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Abstract
This work proposes a new learning-to-search bench-
mark and uses AI to discover new mathematical
knowledge related to an open conjecture of Erdős
(1975) in extremal graph theory. The problem is
to find graphs with a given size (number of nodes)
that maximize the number of edges without hav-
ing 3- or 4-cycles. We formulate this as a sequen-
tial decision-making problem and compare Alp-
haZero, a neural network-guided tree search, with
tabu search, a heuristic local search method. Using
either method, by introducing a curriculum—jump-
starting the search for larger graphs using good
graphs found at smaller sizes—we improve the state-
of-the-art lower bounds for several sizes. We also
propose a flexible graph-generation environment
and a permutation-invariant network architecture for
learning to search in the space of graphs.

1 Introduction
With the recent advances in neural networks, artificial intel-
ligence (AI) methods have achieved tremendous success in
multiple domains like game playing [Silver et al., 2018], biol-
ogy [Jumper et al., 2021], mathematics [Davies et al., 2021],
and robotics [Peng et al., 2018]. Mathematics is of particu-
lar interest to AI researchers due to its challenging multistep
reasoning structure, open-ended problems, and limited data.
While automated theorem proving has always been of inter-
est to AI researchers as a reasoning benchmark [Abdelaziz et
al., 2022; Aygün et al., 2022; Kovács and Voronkov, 2013;
Lample et al., 2022; Polu and Sutskever, 2020; Schulz, 2002],
some recent work have used machine learning to solve re-
search problems across the fields of representation theory, knot
theory, graph theory, and matrix algebra [Davies et al., 2021;
Fawzi et al., 2022; Wagner, 2021].

∗The full version is available at https://arxiv.org/abs/2311.03583.

Many mathematical problems can be modeled as searching
for an object or a structure of desired characteristics in an
extremely large space. Indeed, automated theorem proving is
often modeled as searching for a sequence of operations—a
proof—in an ever-growing space of operands with a few opera-
tors. Another example is counterexample generation [Wagner,
2021], where the object of interest is a counterexample to
a particular conjecture or a mathematical construction that
improves the bounds for a problem. The recent work of Al-
phaTensor [Fawzi et al., 2022] also relies on neural network-
guided tree search to find novel tensor decompositions that
result in faster matrix multiplication algorithms.

Inspired by these, we focus on a classical extremal graph
theory problem, studied by [Erdős, 1975], which is to find, for
any given number of nodes, a graph that maximizes its number
of edges but is constrained not to have a 3-cycle or a 4-cycle.
While the problem is simple to state, mathematicians have
not found optimal constructions for all sizes: the maximum
number of edges is known for up to 53 nodes [Inc., 2023], and
lower bounds using local search have been reported for up to
200 nodes [Bong, 2017; Garnick et al., 1993]. Because strong
local-search methods have been developed for this problem, it
provides a challenging benchmark for learning-based search
methods. We believe that developing new methods for graph
problems could inspire methods for related fields such as drug
discovery and chip design, where the goal is to find a graph
object minimizing or maximizing a given objective function.
Discovering new optimal solutions to this problem could lead
to more efficient designs in other problems, such as data center
organization and optimization as well as game theory.

In this paper, we use reinforcement learning (RL) and for-
mulate graph generation as a sequential decision making pro-
cess. In contrast to the graph-generation RL environment used
by [Wagner, 2021], which starts from an empty graph and adds
edges one by one in a fixed order, we start from an arbitrary
graph and add/remove edges in an arbitrary order. This RL
environment, called the edge-flipping environment, has at least
two advantages: (a) we can start from known “good” graphs
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to find even better graphs, and (b) we can scale to larger sizes
by using a curriculum of starting from slightly smaller graphs.
As our RL agent, we use the state-of-the-art AlphaZero [Silver
et al., 2017] algorithm, which has shown impressive success
in a variety of domains such as tensor decomposition [Fawzi
et al., 2022], discovering new sorting algorithms [Mankowitz
et al., 2023], and game playing [Silver et al., 2017].

A novel neural network architecture. Since AlphaZero is
guided by a neural network, we also need a representation
that aligns with the invariants of the search space. We deal
with simple undirected graphs, so graph neural networks nat-
urally come to mind [Veličković, 2023]; but we go beyond
them and introduce a novel representation, the Pairformer:
unlike traditional graph neural networks, which pass messages
between nodes, Pairformers pass messages between pairs of
nodes. Pairformers burden us with additional computational
cost but are significantly better at detecting cycles.

The Pairformer has edge features for all existing and non-
existing edges between nodes, whereas standard GNNs have
edge features only for existing edges in the graph. This prop-
erty of Pairformers allows the network to directly reason about
non-existing edges, which is important for the policy network
to understand which edges should be added or removed in
the graph. Combined with triangle self-attention updates, this
enables effective processing of neighboring edge features that
can capture presence or absence of cycles with only few Pair-
former layers. The Pairformer network architecture is novel
and provides significant improvements over the ResNet archi-
tecture. We hope that this architecture will be useful to tackle
other graph problems, too.

Incremental learning. When searching over all graphs, one
challenge is that the number of graphs with a given number of
nodes n increases exponentially with n; thus, finding optimal
graphs becomes significantly harder as n grows. Interestingly,
known optimal graphs for this problem have a substructure
property: in many cases, optimal graphs of a given size are
near-subgraphs of optimal graphs of larger sizes (see, e.g.,
[Backelin, 2015, Theorem 3]). Thus, finding near-optimal
graphs for smaller n can serve as a stepping stone to find good
graphs for larger values of n. This property can be used to
construct a curriculum: start from discovered graphs of a given
size, generate novel solutions of a larger size, and repeat. Our
edge-flipping environment provides the flexibility to start from
any graph and add or drop edges arbitrarily, so we are not
restricted to supergraphs of the starting graph and can reach all
graphs of that size. Deploying these ideas in AlphaZero, we
develop Incremental AlphaZero and improve the lower bounds
for sizes 64 to 136.

This way of scaling to larger sizes is related to the idea
of curriculum learning [Soviany et al., 2022], a widely-used
method in RL, especially for solving hard exploration prob-
lems in many domains, including robotics [Akkaya et al.,
2019] and automated theorem proving [Aygün et al., 2022]
as well as solving the Rubik’s cube and other difficult puz-
zles [Agostinelli et al., 2019; Orseau et al., 2023]. Note that
the term “curriculum learning” has been used with different
meanings in machine learning literature; in this paper, by cur-
riculum we mean solving the problem on the smaller size first

and then using the solution of the smaller problem to solve the
same problem on the larger size.
Incremental local search. The substructure property can en-
hance other types of search as well. We develop an incremental
version of tabu search, a known local search method [Glover,
1989], where the initial graph for each size is sampled from
a previously-discovered “good” graph of a smaller size. This
algorithm also improves over the state of the art. Our ablation
shows that both search strategies improve significantly by this
idea of incremental learning where we scale to larger sizes by
using high scoring graphs of slightly smaller size.
Summary of contributions. We introduce a challenging
benchmark for learning-to-search in large state spaces, in-
spired by an open problem in extremal graph theory, whose
best solutions thus far are achieved by local search. We formu-
late graph generation as an edge-flipping RL environment and
introduce the novel representation Pairformer, which is well-
suited for detecting cycles in undirected graphs. We introduce
the idea of incremental search (curriculum) to local search
methods as well as AlphaZero, and show that kickstarting
from solutions of smaller size is a key ingredient for improv-
ing the results on this extremal graph theory problem. We
improve the lower bounds for the problem for all graph sizes
from 64 to 134, and we release these graphs to the research
community to aid further research: https://storage.googleapis.
com/gdm_girth5_graphs/girth5_graphs.zip.

2 Problem Description
A k-cycle is a cycle with k nodes. Let G be a simple, undi-
rected n-node graph that has no 3-cycles. What is the max-
imum number of edges that G can have? Mantel [Mantel,
1907] proved that the answer is precisely ⌊n2/4⌋, initiating
the field of extremal graph theory. Turán [Turán, 1941] gener-
alized this result to cliques and found, for any k, the maximum
number of edges that an n-node graph without k-cliques can
have.

Generally, for a set H of graphs, let ex(n,H) denote the
maximum number of edges in an n-node graph that does
not contain any member of H as a subgraph (the symbol ex
stands for “extremal”). Calculating ex(n,H) for various graph
classes H is a central problem in extremal graph theory. In
this paper, we study

f(n) := ex(n, {C3, C4}). (1)

We know ex(n, {C3}) = ⌊n2/4⌋ by Mantel’s theorem and
limn→∞ ex(n, {C4})/(n

√
n) = 1/2 by [Brown, 1966; Erdős

et al., 1966], but no formula has been found for f(n), and
even its asymptotic behavior is not understood well.

[Erdős, 1975] conjectured that limn→∞
f(n)
n
√
n
= 1

2
√
2

. This
conjecture has remained open since 1975. The tightest bounds
are due to [Garnick et al., 1993], who proved

1

2
√
2
≤ lim

n→∞

f(n)

n
√
n
≤ 1

2
. (2)

Motivated by this conjecture, we want to estimate the value
of f(n) for specific values of n. It is known that f(n) ≤
n
√
n− 1/2 for all n [Garnick et al., 1993]. The exact value
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of f(n) is known when n ≤ 53 [Inc., 2023], and constructive
lower bounds have been reported for all n ≤ 200 [Bong, 2017;
Garnick et al., 1993]. Our goal is to improve these lower
bounds for 54 ≤ n ≤ 200. Hence, we want to find n-node
graphs without 3-cycles or 4-cycles that have as many edges
as possible.

The size of a graph is its number of nodes. For any graph
G, we denote its number of edges, 3-cycles, and 4-cycles by
e(G),△(G), and □(G), respectively. We say that a graph G
is feasible if it has no 3-cycles and no 4-cycles. The score of a
graph G is defined as

s(G) := e(G)−△(G)−□(G).

The following lemma (proof in the full version) implies that,
for any given number of nodes n, proving lower bounds for
f(n) is equivalent to maximizing the score over all n-node
graphs.
Lemma 1. For any n-node graph G, we have s(G) ≤ f(n);
and there exists at least one n-node feasible graph for which
equality holds.

In light of Lemma 1, we can formulate the problem of
maximizing f(n) in two ways: we can maximize e(G) over
feasible n-node graphs or maximize s(G) over all n-node
graphs. The two formulations have the same optimal value, but
their search space differs. The first formulation has a smaller
search space, but the second one, which we use, allows us to
define a convenient neighborhood function, which helps our
algorithms navigate the space of graphs more smoothly.
Definition 1 (

⊕
, flipping). Let G be a graph and let u and

v be two of its nodes. If uv is an edge in G, then G
⊕

uv is
obtained by removing the edge uv from G; otherwise, G

⊕
uv

is obtained by adding the edge uv. In either case, we say
G
⊕

uv is obtained by flipping uv.

The flipping operation has two desirable properties: first,
any n-node graph assumes exactly

(
n
2

)
flips, a technical conve-

nience for RL agents’ action space; second, any n-node graph
can be reached from any other n-node graph by doing up to(
n
2

)
many flips; that is, there are no “dead ends.”

3 Graph Generation as an RL Environment
We define graph generation as a sequential decision mak-
ing process, where we start from an n-node graph G and,
at each step, modify it by adding or removing an edge e to
obtain G′ = G

⊕
e. More formally, graph generation is a

deterministic finite-horizon Markov Decision Process (MDP)
M = {S,A, R, T , H}, where the state space, S, consists
of all simple undirected graphs of size n; the action space,
A := {(i, j) : 1 ≤ i < j ≤ n}, consists of all edges of the
complete graph of size n; the one-step reward function (de-
fined below) is R : S × A → R; the deterministic transition
function, T , is defined as T (G, e) := G

⊕
e; and the horizon,

H , denotes the number of steps in each episode.
We define the reward function as R(G, e) := s(G

⊕
e)−

s(G), i.e., the reward equals the change in the score after
taking the action. We call this the telescopic reward, as the
rewards accumulated over time form a telescoping series, mak-
ing the episode return equal to s(GH) − s(G0). Note that

s(GH) is precisely the objective value that we want to max-
imize. (Often in RL, a discount factor is introduced, and
subsequent rewards are discounted when computing the re-
turn; but we do not introduce a discount factor here, as then
the return would have been different from the actual objective
function.) In our experiments, we found that the telescoping
reward performs much better than the non-telescoping reward,
where the reward is given at the end of each episode and equals
s(GH).

This edge-flipping environment provides more flexibility
than environments in which the graph is built, for instance, by
deciding about the edges one by one in a fixed order [Wagner,
2021]. An advantage of the edge-flipping environment is that
every action is reversible: in this MDP, any n-node graph can
be reached from any other n-node graph. This property is
particularly useful when using a curriculum, as one can use
state resetting [Florensa et al., 2017; Hosu and Rebedea, 2016;
Salimans and Chen, 2018] to warm up exploration from high-
scoring initial graphs; e.g., start from high quality graphs of
size n−k (garnished with k isolated nodes) to build the desired
graph of size n. On the other hand, reversibility can cause
learning instability: since there is no termination action, an
agent could end up flipping one of the edges indefinitely. To
avoid such issues, we set a fixed horizon length.

4 AlphaZero for Graph Generation
AlphaZero is a reinforcement learning algorithm that demon-
strated superhuman performance on Go, through self-play,
without using any human knowledge [Silver et al., 2017]. It
was then adapted to show superhuman performance in other
games such as chess and shogi [Silver et al., 2018]. Recently,
a version of AlphaZero was adapted to find faster algorithms
for matrix multiplication. This new model, named AlphaTen-
sor, improved Strassen’s matrix-multiplication algorithm for
some sizes for the first time after 50 years [Fawzi et al., 2022].
The AlphaZero algorithm combines Monte Carlo Tree Search
(MCTS), a heuristic search algorithm, with deep neural net-
works to represent the state space, e.g., a chessboard position.
In our application of AlphaZero, each state is a simple undi-
rected graph and each action is adding or removing an edge.

The edge-flipping environment is a deterministic MDP,
where both the transition matrix and the reward function are
fully known and deterministic, thus most search and plan-
ning algorithms are applicable. MCTS builds a finite tree
rooted at the current state and, based on the statistics gathered
from the neighboring states, selects the next action. Many
successful works using MCTS use some variant of the upper
confidence bound rule [Kocsis and Szepesvári, 2006] to bal-
ance exploration and exploitation when expanding the tree.
While traditional approaches used Monte Carlo rollouts to
estimate the value of a leaf state, in the last decade this has
largely been replaced by a neural network, called the value
network. Another neural network, called the policy network,
determines which child to expand next. Often, the policy and
value networks share the same first few layers. (They have the
same latent representation, or torso, but they have different
heads.) In AlphaZero, both the policy and value networks are
trained using previously observed trajectories—see [Silver et
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al., 2018] for details.
For updating the value of a state—which is a node in the

MCTS tree—standard MCTS expands the node and uses the
average value of the children. Since we want to maximize the
best-case return rather than the expected return, it may appear
more suitable to use the maximum value of the children to
update the value of the node. We attempted this approach but
it did not yield improvements.

One common issue with AlphaZero is encouraging it to
diversely explore the space of possible trajectories. We at-
tempted a few ideas to diversify, such as increasing UCB
exploration parameter and also for each trajectory, if same
graph (si) is encountered which has been seen in the previous
timesteps (t < i) within the trajectory, we discourage this
behavior by giving a small negative reward; but none of these
approaches improved the result on top of starting from good
graphs of smaller size.

4.1 Network Representation
To find a good representation for this problem of avoiding
short cycles, we tested different architectures on the super-
vised learning problem of cycle detection, using this as a
proxy for our RL problem for fast experiment turnaround. In
particular, we compared ResNets [He et al., 2016], Pointer
Graph Networks [Veličković et al., 2020], Graph Attention
Networks [Veličković et al., 2017], and a novel architecture
called the Pairformer, described below. We studied node and
edge level binary classification tasks (whether a node or an
edge is part of a short cycle) as well as graph level tasks
(whether a graph contains a short cycle). The Pairformer gave
the best performance, hence this is the architecture we used in
the RL setting.

An intuitive understanding for the Pairformer can be gained
by recognising its main difference with standard GNNs: the
Pairformer has edge features for all existing and non-existing
edges between nodes, whereas standard GNNs have edge
features only for existing edges in the graph. This property
of Pairformers allows the network to directly reason about
non-existing edges, which is important for the policy network
to understand which edges should be added or removed in
the edge-flipping environment. Combined with triangle self-
attention updates (explained below), this enables effective
processing of neighboring edge features that can capture pres-
ence or absence of cycles with only few Pairformer layers. We
found that the additional computational cost is worth it.

The Pairformer is a simplified version of Evoformer, used
in AlphaFold [Jumper et al., 2021]. Each Evoformer block
has two branches of computation: one processes the multiple
sequence alignment (MSA) representation and the other one
processes the pair representation. The Pairformer only uses the
pair representation branch, which processes per-edge features
and has shape (n, n, c). We set c = 64 in our implementa-
tions. Within the pair representation branch, each Pairformer
block is composed of triangle self-attention blocks (row-wise
multihead self-attention followed by column-wise multihead
self-attention) followed by fully-connected layers with Layer-
Norm [Ba et al., 2016]. We omitted the triangle multiplicative
updates in the original Evoformer as they had minimal effect
on performance for our tasks. A key difference with standard

graph neural networks is that instead of only having features
for existing edges, the Pairformer has features for all

(
n
2

)
pairs

of nodes, whether they correspond to existing edges or not.
We believe that considering non-existing edges is crucial for
the Pairformer to inform the policy for deciding whether to
add new edges to the graph or not. This architecture is used as
the torso network, which receives the current graph as input
and outputs a representation that is consumed by the policy
and value heads.

The current graph is given input as an n × n adjacency
matrix. Since we use a single network for multiple sizes, we
condition the torso and the policy head on the graph size n by
concatenating each input with a matrix of 1s on the principal
m × m (where m < n) submatrix and 0s everywhere else
(concatenate along the channel dimension). This lets us use
a shared set of parameters for multiple graph sizes without a
separate network for each size.

A good model architecture should not only be expressive but
also have fast inference in order for acting to be fast enough
to quickly generate lots of data for the learner to optimize
the model. The downside of the Pairformer is its O(n3) run-
time, while ResNet’s runtime is O(n2). Hence there exists a
trade-off between expressiveness and speed, and we experi-
mentally found that combining a small Pairformer torso with
a larger ResNet policy head provides the best balance. Using
a ResNet for the torso performs much worse, implying that
the expressiveness that the Pairformer brings to the torso’s rep-
resentation of the input graph is indispensable—see Figure 3.
For the value head, we used a feed-forward network over the
representation provided by the Pairformer.

Another important detail is that although the environment
supports only

(
n
2

)
many actions, the last layer of our policy net-

work has twice as many logits: for each edge, there is one logit
for adding that edge and another logit for removing that edge.
This means half of the logits correspond to invalid actions
(e.g., adding an edge for an existing edge). We mask these
invalid actions so a valid probability distribution is induced on
the valid set of

(
n
2

)
actions.

4.2 Distributed Implementation and Joint Learning
Across Multiple Sizes

We use a distributed implementation of AlphaZero with mul-
tiple processing units: in each run, there are multiple actors,
one replay buffer, and one learner. Each actor has a copy of
the networks (supplied by the learner) and generates episodes,
which are inserted into the replay buffer. The learner repeat-
edly samples an episode from the replay buffer to update the
policy and value networks. The policy network is trained using
the cross-entropy loss, where the ground truth label is assumed
to be the decision taken at the root of the MCTS tree. The
value network is trained using regression on the future return
(sum of the future rewards) at each state of an episode.

For efficiency and transfer-learning across multiple sizes,
we jointly train a single network for multiple sizes: each run
of AlphaZero is provided with a list of target sizes, and each
actor samples a target size uniformly at random from this list.
The network input is modified in this case by padding it by
0s to turn it into a target× target matrix, while appending
another plane to the observation, each entry of whose principal
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size × size submatrix is 1 and the rest are 0. This helps to
run experiments for multiple sizes jointly and ensures transfer-
learning across different sizes.

4.3 Incremental AlphaZero
A key observation about our problem is that, in many cases,
the optimal graph for a given size is nearly a subgraph of an
optimal graph for a larger size. For example, by [Backelin,
2015, Theorem 3], all the optimal graphs for sizes 40, 45, 47,
48, 49 are subgraphs of the optimal graph for size 50. While
this is not strictly true for all the sizes, it can be used as a
heuristic to guide the search. As all the optimal graphs up to
size 52 are known [McKay, 2023], we use high-scoring graphs
of smaller sizes (garnished with a suitable number of isolated
nodes) as the initial graph and iterate. Hence if the results
for smaller sizes improve, this hopefully leads to subsequent
improvements for larger sizes as well. This not only exploits
the approximate substructure property for the problem but is
also related the well-known idea of curriculum learning in
machine learning [Bengio et al., 2009].

Specifically, starting episodes from the empty graph leads
to a difficult credit assignment problem for the RL agent, as
the horizon should be long. Instead, we start from a high-
scoring graph of size n− k to build the target graph of size n.
We observe that this choice of initial graph is critical for the
performance of AlphaZero. It leads to a shorter horizon and
more effective credit assignment in each episode. We call the
resulting algorithm as Incremental AlphaZero.

5 Tabu Search for Graph Generation
Tabu search is a well-known iterative local search
method [Glover, 1989]: given an objective function and a
neighborhood structure over a set of states, it repeatedly moves
from the current state to the neighboring state with the high-
est objective value, until some stopping condition is met. To
avoid getting stuck at local minima, tabu search bans revisiting
recently-visited states—hence the name “tabu” search.

In our case, the states are the graphs of a given size, the
graphs obtained by flipping a single edge are the neighbors
of the current graph, and the objective function is s(G) =
e(G) − △(G) − □(G). Our tabu search algorithm (Algo-
rithm 1) slightly differs from the typical definition; instead of
banning visiting states that were recently visited, we ban play-
ing the recently-played actions. Namely, we ban re-flipping
edges that were flipped recently. This idea, inspired by [Par-
czyk et al., 2023], results in a slightly faster algorithm than
the usual tabu search. Note that the algorithm needs an initial
graph G0—we will describe later how it’s chosen—and has a
single hyperparameter: the history size, denoted by h in Al-
gorithm 1, which determines the number of iterations flipping
an edge is banned once it is flipped. Recall that

⊕
denotes

flipping an edge.

5.1 Incremental Tabu Search
The incremental tabu search algorithm is inspired by the idea
mentioned in section 4.3: we let the tabu search at each
size start its search from one of the best graphs found at
smaller sizes. Say we want to find lower bounds for f(n)

Algorithm 1 Our version of tabu search

Require: G0 is an n-node graph with nodes indexed from 1
to n, and 0 ≤ h <

(
n
2

)
Ensure: BestGraph is the highest-scoring graph found dur-

ing search
1: Tabu← a first-in-first-out queue of fixed size h
2: Actions← {(i, j) : 1 ≤ i < j ≤ n}
3: BestGraph← G0

4: for i← 1, 2, . . . , iterations do
5: V alidActions← Actions \ Tabu
6: BestActions ← argmaxe{s(Gi−1

⊕
e) : e ∈

V alidActions}
7: Action← random action chosen from BestActions
8: Gi ← Gi−1

⊕
Action

9: Insert Action into Tabu
10: if s(Gi) > s(BestGraph) then
11: BestGraph← Gi

12: end if
13: end for

for some range n ∈ {a, . . . , b}. Incremental tabu search is a
distributed algorithm with b− a+1 parallel workers (process-
ing units), indexed from a to b, where the worker with index
n searches for graphs of size n. The workers need a common
memory to share the graphs they have found: suppose that
BestGraphs[n], for n ∈ {a, . . . , b}, is a set of graphs that all
workers have access to. (We can initialize it to contain just the
empty graph of size n.) The algorithm for the size-n worker
appears in Algorithm 2.

Algorithm 2 Incremental tabu search (worker for size n)

Require: 0 ≤ K and a ≤ n ≤ b and BestGraphs[n] is a
set of graphs of size n

Ensure: BestGraphs[n] contains the set of highest-score
graphs found during the search

1: while True do
2: Sample k randomly from {1, . . . ,K}
3: Sample G0 randomly from BestGraphs[n− k]
4: Add k isolated nodes to G0

5: Run tabu search starting from G0

6: BestFoundGraph← best graph found by tabu search

7: Choose ExistingGraph arbitrarily from
BestGraphs[n]

8: if s(BestFoundGraph) > s(ExistingGraph) then
9: BestGraphs[n]← {BestFoundGraph}

10: else
11: Add BestFoundGraph to BestGraphs[n]
12: end if
13: end while
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6 Experiments and Results
We compare five methods: tabu search starting from the empty
graph; incremental tabu search, which uses a curriculum to
use high-scoring graphs found at each size as the starting point
for larger sizes; AlphaZero starting from the empty graph;
incremental AlphaZero, which uses a curriculum; and Wag-
ner’s cross-entropy method [Wagner, 2021], the first machine-
learning method to find counterexamples for mathematical
conjecture. For AlphaZero, we also perform ablations on the
choice of network representation. Since f(n) = Θ(n

√
n)

(see (2)) we have normalized the scores by n
√
n in the plots.

The hyperparameters are provided in the full version.
For each size n, we started the episodes in incremental

AlphaZero with one of the high-scoring graphs found by incre-
mental tabu search at size n− k, where k is chosen randomly
between 1 and 4. (We did this for technical convenience,
but we believe similar results are achievable if we sample
from graphs of smaller sizes generated by previous runs of
AlphaZero.)

A key hyperparameter is the episode length (the horizon).
An overly long episode length is not only wasteful but also
hinders learning, as the agent may find an optimal graph in
the middle of an episode but still has to flip edges to reach
the end of the episode. On the other hand, an overly short
episode length would hinder the exploration as the agent is
limited to the vicinity of the initial graph. We ran AlphaZero
(without incremental search) for sizes 5 to 100, split these sizes
in five nearly-equal buckets of 5–20, 21–40, 41–60, 61–80,
and 81–100, and set horizons to 80, 160, 240, 320, and 434,
respectively. With incremental search, since we start from a
good graph of smaller size, we can choose shorter horizons;
we experimented with horizon lengths of 30, 50 and 100 but
found the results don’t change much beyond 30.

For tabu search, we tried various history sizes but size 5
worked best. For each size, we ran 32 parallel copies of tabu
search for seven days, restarting every 1000 iterations and
merging the results. For incremental tabu search, we initialized
BestGraphs[n] (see Algorithm 2) to contain the set of graphs
published by [McKay, 2023] (for n = 1, 2, . . . , 64), set the
history size to 5, and the K in incremental tabu search to 4—it
is important this is greater than 1.

Comparison with the state-of-the-art lower bounds. As
Figure 1 shows, incremental tabu search improves the
state-of-the-art lower bounds1 when n ∈ {64, . . . , 134} ∪
{138, . . . , 160} ∪ {176, . . . , 186} ∪ {188, . . . , 190}. For a
concrete example, see the full version, where we have also
listed the lower bounds achieved by incremental tabu search
for n = 1, 2, . . . , 200. Incremental AlphaZero also improves
over the state-of-the-art lower bounds on many sizes, and
is exactly on par with incremental tabu search on all sizes

1In Figure 1, state-of-the-art lower bounds are from [Garnick et
al., 1993; Abajo et al., 2010; Garnick, 2023; McKay, 2023] and
theoretical upper bounds are from [Garnick et al., 1993]. We have
not compared against the lower bounds reported in [Bong, 2017],
as neither the graphs achieving those bounds nor the method for
generating them are presented in [Bong, 2017]; still, incremental tabu
search improves over the lower bounds reported in [Bong, 2017] for
n ∈ {64, . . . , 76}.

between 54 to 100, except n = 56, 57, 64, 66, 77, and 96,
where incremental tabu search leads by one edge. We observe
that Wagner’s cross entropy method [Wagner, 2021] performs
much worse than both tabu search and AlphaZero—see Fig-
ure 4.

Benefits of using incremental search Without curriculum
and incremental search, the agent must build graphs of a given
size starting from the empty graph, while with incremental
search, the agent starts from a previously-found graph of a
smaller size and flips some edges to obtain a graph of the
desired size. Figure 2 (left) illustrates, for sizes 54 to 100, the
benefit of using a curriculum for tabu search, which increases
significantly as the number of nodes increases. Figure 2 (right)
shows a similar plot for AlphaZero: AlphaZero matches In-
cremental AlphaZero up to size around 30 but deteriorates
afterwards. We believe the reasons are large episode lengths
and the difficulties of exploration and credit assignment. We
conclude that using incremental learning (and curriculum) is a
vital ingredient for applying RL to this problem and presum-
ably for any optimization problem with a substructure property
and a huge state space.

Comparing representations in AlphaZero. We compare
our novel representation, Pairformer, with ResNet [He et al.,
2016], which has been extensively used in literature, especially
in environments where the observation is a matrix or an image.
Since a graph can be naturally expressed as an adjacency ma-
trix, we compare the ResNet architecture, which is oblivious
to the graph structure, with the Pairformer architecture. We
use a ResNet with 10 layers and 256 output channels. Figure
3 (left) shows the policy’s cross-entropy loss during training,
and Figure 3 (right) shows the average episode return. For
this experiment, we focus on joint training for graph sizes [80,
100] with Incremental AlphaZero. We observe that Pairformer
performs better on both metrics. Nevertheless, the final scores
obtained by ResNet and Pairformer are equal except on sizes
80, 86 and 93, where Pairformer leads by one score point. It
should be noted that the above experiments are for parameters
sizes (number of layers, attention heads) beyond which we
didn’t see a performance improvement for either representa-
tion and the exact number of parameters may differ for both
representations.

Comparing the cross-entropy method with incremental
tabu search. We compare incremental tabu search with the
cross-entropy method [Wagner, 2021] in Figure 4. (The hyper-
parameters are provided in the full version.) We observe that
incremental tabu search outperforms cross-entropy method
by a big margin as the size of the graph grows. (Incremental
AlphaZero performs similarly to incremental tabu search, so
we haven’t plotted it.)

While it would have been useful to compare the resources
used by each method, the different nature of the algorithms
hinders a fair comparison, especially because some are se-
quential and others are parallel. AlphaZero has a distributed
implementation with multiple actors. We ran tabu search for
seven days to make a fair comparison to AlphaZero. Crucially,
we ran all the methods until their results plateaued, and the
cross-entropy method was run for large time frames for small
sizes until no improvement was observed.
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Figure 1: Normalized scores, given by number of edges
n
√
n

, are plotted versus size, n. AlphaZero with curriculum (not plotted) achieves the same
score as incremental tabu search for 41 of the sizes from 54 to 100. Erdős conjectured that both the red and blue curves converge to the cyan
horizontal line as n → ∞.

Figure 2: Left: Incremental tabu search, which uses a curriculum,
performs increasingly better than tabu search without curriculum,
for larger problem sizes. Right: Adding a curriculum improves the
performance of AlphaZero significantly, especially on larger sizes.

7 Discussion
We studied a challenging learning-to-search benchmark in-
spired by an open problem in extremal graph theory, compared
a neural network-guided MCTS with tabu search, and observed
that using a curriculum is crucial for improving the state of
the art, but introducing learning did not yield improvements
(a similar phenomenon was observed for another extremal
graph theory problem [Parczyk et al., 2023]). This could be
because the problem has lots of local optima and the search
space is hard to explore: for some sizes, there is only one
feasible graph with the optimal score [Backelin, 2015], and
during our experiments, for size n = 96, only one of our runs
found a score of 411; all other runs found smaller scores. Also,
in contrast to problems on which RL has improved the state
of the art and do not have strong local search baselines (e.g.,
the tensor decomposition problem [Fawzi et al., 2022]), for
this problem, natural, fast, and strong local search algorithms
exist. Finally, in contrast to typical RL problems, where the
goal is to maximize the expected return in a non-deterministic
environment, here we want to maximize the best-case return
in a deterministic environment—i.e., we need only find a good
solution once. So, it’s unclear whether the classical RL ob-
jective is the right approach here; finding better objectives for
learning-to-search is an open research problem.

Some of the ideas in this work—the curriculum, the edge-
flipping environment, the novel representation Pairformer, and
incremental local search—could be used in similar problems.

Figure 3: Left: The policy cross-entropy loss of Pairformer and
ResNet during online training of AlphaZero on joint training for
graph sizes [80, 100] with curriculum. Pairformer minimizes the loss
faster as it captures invariances and other graph structures. Right:
Average episode return of Pairformer and ResNet during training of
AlphaZero using the edge-flipping environment on joint training for
graph sizes [80, 100] with curriculum. In both plots, the average is
taken over 3 seeds and Gaussian smoothing with σ = 2 is applied.

Figure 4: Incremental tabu search versus the cross-entropy method.

In particular, our edge-flipping environment allows a flexible
curriculum approach, where the high-scoring graph of the
smaller size need not be an exact subgraph of the optimal
larger graphs. This could prove useful in other mathematical
problems that have a similar structure.

Finally, while we have brought the state-of-the-art ML algo-
rithm AlphaZero on par with tabu search, the main improve-
ment came from using an incremental approach. Hence one
may ask: What improvements to ML approaches are required
to outpace classical heuristics on search problems?
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