
Maintaining Diversity Provably Helps in Evolutionary Multimodal Optimization

Shengjie Ren1 , Zhijia Qiu1 , Chao Bian1 , Miqing Li2 and Chao Qian1

1National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
School of Artificial Intelligence, Nanjing University, Nanjing 210023, China

2School of Computer Science, University of Birmingham, Birmingham B15 2TT, U.K.
shengjieren36@gmail.com, {qiuzj, bianc, qianc}@lamda.nju.edu.cn, m.li.8@bham.ac.uk

Abstract
In the real world, there exist a class of optimiza-
tion problems that multiple (local) optimal solu-
tions in the solution space correspond to a single
point in the objective space. In this paper, we
theoretically show that for such multimodal prob-
lems, a simple method that considers the diversity
of solutions in the solution space can benefit the
search in evolutionary algorithms (EAs). Specif-
ically, we prove that the proposed method, work-
ing with crossover, can help enhance the explo-
ration, leading to polynomial or even exponential
acceleration on the expected running time. This re-
sult is derived by rigorous running time analysis in
both single-objective and multi-objective scenarios,
including (µ + 1)-GA solving the widely studied
single-objective problem, Jump, and NSGA-II and
SMS-EMOA (two well-established multi-objective
EAs) solving the widely studied bi-objective prob-
lem, OneJumpZeroJump. Experiments are also
conducted to validate the theoretical results. We
hope that our results may encourage the exploration
of diversity maintenance in the solution space for
multi-objective optimization, where existing EAs
usually only consider the diversity in the objective
space and can easily be trapped in local optima.

1 Introduction
In the real world, there exist a class of optimization problems
where multiple (local) optimal solutions in the solution space
correspond to a single point in the objective space, such as in
truss structure optimization [Reintjes, 2022], space mission
design [Schutze et al., 2011], rocket engine design [Kudo
et al., 2011], and functional brain imaging [Sebag et al.,
2005]. Such problems belong to multi-modal optimization
problems (MMOPs). Note that there are usually two types
of MMOPs [Deb and Saha, 2010; Preuss et al., 2021]: one
with multiple local optima (typically with different objective
function values) and the other with multiple (local) optimal
solutions having identical objective function value. In this
work, MMOPs we refer to is the latter.

Evolutionary algorithms (EAs) are a kind of randomized
heuristic optimization algorithms, inspired by natural evo-

lution. They maintain a set of solutions (called a popula-
tion), and iteratively improve the population by generating
new offspring solutions and replacing inferior ones. EAs,
due to their population-based nature and the ability of per-
forming the search globally, have become a popular tool
to solve MMOPs [Das et al., 2011; Cheng et al., 2018;
Tian et al., 2021; Pan et al., 2023]. Since 1990’s, to deal with
MMOPs, many ideas have been proposed to improve EAs’
ability, including using niching technique [Pétrowski, 1996;
Shir, 2012; Preuss, 2015], designing novel reproduction
operators and population update methods [Kennedy, 2010;
Storn and Price, 1997; Liang et al., 2024], and transforming
an MMOP into a multiobjective optimization problem [Wess-
ing et al., 2013; Cheng et al., 2018; Liu et al., 2022].

In contrast to algorithm design of EAs, theoretical stud-
ies (e.g., running time complexity analyses) in the area are
relatively underdeveloped. This is mainly because sophisti-
cated behaviors of EAs can make theoretical analysis rather
difficult. Nevertheless, since the 2000s, there is increas-
ingly interest in rigorously analyzing EAs. Some studies
worked on running time analysis tools, such as drift analy-
sis [He and Yao, 2001; Oliveto and Witt, 2011; Doerr et al.,
2012], fitness level method [Wegener, 2002; Sudholt, 2013;
Dang and Lehre, 2015], and switch analysis [Yu et al., 2015;
Yu and Qian, 2015; Qian et al., 2016; Bian et al., 2018].
Some other studies devoted themselves to the analysis of var-
ious EAs for solving synthetic or combinatorial optimization
problems [Neumann and Witt, 2010; Auger and Doerr, 2011;
Zhou et al., 2019; Doerr and Neumann, 2020]. These theoret-
ical results can help understand the mechanisms of EAs and
inspire the design of more efficient EAs in practice.

In this paper, we consider running time analysis of EAs for
MMOPs. We analytically show that when solving MMOPs,
considering the diversity of the solutions in the solution space
can be beneficial for the search of EAs. Specifically, we
propose a simple method to deal with multiple (local) op-
timal solutions via comparing their crowdedness in the so-
lution space. We consider both single-objective and multi-
objective optimization cases, and incorporate the proposed
method into a classical single-objective EA, (µ+1)-GA, and
two well-established multi-objective EAs (MOEAs), NSGA-
II and SMS-EMOA.

For the single-objective case, we prove that the expected
running time of (µ + 1)-GA using the proposed method

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7012

for solving (i.e., finding the global optimum) Jump [Droste
et al., 2002], a widely studied single-objective problem, is
O(µ24k + µn log n+ n

√
k(µ log µ+ log n)), where n is the

problem size, and k ≤ n/4, a parameter of Jump. Since
the expected running time of the original (µ + 1)-GA for
solving Jump is O((40eµ(µ + 1))k(1

µ−1)
k−1) 10e9

nk

(k−1)! +

n
√
k(µ log µ + log n) = O(µ

√
k(40e2µn/k)k) [Doerr and

Qu, 2023c], our method can bring a polynomial acceleration
when k is a constant, e.g., k = 4, and bring an exponential
acceleration when k is large, e.g., k = n1/4.

For the multi-objective case, we prove that the expected
running time of NSGA-II and SMS-EMOA (with crossover)
using the proposed method for solving (i.e., finding the whole
Pareto front) OneJumpZeroJump [Doerr and Zheng, 2021],
a widely studied bi-objective problem, is both O(µ24k +
µn log n), where µ is the population size, n is the problem
size, and k ≤ n/4, a parameter of OneJumpZeroJump. Note
that the expected running time of the original NSGA-II [Do-
err and Qu, 2023c] and SMS-EMOA (analyzed in this pa-
per) for solving OneJumpZeroJump is O(µ2

√
k(Cn/k)k),

where C is a constant and k = o(
√
n). Thus, our method

can also bring a polynomial acceleration when k is a con-
stant, and bring an exponential acceleration when k is large,
e.g., k = n1/4. The main reason for the acceleration result-
ing from our method is that it can explicitly preserve solu-
tions with high diversity, and thus can help enhance the ex-
ploration by working with crossover. Experiments are also
conducted to validate the theoretical results. In addition, it
is worth mentioning that since the expected running time of
SMS-EMOA (without crossover) for solving OneJumpZero-
Jump is O(µnk) [Bian et al., 2023], our results also con-
tribute to the theoretical understanding of the effectiveness
of using crossover in SMS-EMOA.

2 Preliminaries
In this section, we first introduce multimodal optimization
and the considered benchmark problems, Jump and One-
JumpZeroJump, followed by the description of the studied
algorithms, (µ+ 1)-GA, NSGA-II and SMS-EMOA.

2.1 Multimodal Optimization
Multimodal optimization refers to the optimization scenario
that multiple (local) optimal solutions in the solution space
have the same objective value, which arises in many real-
world applications, e.g., flow shop scheduling [Basseur et
al., 2002], rocket engine optimization [Kudo et al., 2011],
and architecture design [Tian et al., 2021]. In this pa-
per, we study two pseudo-Boolean (i.e., the solution space
X = {0, 1}n) multi-modal optimization problems (MMOPs),
Jump and OneJumpZeroJump, which have been widely used
in EAs’ theoretical analyses [Droste et al., 2002; Doerr
and Zheng, 2021; Bian et al., 2023; Doerr and Qu, 2023a;
Doerr and Qu, 2023b; Doerr and Qu, 2023c; Lu et al., 2024].

The Jump problem as presented in Definition 1, is to max-
imize the number of 1-bits of a solution, except for a valley
around 1n (the solution with all 1-bits) where the number of
1-bits should be minimized. Its optimal solution is 1n with

function value n + k. We can see that 1n is global optimal,
and any solution with (n− k) 1-bits is local optimal with ob-
jective value n; thus, the Jump problem is multi-modal, since
multiple local optimal solutions correspond to an objective
value.

Definition 1 ([Droste et al., 2002]). The Jump problem is to
find an n bits binary string which maximizes

f(x) =

{
k + |x|1, if |x|1 ≤ n− k or x = 1n,

n− |x|1, else,

where k ∈ Z ∧ 2 ≤ k < n, and |x|1 denotes the number of
1-bits in x.

The OneJumpZeroJump problem is a bi-objective coun-
terpart of the Jump problem. For multi-objective optimiza-
tion, several objective functions (which are usually conflict-
ing) need to be optimized simultaneously, and thus there does
not exist a canonical complete order in the solution space X .
And usually the Pareto domination relation is used (Defini-
tion 2) to compare solutions. A solution is Pareto optimal if
it is not dominated by any other solution in X , and the set of
objective vectors of all the Pareto optimal solutions is called
the Pareto front. The goal of multi-objective optimization is
to find the Pareto front or its good approximation.

Definition 2. Let f = (f1, f2, . . . , fm) : X → Rm be the
objective vector. For two solutions x and y ∈ X :

• x weakly dominates y (denoted as x ⪰ y) if for any
1 ≤ i ≤ m, fi(x) ≥ fi(y);

• x dominates y (denoted as x ≻ y) if x ⪰ y and
fi(x) > fi(y) for some i;

• x and y are incomparable if neither x ⪰ y nor y ⪰ x.

As presented in Definition 3 below, the first objective of
OneJumpZeroJump is the same as the Jump problem, while
the second objective is isomorphic to the first one, with the
roles of 1-bits and 0-bits exchanged. The Pareto front of
the OneJumpZeroJump problem is {(a, n + 2k − a) | a ∈
[2k..n] ∪ {k, n + k}}, whose size is n − 2k + 3, and the
Pareto optimal solution corresponding to (a, n + 2k − a),
a ∈ [2k..n] ∪ {k, n + k}, is any solution with (a − k) 1-
bits. Note that we use [l..r] (where l, r ∈ Z, l ≤ r) to de-
note the set {l, l+1, . . . , r} of integers throughout the paper.
Since any solution with (a − k) 1-bits (where a ∈ [2k..n])
is Pareto optimal with objective vector (a, n + 2k − a), the
OneJumpZeroJump problem is multimodal.

Definition 3 ([Doerr and Zheng, 2021]). The OneJumpZero-
Jump problem is to find n bits binary strings which maximize

f1(x) =

{
k + |x|1, if |x|1 ≤ n− k or x = 1n,

n− |x|1, else,

f2(x) =

{
k + |x|0, if |x|0 ≤ n− k or x = 0n,

n− |x|0, else,

where k ∈ Z ∧ 2 ≤ k < n/2, and |x|1 and |x|0 denote the
number of 1-bits and 0-bits in x, respectively.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7013

2.2 Evolutionary Algorithms
The (µ + 1)-GA algorithm is a classical genetic algorithm
for solving single-objective optimization problems. The algo-
rithm starts from an initial population of µ random solutions.
In each iteration, it selects a solution x from the population
P randomly as the parent solution. Then, with probability pc,
it selects another solution y and applies uniform crossover
on x and y to generate an offspring solution x′; otherwise,
x′ is set as the copy of x. The uniform crossover operator
exchanges each bit of two solutions independently with prob-
ability 1/2. Note that uniform crossover actually produces
two solutions, but we only pick the first one. Afterwards, bit-
wise mutation is applied, which flips each bit of a solution
independently with probability 1/n, on x′ to generate one
offspring solution. Then, one solution with the worst objec-
tive value is removed. The complete procedure is provided in
the supplementary material due to space limitation.

Now we introduce two well-established MOEAs, NSGA-
II [Deb et al., 2002] and SMS-EMOA [Beume et al., 2007].
The NSGA-II algorithm in Algorithm 1 adopts a (µ + µ)
steady state mode. It starts from an initial population of µ
random solutions (line 1). In each iteration, it selects µ solu-
tions from the current population to form the parent popula-
tion Q (line 4). Then, for each pair of the solutions in Q, uni-
form crossover and bit-wise mutation operators are applied
sequentially to generate two offspring solutions x′′ and y′′

(lines 6–12), where the uniform crossover operator is applied
with probability pc. After µ offspring solutions have been
generated in P ′, the solutions in P ∪ P ′ are partitioned into
non-dominated sets R1, . . . , Rv (line 14), where R1 contains
all the non-dominated solutions in P∪P ′, and Ri (i ≥ 2) con-
tains all the non-dominated solutions in (P ∪ P ′) \ ∪i−1

j=1Rj .
Then, the solutions in R1, R2, . . . , Rv are added into the next
population, until the population size exceeds µ (lines 15–18).
For the critical set Ri whose inclusion makes the population
size larger than µ, the crowding distance is computed for each
of the contained solutions (line 19). Crowding distance re-
flects the level of crowdedness of solutions in the population.
For each objective fj , 1 ≤ j ≤ m, the solutions in Ri are
sorted according to their objective values in ascending order,
and assume the sorted list is x1,x2, . . . ,xk. Then, the crowd-
ing distance of the solution xl with respect to fj is set to∞
if l ∈ {1, k} and (fj(x

l+1)− fj(x
l−1))/(fj(x

k)− fj(x
1))

otherwise. The final crowding distance of a solution is the
sum of the crowding distance with respect to each objective.
Finally, the solutions in Ri are selected to fill the remaining
population slots where the solutions with larger crowding dis-
tance are preferred (line 20).

SMS-EMOA shares a similar framework with (µ + 1)-
GA, and the main difference is that SMS-EMOA uses non-
dominated sorting and hypervolume indicator to evaluate the
quality of a solution and update the population. Specifically,
after the offspring solution x′′ is generated, the solutions
in P ∪ {x′′} are first partitioned into non-dominated sets
R1, . . . , Rv , and then one solution z ∈ Rv that minimizes
∆r(x, Rv) is removed, where ∆r(x, Rv) = HVr(Rv) −
HVr(Rv \ {x}). Note that HVr(X) = Λ

(
∪x∈X {f ′ ∈

Rm | ∀1 ≤ i ≤ m : ri ≤ f ′
i ≤ fi(x)}

)
denotes the hyper-

Algorithm 1 NSGA-II
Input: objective functions f1, f2 . . . , fm, population size µ,
probability pc of using crossover
Output: µ solutions from {0, 1}n

1: P ← µ solutions uniformly and randomly selected from
{0,1}n with replacement;

2: while criterion is not met do
3: let P ′ = ∅;
4: generate a parent population Q of size µ;
5: for each pair of the parent solutions x and y in Q do
6: sample u from uniform distribution over [0, 1];
7: if u < pc then
8: apply uniform crossover on x and y to generate

two solutions x′ and y′

9: else
10: set x′ and y′ as copies of x and y, respectively
11: end if
12: apply bit-wise mutation on x′ and y′ to generate x′′

and y′′, respectively, and add x′′ and y′′ into P ′

13: end for
14: partition P ∪P ′ into non-dominated sets R1, . . . , Rv;
15: let P = ∅, i = 1;
16: while |P ∪Ri| < µ do
17: P = P ∪Ri, i = i+ 1
18: end while
19: assign each solution in Ri with a crowding distance;
20: sort the solutions in Ri in ascending order by crowding

distance, and add the last µ− |P | solutions into P
21: end while
22: return P

volume of a solution set X with respect to a reference point
r ∈ Rm (satisfying ∀1 ≤ i ≤ m, ri ≤ minx∈X fi(x)), i.e.,
the volume of the objective space between the reference point
and the objective vectors of the solution set, where Λ denotes
the Lebesgue measure. A larger hypervolume implies a better
approximation in terms of convergence and diversity.

Note that in this paper, we consider different methods to se-
lect the parent solutions in line 4 of Algorithm 1, i.e., fair se-
lection which selects each solution in P once (the order of so-
lutions is random), uniform selection which selects parent so-
lutions from P independently and uniformly at random for µ
times, and binary tournament selection which first picks two
solutions randomly from the population P with replacement
and then selects a better one for µ times. Furthermore, for all
the three algorithms studied in this paper, the probability pc
of using crossover belongs to the interval [Ω(1), 1− Ω(1)].

3 Proposed Diversity Maintenance Method
In this section, we introduce the proposed method that is used
to maintain the diversity of solutions in the population update
procedure of (µ + 1)-GA, NSGA-II and SMS-EMOA. The
general idea of our method is very simple – we take into ac-
count the (Hamming) distance of the solutions into the pop-
ulation update procedure of the algorithm when the solutions
have the same objective value, such that the distant solutions
in the solution space can be preserved.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7014

First, let us consider (µ + 1)-GA. In the original popula-
tion update procedure of (µ + 1)-GA, the solution with the
minimal objective value is removed, with the ties broken uni-
formly. That is, the solutions with the minimal objective
value are treated equally, regardless of their structure in the
solution space. In order to take advantage of the genotype
information of the solutions, our method will further con-
sider the diversity of the solutions with the minimal objec-
tive value, and preserve the solutions with larger diversity.
Specifically, the procedure of selecting solution z to remove
is changed as follows (note that H(·, ·) denotes the Hamming
distance of two solutions):

let S = {z | f(z) = minx∈P∪{x′′} f(x)};
if |S| ≤ 2 then

let z be a solution randomly selected from S
else

let (x̃, ỹ) = argmaxx,y∈S,x̸=y H(x,y);
let z be a solution randomly selected from S\{x̃, ỹ}

end if

Now we consider NSGA-II. When computing the crowd-
ing distance for the solutions in the critical non-dominated
set, i.e., Ri in line 19 of Algorithm 1, the solutions with the
same objective vector must be sorted together. Then, the solu-
tions placed in the first or the last position among these solu-
tions will be assigned a crowding distance larger than 0, while
the other solutions will only be with a crowding distance of 0.
In this case, the solutions (corresponding to the same objec-
tive vector) placed in the boundary positions will be preferred
by the measure of crowding distance. In the original NSGA-
II, the solutions (corresponding to the same objective vector)
are deemed as identical and their relative positions in the cal-
culation of crowding distance are actually assigned randomly,
which may harm the efficiency of the algorithm, as we will
show later.

As can be seen, here the main idea of our method is to
modify the solutions’ position in the crowding distance cal-
culation, so that the distant solutions in the solution space
are preferred. Specifically, after the solutions in the critical
non-dominated set Ri are sorted according to some objective
fj in ascending order (here assuming that the sorted list is
x1,x2, . . . ,xk), we reorder the list as follows:

let G = {fj(xl) | l ∈ [1..k]};
for g ∈ G do

let Sg = {l ∈ [1..k] | fj(xl) = g};
let (ã, b̃) = argmaxa,b∈Sg,a ̸=b H(xa,xb);
let l̂ = min{l ∈ Sg}, r̂ = max{r ∈ Sg};
swap the positions of xã and xl̂;
swap the positions of xb̃ and xr̂

end for

That is, for the solutions with the same objective value, the
pair of solutions with the largest Hamming distance are put in
the first and last positions among these solutions. The crowd-
ing distance is then calculated based on the reordered list.

Finally, let us consider SMS-EMOA. In the original pop-
ulation update procedure of SMS-EMOA, the solution in the
last non-dominated set Rv with the least ∆ value is removed.
However, when several solutions in Rv have the same ob-
jective vector, they will all have a zero ∆ value, implying
that one of them will be removed randomly. To make use
of their crowdedness in the solution space, we first select the
most crowded objective vector (i.e., the objective vector cor-
responding to the most solutions), and then randomly remove
one of those corresponding solutions excluding the two solu-
tions having the largest Hamming distance. Specifically, the
procedure of selecting solution z that minimizes ∆r(x, Rv)
will be changed to:

let G = {f(x) | x ∈ Rv};
let g∗ = argmaxg∈G |{x ∈ Rv | f(x) = g}|;
let S = {x ∈ Rv | f(x) = g∗};
if |S| > 2 then

let (x̃, ỹ) = argmaxx,y∈S,x̸=y H(x,y);
let z be a solution randomly selected from S\{x̃, ỹ};

else
let z = argminx∈Rv

∆r(x, Rv)
end if

4 (µ+ 1)-GA on Jump
In this section, we show the expected running time of (µ+1)-
GA for solving the Jump problem. Note that the running time
of EAs is often measured by the number of fitness evalua-
tions, the most time-consuming step in the evolutionary pro-
cess. We prove in Theorem 1 that the expected number of fit-
ness evaluations of (µ + 1)-GA using the proposed diversity
maintenance method for solving Jump is O(µ24k+µn log n+

n
√
k(µ log µ + log n)). The proof idea is to divide the opti-

mization procedure into three phases, where the first phase
aims at driving the population towards the local optimum,
i.e., all the solutions in the population have (n − k) 1-bits,
the second phase aims at finding two local optimal solutions
with the largest Hamming distance 2k, and the third phase
applies uniform crossover to these two distant local optimal
solutions to find the global optimum.

Theorem 1. For (µ + 1)-GA solving Jump with k ≤ n/4,
if using the diversity maintenance method, and a population
size µ such that µ ≥ 2, then the expected number of fit-
ness evaluations for finding the global optimal solution 1n

is O(µ24k + µn log n+ n
√
k(µ log µ+ log n)).

Proof. We divide the optimization procedure into three
phases. The first phase starts after initialization and fin-
ishes until all the solutions in the population have (n − k)
1-bits; the second phase starts after the first phase, and fin-
ishes until the largest Hamming distance between solutions
in the population reaches 2k; the third phase starts after the
second phase, and finishes when the global optimal solution
1n is found. By Lemma 1 in [Dang et al., 2018], we can
directly derive that the expected number of fitness evalua-
tions of the first phase is O(n

√
k(µ log µ + log n)). Note

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7015

that after the first phase finishes, all the solutions in the pop-
ulation will always have (n − k) 1-bits (except that 1n is
found), because once a solution with the number of 1-bits
in [0..n− k − 1] ∪ [n− k + 1..n− 1] is generated, it will be
removed in the population update procedure.

Next, we consider the second phase. Let Jmax =
maxx,y∈P H(x,y) denote the maximal Hamming distance
between two solutions in the population P , where H(·, ·) de-
notes the Hamming distance of two solutions. We show that
Jmax will not decrease, unless 1n is found. Assume that x
and y are a pair of solutions which have the maximal Ham-
ming distance. In each iteration, x or y can be removed only
if the newly generated solution z has exactly (n − k) 1-bits
and survives in the population update procedure (note that we
can pessimistically assume that 1n has not been found), im-
plying that all the solutions in P ∪ {z} have (n − k) 1-bits.
According to the diversity maintenance method introduced in
Section 3, there must exist a pair of solutions in P ∪{z} with
Hamming distance at least Jmax, which will not be removed,
implying that Jmax cannot decrease.

We then show that Jmax can increase to 2k in O(µn log n)
expected number of fitness evaluations. Assume that cur-
rently Jmax = 2j < 2k, and (x,y) is a pair of corresponding
solutions, i.e., H(x,y) = 2j. Let D(x,y) = {i ∈ [1..n] |
xi = yi} denote the set of positions which have the identi-
cal bit for x and y. Suppose that the number of positions
in D(x,y) that have 1-bits is l, then we have |x| + |y| =
2l+2j = 2n−2k, implying that l = n−k−j. Then, we can
derive that the number of positions in D(x,y) that have 0-bits
is n− 2j − l = k− j. In each iteration, the probability of se-
lecting x as a parent solution is 1/µ. In the reproduction pro-
cedure, a solution z with (n−k) 1-bits and H(y, z) = 2j+2
can be generated from x if crossover is not performed (whose
probability is 1−pc), and a 1-bit together with a 0-bit from the
positions in D(x,y) are flipped by bit-wise mutation (whose
probability is ((n−k− j)(k− j)/n2) · (1−1/n)n−2). Thus,
the probability of generating z is at least

1

µ
· (1− pc) ·

(n− k − j)(k − j)

n2
·
(
1− 1

n

)n−2

≥ (1− pc)(k − j)(n− k − j)/(eµn2).

(1)

This implies that the expected number of fitness evaluations
for increasing Jmax to 2k is at most

eµn2

1− pc
·
k−1∑
j=0

1

(k−j)(n−k−j)
≤ 2eµnHk

1− pc
= O(µn log n),

(2)
where the inequality holds because n−k− j ≥ n−2k+1 ≥
n/2 for j ≤ k − 1 and k ≤ n/4, and the equality holds
because pc ∈ [Ω(1), 1−Ω(1)], and the k-th Harmonic number
Hk =

∑k
j=1 1/j = O(log n).

Finally, we consider the third phase. When Jmax increases
to 2k, there must exist two solutions x∗ and y∗ such that
|x∗|1 = |y∗|1 = n − k and H(x∗,y∗) = 2k. By selecting
x∗ and y∗ as a pair of parent solutions, exchanging all the 2k
different bits by uniform crossover, and flipping none of bits

in bit-wise mutation, the solution 1n can be generated, whose
probability is at least

1

µ2
· pc ·

1

22k
·
(
1− 1

n

)n

= Ω
(1

µ222k

)
. (3)

Thus, the expected number of fitness evaluations of the third
phase, i.e., finding 1n, is O(µ222k).

Combining the three phases, the total expected num-
ber of fitness evaluations is O(n

√
k(µ log µ + log n)) +

O(µn log n) +O(µ222k), which leads to the theorem.

The expected number of fitness evaluations of the orig-
inal (µ + 1)-GA for solving Jump has been shown to be
O(µ
√
k(40e2µn/k)k) when k = o(

√
n) [Doerr and Qu,

2023c], and O(µn log µ + nk/µ + nk−1 log µ) when k is
a constant [Dang et al., 2018]. Thus, our result in The-
orem 1 shows that when k is large, e.g., k = n1/4,
the expected running time can be reduced by a factor of
Ω((10e2µn/k)k/(µn log n)), which is exponential; when k
is a constant, the expected running time can be reduced by
a factor of Ω(max(1, nk−1/(µ2 log n))), which is polyno-
mial. The main reason for the acceleration is that the pro-
posed method prefers solutions with large Hamming distance,
making the population quickly find two solutions with suffi-
ciently large Hamming distance and then allowing crossover
to generate the optimal solution.

Note that Dang et al. [2016] also proposed several types of
diversity maintenance mechanisms for (µ+1)-GA solving the
Jump problem, including mechanisms similar to ours, e.g., to-
tal Hamming distance mechanism which maximizes the sum
of the Hamming distances between all solutions. Based on
the running time bounds, their mechanisms and our proposed
mechanism have own advantages. For example, when k and
µ are fairly large (e.g., k =

√
n and µ =

√
n/3), the expected

number of fitness evaluations of (µ + 1)-GA using the total
Hamming distance mechanism and our proposed mechanism
is O(4

√
n) and O(n4

√
n), respectively, implying that the total

Hamming distance mechanism is faster by a factor of Θ(n).
For small k and large µ (e.g., k = Θ(1) and µ = Θ(n)), how-
ever, our proposed mechanism achieves a better running time
O(n2 log n), compared to O(n3 log n) for the total Hamming
distance mechanism. Similar observation also holds for the
other mechanisms.

5 NSGA-II on OneJumpZeroJump
In the previous section, we have shown that the proposed
method can make (µ + 1)-GA faster on Jump, while in this
section, we show that similar acceleration can be achieved
in multi-objective scenario. In particular, we prove in The-
orem 2 that the expected number of fitness evaluations of
NSGA-II using the proposed diversity maintenance method
for solving OneJumpZeroJump is O(µ24k + µn log n). The
proof idea is to divide the optimization procedure into three
phases: 1) to find the inner part F ∗

I = {(a, n + 2k − a) |
a ∈ [2k..n]} of the Pareto front; 2) to find two Pareto opti-
mal solutions with (n − k) (or k) 1-bits that have the same
objective vector (n, 2k) (or (2k, n)) but have Hamming dis-
tance 2k; 3) to find the remaining two extreme vectors in the

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7016

Pareto front, i.e., {(k, n + k), (n + k, k)}, corresponding to
the two Pareto optimal solutions 0n and 1n, which can be ac-
complished by applying uniform crossover to those two dis-
tant solutions found in the last phase.

Theorem 2. For NSGA-II solving OneJumpZeroJump with
k ≤ n/4, if using the diversity maintenance method, and a
population size µ such that µ ≥ 4(n − 2k + 3), then the
expected number of fitness evaluations for finding the Pareto
front is O(µ24k + µn log n).

Proof. We divide the optimization procedure into three
phases: the first phase starts after initialization and finishes
until the inner part F ∗

I of the Pareto front is entirely cov-
ered by the population P ; the second phase starts after the
first phase and finishes until the maximal Hamming distance
of the solutions which have the objective vector (n, 2k) (i.e.,
have (n − k) 1-bits) reaches 2k; the third phase starts after
the second phase and finishes when the extreme Pareto opti-
mal solution 1n is found. Note that the analysis of the last two
phases for finding the other extreme Pareto optimal solution
0n is similar. By Lemma 4 in [Doerr and Qu, 2023a], we can
directly derive that the expected number of fitness evaluations
of the first phase is O(µn log n).

Then, we consider the second phase. Let Jmax =
maxx,y∈P :f(x)=f(y)=(n,2k) H(x,y) denote the maximal
Hamming distance of the solutions which have the objective
vector (n, k). We will show that Jmax will not decrease after
using the proposed diversity maintenance method. Because
(n, k) is a point in the Pareto front, any corresponding solu-
tion (which has (n− k) 1-bits) must have rank 1, i.e., belong
to R1 in the non-dominated sorting procedure. If |R1| ≤ µ,
all the solutions in R1 will be maintained in the next popu-
lation, implying the claim holds. If |R1| > µ, the crowding
distance of the solutions in R1 needs to be computed. When
the solutions in R1 are sorted according to some objective, the
solutions corresponding to the objective vector (n, k) will be
resorted using our proposed method, and a pair of solutions
(denoted as x and y) with the largest Hamming distance will
be put in the first or the last position among these solutions,
thus having a crowding distance larger than 0. Since (n, k)
has been obtained, the solutions in R1 must be Pareto opti-
mal. Note that the size of the Pareto front is n− 2k + 3, thus
the number of different objective vectors of the solutions in
R1 is at most n− 2k+3. For any objective vector, the corre-
sponding solutions will have crowding distance larger than 0
only if they are put in the first or the last position among these
solutions, when they are sorted according to some objective.
As OneJumpZeroJump has two objectives, at most four solu-
tions corresponding to one objective vector can have a crowd-
ing distance larger than 0, implying that at most 4(n−2k+3)
solutions in R1 can have a positive crowding distance. Thus,
x and y are among the best 4(n−2k+3) solutions in R1. As
the population size µ ≥ 4(n−2k+3), they must be included
in the next population, implying that Jmax will not decrease.

Next, we show that Jmax can increase to 2k in O(µn log n)
expected number of fitness evaluations. The proof is similar
to the argument in the proof of Theorem 1, and the main dif-
ference is that NSGA-II uses three different parent selection
strategies, and produces µ solutions instead of one in each

generation. For NSGA-II using uniform selection, Eq. (1)
also holds here. But since in each generation, µ/2 pairs of
parent solutions will be selected for reproduction, the proba-
bility of increasing Jmax is at least

1−
(
1− (1− pc)(k − j)(n− k − j)

eµn2

)µ/2

≥ 1− e−
(1−pc)(k−j)(n−k−j)

2en2 = Ω

(
(k−j)(n−k−j)

n2

)
,

which hold by 1 + a ≤ ea for any a ∈ R, and pc ∈
[Ω(1), 1− Ω(1)]. For fair selection, each solution in the cur-
rent population will be selected once; thus by Eq. (1), the
probability of increasing Jmax in each generation is at least
(1−pc)(k−j)(n−k−j)/(en2) = Ω((k−j)(n−k−j)/n2).
For binary tournament selection, the above equation also
holds, but the detailed analysis is provided in the supplemen-
tary material due to space limitation. Then, similar to Eq. (2),
we can derive that the total expected number of generations
for increasing Jmax to 2k is at most O(n log n).

Finally, we consider the third phase. For uniform selection,
Eq. (3) directly applies here. Thus, the probability of finding
1n in each generation is at least

1−
(
1− Ω

(1

µ222k

))µ/2

= Ω
(1

µ4k

)
.

For fair selection, the probability that two solutions are paired
together in each generation is at least 1/µ , because we can
assume that the position of one solution is fixed and it is suf-
ficient to put the other solution beside it. Thus by Eq. (3),
the probability of finding 1n in each generation is at least
Ω(1/(µ4k)). For binary tournament selection, the above
equation also holds, and the detailed analysis is provided in
the supplementary material. Thus, the expected number of
generations for finding 1n is O(µ4k).

Combining the three phases, the total expected number of
generation is O(µ4k + n log n), implying that the expected
number of fitness evaluations is O(µ24k+µn log n), because
each generation of NSGA-II requires to evaluate µ offspring
solutions. Thus, the theorem holds.

The expected number of fitness evaluations of the original
NSGA-II for solving OneJumpZeroJump has been shown to
be O(µ2

√
k(Cn/k)k) if k = o(

√
n) [Doerr and Qu, 2023c],

where C is a constant. Thus, our result in Theorem 2 shows
that the expected running time can be reduced by a factor
of Ω(

√
k(Cn/(4k))k/ log n), which is polynomial for a con-

stant k and exponential for large k, e.g., k = n1/4. The
main reason for the acceleration is similar to that of (µ+ 1)-
GA, i.e., the proposed diversity maintenance method prefers
distant solutions in the solution space, and thus enhances
the exploration ability of the algorithm by working with the
crossover operator.

6 SMS-EMOA on OneJumpZeroJump
In this section, we consider SMS-EMOA on the OneJumpZe-
roJump problem. We prove in Theorem 3 that the ex-
pected number of fitness evaluations of the original SMS-
EMOA is O(µ2

√
k(Cn/k)k), where C is a constant, and

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7017

(a) (µ+ 1)-GA (b) NSGA-II (c) SMS-EMOA

Figure 1: Average number of fitness evaluations of (µ+1)-GA for solving Jump, and NSGA-II/SMS-EMOA for solving OneJumpZeroJump,
when the diversity maintenance method is used or not.

then prove in Theorem 4 that the running time reduces to
O(µ24k + µn log n) if using the proposed diversity main-
tenance method. Their proofs are similar to that of Theo-
rem 2. That is, we divide the optimization procedure into
three phases, where the first phase aims at finding the inner
part F ∗

I of the Pareto front, the second phase aims at find-
ing two Pareto optimal solutions with (n − k) (or k) 1-bits
that have Hamming distance 2k, and the last phase aims at
finding the remaining two extreme Pareto optimal solutions
1n and 0n by applying uniform crossover to those two distant
solutions found in the last phase. The detailed proofs are pro-
vided in the supplementary material due to space limitation.
Theorem 3. For SMS-EMOA solving OneJumpZeroJump
with k = o(

√
n), if using a population size µ such that

µ ≥ 2(n−2k+3), then the expected number of fitness evalua-
tions for finding the Pareto front is O(µ2

√
k(Cn/k)k), where

C is a constant.
Theorem 4. For SMS-EMOA solving OneJumpZeroJump
with k ≤ n/4, if using the diversity maintenance method,
and a population size µ such that µ ≥ 2(n−2k+3), then the
expected number of fitness evaluations for finding the Pareto
front is O(µ24k + µn log n).

By comparing Theorems 3 and 4, we can find that
by using the diversity maintenance method, the expected
number of fitness evaluations of SMS-EMOA for solv-
ing OneJumpZeroJump can be reduced by a factor of
Ω(
√
k(Cn/(4k))k/ log n), which is polynomial for a con-

stant k and exponential for large k, e.g., k = n1/4. The main
reason for the acceleration is just similar to that of NSGA-
II. That is, for Pareto optimal solutions with (n − k) (or k)
1-bits, the proposed method always maintains the two ones
with the largest Hamming distance in the population update
procedure, which enables the algorithm to quickly increase
the largest Hamming distance until reaching the maximum
2k, i.e., finishing the second phase.

7 Experiments
In the previous sections, we have proved that using the pro-
posed diversity maintenance method in (µ+1)-GA, NSGA-II
and SMS-EMOA can bring a significant acceleration for solv-
ing Jump and OneJumpZeroJump. However, as only upper

bounds on the running time of the original algorithms have
been derived, we conduct experiments to examine their ac-
tual performance to complement the theoretical results.

Specifically, we set the problem size n of Jump and One-
JumpZeroJump from 10 to 30, with a step of 5, and set the
parameter k of the two problems to 4. For (µ+1)-GA solving
Jump, the population size µ is set to 2, as suggested in The-
orem 1; while for NSGA-II and SMS-EMOA solving One-
JumpZeroJump, the population size µ is set to 4(n− 2k+ 3)
and 2(n− 2k + 3), respectively, as suggested in Theorems 2
and 4. For each n, we run an algorithm 1000 times indepen-
dently, and record the average number of fitness evaluations
until the optimal solution (for Jump) or the Pareto front (for
OneJumpZeroJump) is found. We can observe from Figure 1
that using the proposed method can bring a clear acceleration.

8 Conclusion
This paper gives a theoretically study for EAs solving
MMOPs, a class of optimization problems with wide applica-
tions. Considering the characteristic of MMOPs that multiple
(local) optimal solutions in the solution space correspond to a
single point in the objective space, we propose to prefer those
solutions diverse in the solution space when they are equally
good in the objective space. We show that such a method,
working with crossover, can benefit the evolutionary search
via rigorous running time analysis. Specifically, we prove that
for (µ + 1)-GA solving the widely studied single-objective
problem, Jump, as well as NSGA-II and SMS-EMOA solv-
ing the widely studied bi-objective problem, OneJumpZe-
roJump, the proposed method can lead to polynomial or
even exponential acceleration on the expected running time,
which is also verified by the experiments. Note that diver-
sity has been theoretically shown to be helpful for evolution-
ary optimization in various scenarios [Friedrich et al., 2009;
Qian et al., 2013; Doerr et al., 2016; Osuna et al., 2020;
Sudholt, 2020; Doerr et al., 2023; Qian et al., 2024]. This
work theoretically shows the benefit of maintaining the diver-
sity in the solution space for EAs solving MMOPs, thus con-
tributing to this line of research. We hope our results can be
beneficial for the design of better EAs for solving MMOPs,
and may also encourage the diversity exploration in the solu-
tion space for multi-objective EAs, which is often ignored.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7018

Acknowledgments
This work was supported by the National Science and Tech-
nology Major Project (2022ZD0116600) and National Sci-
ence Foundation of China (62276124). Chao Qian is the cor-
responding author. The supplementary is available at arXiv.

References
[Auger and Doerr, 2011] A. Auger and B. Doerr. Theory of

Randomized Search Heuristics - Foundations and Recent
Developments. World Scientific, Singapore, 2011.

[Basseur et al., 2002] M. Basseur, F. Seynhaeve, and
E. Talbi. Design of multi-objective evolutionary algo-
rithms: application to the flow-shop scheduling problem.
In Proceedings of the 2002 CEC, pages 1151–1156,
Honolulu, HI, 2002.

[Beume et al., 2007] N. Beume, B. Naujoks, and M. Em-
merich. SMS-EMOA: Multiobjective selection based on
dominated hypervolume. European Journal of Opera-
tional Research, 181:1653–1669, 2007.

[Bian et al., 2018] C. Bian, C. Qian, and K. Tang. A general
approach to running time analysis of multi-objective evo-
lutionary algorithms. In Proceedings of the 27th IJCAI,
pages 1405–1411, Stockholm, Sweden, 2018.

[Bian et al., 2023] C. Bian, Y. Zhou, M. Li, and C. Qian.
Stochastic population update can provably be helpful in
multi-objective evolutionary algorithms. In Proceedings
of the 32nd IJCAI, pages 5513–5521, Macao, SAR, China,
2023.

[Cheng et al., 2018] R. Cheng, M. Li, K. Li, and X. Yao.
Evolutionary multiobjective optimization-based multi-
modal optimization: Fitness landscape approximation and
peak detection. IEEE Transactions on Evolutionary Com-
putation, 22(5):692–706, 2018.

[Dang and Lehre, 2015] D.-C. Dang and P. K. Lehre. Run-
time analysis of non-elitist populations: From classi-
cal optimisation to partial information. Algorithmica,
75(3):428–461, 2015.

[Dang et al., 2016] D.-C. Dang, T. Friedrich, T. Kötzing,
M. S. Krejca, P. K. Lehre, P. S. Oliveto, D. Sudholt, and
A. M. Sutton. Escaping local optima with diversity mech-
anisms and crossover. In Proceedings of the 18th GECCO,
pages 645–652, Denver, CO, 2016.

[Dang et al., 2018] D.-C. Dang, T. Friedrich, T. Kötzing,
M. S. Krejca, P. K. Lehre, P. S. Oliveto, D. Sudholt, and
A. M. Sutton. Escaping local optima using crossover with
emergent diversity. IEEE Transactions on Evolutionary
Computation, 22(3):484–497, 2018.

[Das et al., 2011] S. Das, S. Maity, B. Qu, and P. N. Sugan-
than. Real-parameter evolutionary multimodal optimiza-
tion — a survey of the state-of-the-art. Swarm and Evolu-
tionary Computation, 1(2):71–88, 2011.

[Deb and Saha, 2010] K. Deb and A. Saha. Finding multi-
ple solutions for multimodal optimization problems using
a multi-objective evolutionary approach. In Proceedings
of the 12th GECCO, page 447–454, Portland, OR, 2010.

[Deb et al., 2002] K. Deb, A. Pratap, S. Agarwal, and T. Me-
yarivan. A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary Computa-
tion, 6(2):182–197, 2002.

[Doerr and Neumann, 2020] B. Doerr and F. Neumann. The-
ory of Evolutionary Computation: Recent Developments
in Discrete Optimization. Springer, Cham, Switzerland,
2020.

[Doerr and Qu, 2023a] B. Doerr and Z. Qu. A first runtime
analysis of the NSGA-II on a multimodal problem. IEEE
Transactions on Evolutionary Computation, 27(5):1288–
1297, 2023.

[Doerr and Qu, 2023b] B. Doerr and Z. Qu. From under-
standing the population dynamics of the NSGA-II to the
first proven lower bounds. In Proceedings of the 37th
AAAI, pages 12408–12416, Washington, DC, 2023.

[Doerr and Qu, 2023c] B. Doerr and Z. Qu. Runtime analy-
sis for the NSGA-II: Provable speed-ups from crossover.
In Proceedings of the 37th AAAI, pages 12399–12407,
Washington, DC, 2023.

[Doerr and Zheng, 2021] B. Doerr and W. Zheng. Theoreti-
cal analyses of multi-objective evolutionary algorithms on
multi-modal objectives. In Proceedings of the 35th AAAI,
pages 12293–12301, Virtual, 2021.

[Doerr et al., 2012] B. Doerr, D. Johannsen, and C. Winzen.
Multiplicative drift analysis. Algorithmica, 64(4):673–
697, 2012.

[Doerr et al., 2016] B. Doerr, W. Gao, and F. Neumann.
Runtime analysis of evolutionary diversity maximization
for oneminmax. In Proceedings of the 18th GECCO, pages
557–564, Denver, CO, 2016.

[Doerr et al., 2023] B. Doerr, A. Echarghaoui, M. Jamal, and
M. S. Krejca. Lasting diversity and superior runtime
guarantees for the (µ + 1) genetic algorithm. CORR
abs/2302.12570, 2023.

[Droste et al., 2002] S. Droste, T. Jansen, and I. Wegener. On
the analysis of the (1+1) evolutionary algorithm. Theoret-
ical Computer Science, 276(1-2):51–81, 2002.

[Friedrich et al., 2009] T. Friedrich, N. Hebbinghaus, and
F. Neumann. Comparison of simple diversity mecha-
nisms on plateau functions. Theoretical Computer Sci-
ence, 410(26):2455–2462, 2009.

[He and Yao, 2001] J. He and X. Yao. Drift analysis and av-
erage time complexity of evolutionary algorithms. Artifi-
cial Intelligence, 127(1):57–85, 2001.

[Kennedy, 2010] J. Kennedy. Particle swarm optimiza-
tion. In Encyclopedia of Machine Learning. Springer US,
Boston, MA, 2010.

[Kudo et al., 2011] F. Kudo, T. Yoshikawa, and T. Furuhashi.
A study on analysis of design variables in Pareto solu-
tions for conceptual design optimization problem of hy-
brid rocket engine. In Proceedings of the 2011 CEC, pages
2558–2562, New Orleans, LA, 2011.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7019

[Liang et al., 2024] J. Liang, Y. Zhang, K. Chen, B. Qu,
K. Yu, C. Yue, and P. N. Suganthan. An evolutionary mul-
tiobjective method based on dominance and decomposi-
tion for feature selection in classification. Science China
Information Sciences, 67(2):120101, 2024.

[Liu et al., 2022] Y.-R. Liu, Y.-Q. Hu, H. Qian, C. Qian, and
Y. Yu. Zoopt: a toolbox for derivative-free optimiza-
tion. Science China Information Sciences, 65(10):207101,
2022.

[Lu et al., 2024] T. Lu, C. Bian, and C. Qian. Towards run-
ning time analysis of interactive multi-objective evolution-
ary algorithms. In Proceedings of the 38th AAAI, pages
20777–20785, Vancouver, Canada, 2024.

[Neumann and Witt, 2010] F. Neumann and C. Witt. Bioin-
spired Computation in Combinatorial Optimization - Al-
gorithms and Their Computational Complexity. Springer,
Berlin, Germany, 2010.

[Oliveto and Witt, 2011] P. Oliveto and C. Witt. Simplified
drift analysis for proving lower bounds in evolutionary
computation. Algorithmica, 59(3):369–386, 2011.

[Osuna et al., 2020] E. C. Osuna, W. Gao, F. Neumann, and
D. Sudholt. Design and analysis of diversity-based par-
ent selection schemes for speeding up evolutionary multi-
objective optimisation. Theoretical Computer Science,
832:123–142, 2020.

[Pan et al., 2023] S. Pan, Y. Ma, Y. Wang, Z. Zhou, J. Ji,
M. Yin, and S. Hu. An improved master-apprentice
evolutionary algorithm for minimum independent dom-
inating set problem. Frontiers of Computer Science,
17(4):174326, 2023.

[Pétrowski, 1996] A. Pétrowski. A clearing procedure as a
niching method for genetic algorithms. In Proceedings of
the 1996 CEC, pages 798–803, Nagoya, Japan, 1996.

[Preuss et al., 2021] M. Preuss, M. Epitropakis, X. Li, and
J. E. Fieldsend. Multimodal optimization: Formulation,
heuristics, and a decade of advances. Metaheuristics for
Finding Multiple Solutions, pages 1–26, 2021.

[Preuss, 2015] M. Preuss. Niching Methods and Multimodal
Optimization Performance, pages 115–137. Springer,
Cham, Switzerland, 2015.

[Qian et al., 2013] C. Qian, Y. Yu, and Z.-H. Zhou. An anal-
ysis on recombination in multi-objective evolutionary op-
timization. Artificial Intelligence, 204:99–119, 2013.

[Qian et al., 2016] C. Qian, Y. Yu, and Z.-H. Zhou. A
lower bound analysis of population-based evolutionary al-
gorithms for pseudo-Boolean functions. In Procedings of
the 17th IDEAL, pages 457–467, Yangzhou, China, 2016.

[Qian et al., 2024] C. Qian, K. Xue, and R.-J. Wang.
Quality-diversity algorithms can provably be helpful for
optimization. In Proceedings of the 33rd IJCAI, page to
appear, Jeju Island, South Korea, 2024.

[Reintjes, 2022] C. Reintjes. Optimization of truss struc-
tures. In Algorithm-Driven Truss Topology Optimiza-
tion for Additive Manufacturing, pages 45–70. Springer
Fachmedien Wiesbaden, Wiesbaden, Germany, 2022.

[Schutze et al., 2011] O. Schutze, M. Vasile, and C. A. C.
Coello. Computing the set of epsilon-efficient solutions in
multiobjective space mission design. Journal of Aerospace
Computing, Information, and Communication, 8(3):53–
70, 2011.

[Sebag et al., 2005] M. Sebag, N. Tarrisson, O. Teytaud,
J. Lefevre, and S. Baillet. A multi-objective multi-modal
optimization approach for mining stable spatio-temporal
patterns. In Proceedings of the 19th IJCAI, pages 859–
864, Edinburgh, UK, 2005.

[Shir, 2012] O. M. Shir. Niching in Evolutionary Algorithms,
pages 1035–1069. Springer Berlin Heidelberg, Heidel-
berg, Germany, 2012.

[Storn and Price, 1997] R. Storn and K. Price. Differential
evolution–a simple and efficient heuristic for global opti-
mization over continuous spaces. Journal of Global Opti-
mization, 11:341–359, 1997.

[Sudholt, 2013] D. Sudholt. A new method for lower bounds
on the running time of evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 17(3):418–
435, 2013.

[Sudholt, 2020] D. Sudholt. The benefits of population di-
versity in evolutionary algorithms: a survey of rigor-
ous runtime analyses. Theory of Evolutionary Compu-
tation: Recent Developments in Discrete Optimization,
pages 359–404, 2020.

[Tian et al., 2021] Y. Tian, R. Liu, X. Zhang, H. Ma, K.-
C. Tan, and Y. Jin. A multipopulation evolutionary al-
gorithm for solving large-scale multimodal multiobjective
optimization problems. IEEE Transactions on Evolution-
ary Computation, 25(3):405–418, 2021.

[Wegener, 2002] I. Wegener. Methods for the analysis of
evolutionary algorithms on pseudo-Boolean functions. In
Evolutionary Optimization, pages 349–369. Springer US,
Boston, MA, 2002.

[Wessing et al., 2013] S. Wessing, M. Preuss, and
G. Rudolph. Niching by multiobjectivization with
neighbor information: Trade-offs and benefits. In Pro-
ceedings of the 2013 CEC, pages 103–110, Cancún,
Mexico, 2013.

[Yu and Qian, 2015] Y. Yu and C. Qian. Running time anal-
ysis: Convergence-based analysis reduces to switch anal-
ysis. In Proceedings of the 2015 CEC, pages 2603–2610,
Sendai, Japan, 2015.

[Yu et al., 2015] Y. Yu, C. Qian, and Z.-H. Zhou. Switch
analysis for running time analysis of evolutionary algo-
rithms. IEEE Transactions on Evolutionary Computation,
19(6):777–792, 2015.

[Zhou et al., 2019] Z.-H. Zhou, Y. Yu, and C. Qian. Evolu-
tionary Learning: Advances in Theories and Algorithms.
Springer, Singapore, 2019.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

7020

	Introduction
	Preliminaries
	Multimodal Optimization
	Evolutionary Algorithms

	Proposed Diversity Maintenance Method
	(+1)-GA on Jump
	NSGA-II on OneJumpZeroJump
	SMS-EMOA on OneJumpZeroJump
	Experiments
	Conclusion

