value, breaking ties randomly.

In our work, parameter α is set to 0.35 according to pre-
liminary experiments. For the Swap operation, after adding
v, we remove a vertex that is not connected to v from S. We
have introduced how to select a removed vertex in Section 2.

For the Add operation, because adding a vertex can directly
improve the solution quality, in order to make sure the ex-
pandability of the candidate solution after adding the vertex,
we adopt a greedy manner based on the value of scorecsi
to decide which vertex is a candidate added vertex. As for
the Swap operation that aims to transfer the current candidate
solution to its neighbor search space, instead of adopting a
greedy vertex selection method, we utilize the search infor-
mation to explore search spaces based on the structure infor-
mation of a given graph (e.g., density). In detail, if the graph
is very sparse, the search procedure is easy to fall into local
optima, and thus we focus on searching for some rarely vis-
ited search spaces based on the value of freq. Otherwise, we
think the graph is dense. We turn to visit some potential high-
quality search spaces by considering the value of scorelbs.

5 A Core-Based Perturbation Strategy
Even though our proposed RBCC can help the algorithm
overcome the cycling problem, this strategy cannot deal with
the issue that the search process gets stuck in a search space.
To address it, we propose a core-based perturbation strategy
based on the definition of solution core. The proposed strat-
egy contains shrinking and expanding phases. In the shrink-
ing phase, the candidate solution is refined to a solution core.
The expanding phase adopts a heuristic mechanism to gener-
ate a new perturbed solution by extending the solution core.
First, we give the definition of the solution core.

Definition 1 (Solution Core). Given a graph G = (V,E),
an integer k ≥ 2 and a k-plex solution S, a solution core
of S is a subset Score ⊆ S such that for each v ∈ Score,
|N(v) ∩ Score| > |Score| − k.

Given a k-plex solution S, its solution core Score is a subset
of S that satisfies the constraint condition of (k-1)-plex. Score

is a more cohesive structure than S.
Based on the definition of solution core, we present a core-

based perturbation strategy in Algorithm 1. In the shrinking
phase (Lines 2–5), a solution core can be obtained by iter-
atively removing a vertex from the set of all saturated ver-
tices C(S) until C(S) becomes empty. During the above
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Algorithm 1: CorePerturb
Input: the candidate solution S
Output: the perturbation solution S

1 TempSet := ∅;
2 while C(S) ̸= ∅ do
3 select a random saturated vertex u ∈ C(S);
4 S := S \ {u} and TempSet := TempSet ∪ {u};
5 update the conf(u) value based on RBCC Drop

Rule;
6 while AddSet ∩ TempSet ̸= ∅ &&

AddSet \ TempSet ̸= ∅ do
7 if with probability p then
8 select a random vertex

v ∈ AddSet ∩ TempSet;
9 else

10 select a random vertex
v ∈ AddSet \ TempSet;

11 S := S ∪ {v};
12 update the conf and thred values of v and its

neighbors according to RBCC Add Rule;
13 return S;

phase, all removed vertices are stored in a set TempSet.
In the expanding phase (Lines 6–12), to disturb the candi-
date solution S, the algorithm iteratively adds a vertex in
AddSet∩TempSet with probability p and otherwise it adds
a vertex in AddSet\TempSet until one of the above two sets
becomes empty. Finally, the perturbed candidate solution is
returned (Line 13).

6 The Nukplex Algorithm
Based on the above three strategies, we propose a local search
algorithm Nukplex in Algorithm 2. At the beginning, a global
best solution Sbest is initialized as an empty set (Line 1). In
each round, the algorithm initializes the four variables ac-
cordingly (Line 3–4). The algorithm iteratively calls the con-
struction procedure (Line 5) and the local search procedure
(Lines 6–24). Finally, the algorithm returns Sbest (Line 29).

During the construction procedure, the algorithm itera-
tively selects a vertex with the smallest freq value in AddSet
and then adds it into S until AddSet becomes empty. This
procedure aims to lead the search procedure to some unvis-
ited search spaces.

During the local search procedure, Slbest denotes the lo-
cal best solution, unimpr records the number of unimproved
steps, and a parameter L denotes the search depth. In each
iteration, ConstrAddSet and ConstrSwapSet are checked
sequentially. If ConstrAddSet is not empty, the algorithm
adds a vertex v into S based on the add rule (Lines 7–9).
Otherwise, if ConstrSwapSet is not empty, the algorithm
exchanges a pair of vertices based on the swap rule (Lines
11–13). If the above two sets are empty, a random vertex in S
will be removed (Lines 15–16). Note that the thre and conf
values are updated accordingly based on the corresponding
RBCC rules (Lines 10, 14 and 17). The scorelbs value of

Algorithm 2: Nukplex
Input: graph G = (V,E), the cutoff time and

parameter k
Output: a best solution Sbest found

1 Sbest := ∅;
2 while do
3 cur step := unimpr := 0 ;
4 initialize the conf and thred values of each vertex

based on RBCC Initial Rule;
5 Slbest := S := InitConstruct(G);
6 while cur step < L do
7 if ConstrAddSet(S) ̸= ∅ then
8 select an added vertex v based on Add

Rule;
9 S := S ∪ {v};

10 update the conf and thred values of the
corresponding vertices based on RBCC
Add Rule;

11 else if ConstrSwapSet(S) ̸= ∅ then
12 select an added vertex v and a removed

vertex u based on Swap Rule;
13 S := S ∪ {v} \ {u};
14 update the conf values of the

corresponding vertices based on RBCC
Swap Rule;

15 else
16 select a random removed vertex u from

DropSet and S := S \ {u};
17 update the conf values of the

corresponding vertices based on RBCC
Drop Rule;

18 update the related scoring function values
based on Update Rule;

19 if |S| > |Slbest| then
20 Slbest := S and unimpr := 0;
21 if unimpr > k × |Sbest| && Sbest ̸= ∅ then
22 S := CorePerturb(S) and unimpr := 0;
23 cur step := cur step+ 1;
24 unimpr := unimpr + 1;
25 if |Slbest| > |Sbest| then
26 Sbest := Slbest;
27 G := Reduce(G, |Sbest|, k);
28 if |V | ≤ |Sbest| then return Sbest;

29 return Sbest;

each vertex is updated according to the information of Slbest

(Line 18). If S is better than Slbest, the algorithm updates
Slbest by S and unimpr is reset to 0 (Lines 19–20). Then,
the algorithm checks whether the unimproved step unimpr
reaches a fixed value, i.e., k × |Sbest| (Line 21). If so, the
algorithm performs the core-based perturbation strategy and
resets unimpr to 0 (Lines 21–22). At the end of each round,
both cur step and unimpr are increased by one (Lines 23–
24).
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After the search procedure, if a local best solution Slbest

is better than Sbest, Sbest is updated by Slbest (Lines 25–26).
The algorithm reduces G by calling the Reduce function that
deletes the vertices whose degree value is less than |Sbest| −
(k − 1) (Line 27). After reducing some vertices, if Sbest ≥
|V |, which means that the algorithm has already found an
optimal solution, Sbest is returned (Line 28).

7 Experimental Evaluation
In this section, we evaluate the performance of Nukplex1

on a broad range of classic instances and sparse large in-
stances. According to previous studies [Chen et al., 2020;
Pullan, 2021; Jin et al., 2022], the best results of KLS [Pullan,
2021] and DCCplex [Chen et al., 2020] totally dominated the
results obtained by other MKPP heuristic algorithms. Thus,
we compare Nukplex with these two algorithms. In addi-
tion, we also compare Nukplex with two state-of-the-art exact
MKPP algorithms KpLeX-Gap [Wang et al., 2023] and Dis-
eMKP [Jiang et al., 2023]. The source code of all algorithms
are kindly provided by the authors. All algorithms were im-
plemented in C++ and compiled by g++ with ‘-O3’ option.
For DCCplex and KLS, we set the same parameters as de-
scribed in corresponding literature and optimize these param-
eters for newly added instances. All experiments are run on
Intel Xeon Gold 6238 CPU @ 2.10GHz CPU with 512GB
RAM under CentOS 7.9.

Our computational assessment was conducted on classic
instances and sparse large instances for k = 2, 3, 4, 5, which
were also reported in the previous MKPP studies [Zhou and
Hao, 2017; Chen et al., 2020; Pullan, 2021; Jin et al., 2022].
First, we considered two classical benchmarks, including 80
and 41 graphs from DIMACS [Johnson and Trick, 1996] and
BHOSLIB [Xu et al., 2007], respectively. We also evaluated
Nukplex on sparse large instances, including 67 graphs from
the Stanford Large Network Dataset Collection (SNAP)2 and
the 10th DIMACS implementation challenge (DIMACS10)3

and 42 graphs from the Network Data Repository (NDR)
[Rossi and Ahmed, 2015]. Note that the same graph with
different k is considered as the different instances. In total,
we select 920 tested instances. For each instance, all heuris-
tic algorithms are executed 100 times with the random seeds
from 1 to 100. The cutoff time for classic instances is set to
1000 seconds. As for the sparse large instances, we report the
results under the cutoff time of 100 and 1000 seconds, respec-
tively. For two exact algorithms KpLeX-Gap and DiseMKP,
the cutoff time is set to 1800 seconds according to the litera-
ture. In some cases, the size of solution obtained by an exact
algorithm within a predefined time limit may be equal to the
size of optimal solution, but its optimality has not been for-
mally verified. So we compare Nukplex with the best solution
achieved by two exact algorithms within 1800 seconds.

According to our preliminary experiments by using the au-
tomatic configuration tool irace [López-Ibáñez et al., 2016],
Table 1 shows the selected parameter values. Specifically,

1Source code and supplementary materials are available at
https://github.com/yiyuanwang1988/Nukplex

2http://snap.stanford.edu/data
3https://www.cc.gatech.edu/dimacs10/

Parameter Range Final value

L {3000, 4000, 5000} 4000
t {40, 50, 60, 70} 50
Lt {3, 4, 5} 4
ub thre {2, 3, 4, 5} 3
ρ {0, 0.1, 0.2, 0.3} 0.2
p {0.4, 0.5, 0.6, 0.7} 0.5

Table 1: Tuned parameters of our proposed algorithm.

since the two benchmarks have different scales, we built a
training set and randomly selected 10 instances from the cor-
responding tested benchmark. For each instance, we set k to
4 and 5, respectively. The tuning process is given a budget
of 8000 runs for the training set with a time budget of 1000
seconds per run. The results have indicated that our algo-
rithm is not sensitive to six of these parameters. However,
we have found that the value of parameter p affects our al-
gorithm’s performance due to its involvement in the vertex
selection phase of the perturbation strategy. Further experi-
ments showed that the best solution achieved using the op-
timal parameter settings is on average 0.77% larger than the
solutions obtained from other parameter combinations.

7.1 Results on Classic and Sparse Large Instances
Table 2 summarizes the experimental results. Observed from
Table 2, Nukplex achieves the best solution on almost all
instances. We will discuss the comparisons against MKPP
heuristic algorithms and MKPP exact algorithms separately
as follows.

Comparisons against MKPP heuristic algorithms. For
DIMACS and BHOSLIB instances, Nukplex outperforms
KLS and DCCplex for 34 and 49 instances, while it is de-
feated for only 3 and 1 instances, respectively. Furthermore,
for instances where Nukplex and a corresponding algorithm
achieve the same best solution, Nukplex finds better aver-
age solutions than KLS and DCCplex for 86 instances and
143 instances. Considering that Nukplex and a correspond-
ing competitor obtain the same maximal and average values,
the average run time of Nukplex is 3.49 (or 0.99) seconds
while the average run time of KLS (or DCCplex) is 7.18 (or
6.41) seconds. In addition, we adopt the performance profile
[Dolan and Moré, 2002] to evaluate the time consumption
of the three algorithms when they obtain the same solution
quality. It shows the probability P (r ≤ τ) of obtaining the
best solution in a time that at most a factor τ slower than the
fastest algorithm. When τ = 1, P (r ≤ τ) denotes the prob-
ability that an algorithm is the fastest. As shown in Figure 1
(a), Nukplex consistently performs better than two competi-
tors, which demonstrates the effectiveness of our proposed
algorithm for the classic instances.

The best solution achieved by Nukplex totally dominates
DCCplex and KLS on the sparse large instances. Specifically,
Nukplex obtains better solutions than DCCplex and KLS for
8 and 6 instances, respectively. Observed from the results
in Table 2, the performance difference among the three algo-
rithms is not obvious. In detail, for the instances where our
proposed algorithm and a corresponding gets the same max-
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Benchmark #inst. Nukplex KLS DCCplex DiseMKP KpLeX-Gap
#max(#avg) #max(#avg) #max(#avg) #max #max

classic 484 ct=1000s ct=1000s ct=1000s ct=1800s ct=1800s
480(466) 449(361) 433(288) 123 87

large sparse 436 ct=1000s ct=100s ct=1000s ct=100s ct=1000s ct=100s ct=1800s ct=1800s
436(436) 434(429) 435(434) 431(426) 434(432) 430(412) 406 418

#total 920 916(902) 914(895) 884(795) 880(787) 867(720) 863(640) 529 506

Table 2: Comparative results on the two benchmarks are presented, where ct represents the cutoff time for each algorithm. #max and #avg
denotes the number of maximal and average results found by each algorithm, respectively.

Benchmark #inst. vs. Nukp1 vs. Nukp2 vs. Nukp3 vs. Nukp4 vs. Nukp5 vs. Nukp6 vs. Nukp7
#bet(#wor) #bet(#wor) #bet(#wor) #bet(#wor) #bet(#wor) #bet(#wor) #bet(#wor)

classic(1000s) 484 26(2) 27(3) 24(2) 12(3) 7(2) 34(3) 11(2)
large sparse(100s) 436 1(0) 1(0) 1(0) 0(0) 1(0) 0(0) 2(0)
large sparse(1000s) 436 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Table 3: Comparing Nukplex with 7 modified versions. #bet and #wor represent respectively the number of instances where Nukplex achieves
better and worse maximal solutions.
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Figure 1: Performance profiles for Nukplex and two competitors for
reaching the best solution on all the benchmarks.

imal and average values, the average run time of Nukplex is
2.12 (or 2.03) seconds, while the average run time of KLS (or

DCCplex) is 2.29 (or 2.16) seconds. The performance profile
plot of the three algorithms in Figure 1 (b) shows that they
have the similar performance. Only when τ < 200, KLS
has a slight advantage over DCCplex and Nukplex in terms
of run time. This is because all the algorithms employ the
reduction procedure that can reduce most of the vertices in a
given large sparse graph. Specifically, for 87% large sparse
graphs, all the heuristic algorithms obtain the best solution
(Line 28 in Algorithm 2) within 10 seconds.

Comparisons against MKPP exact algorithms. The two
exact algorithms do not perform well on all the classic in-
stances, as neither of them can obtain the same solution as
Nukplex for at least 70% of these instances. However, the
two exact algorithms exhibit the excellent performance on
the large sparse instances, with KpLeX-Gap failing to obtain
only 18 best solutions. Moreover, Nukplex outperforms Dis-
eMKP and KpLeX-Gap for 18 and 30 instances by running
only one seed (e.g., seed=1), while it is defeated for only 0
and 1 instance (soc-orkut with k=5), respectively. It is worth
noting that Nukplex successfully finds the best solution for
this instance by utilizing different seed values ranging from 1
to 10. Once again, the comparison with the two exact algo-
rithms highlights the great performance of Nukplex. We pro-
vide some additional comparisons with the exact algorithms
in the supplementary material.

7.2 The Effectiveness of the Proposed Strategies
In this subsection, we present the effectiveness of the pro-
posed strategies in Table 3. To confirm the effectiveness of
our proposed RBCC strategy, we compare Nukplex with three
alternative algorithms where Nukp1 uses BoundedCC instead
of RBCC, Nukp2 adopts DCC instead of RBCC, and Nukp3
applies SCC [Wang et al., 2020] instead of RBCC. The results
intuitively show that RBCC clearly improves the performance
of the MKPP. In addition, we compare Nukplex with one al-
ternative algorithm Nukp4 that ignores a core-based pertur-
bation strategy in Nukplex. The results demonstrate that our
proposed method plays a key role in the Nukplex.

Three modified versions of Nukplex are also proposed to
verify the effectiveness of the proposed vertex selection strat-
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egy, especially on classic graphs. We compared alternative
with three alternative versions: (1) Nukp5 uses the random-
based method [Zhou and Hao, 2017; Chen et al., 2020] in
ConstrAddSet instead of our proposed add rule; (2) Nukp6
utilizes the random-based method in ConstrSwapSet in-
stead of our proposed swap rule; (3) Nukp7 replaces our
add rule with the structure-based method [Pullan, 2021]. As
shown in Table 3, both the proposed add and swap rules per-
form better than previous vertex selection rules. Especially
for the proposed swap rule, it clearly improves the perfor-
mance of the Nukplex.

8 Conclusion
This paper proposes a local search algorithm called Nukplex
for the MKPP. It mainly comprises a relaxed bounded config-
uration checking strategy, a novel solution information-based
vertex selection strategy and a core-based perturbation strat-
egy. Results show that Nukplex significantly outperforms the
state-of-the-art heuristic algorithms for the MKPP.

In the future, we intend to conduct further research on vari-
ants of CC and core-based perturbation strategies for other
cohesive subgroups, as well as explore additional vertex prop-
erties to enhance the performance of our proposed algorithm.
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