
ParaILP: A Parallel Local Search Framework for Integer Linear Programming
with Cooperative Evolution Mechanism

Peng Lin1,2 , Mengchuan Zou1 , Zhihan Chen1,2 , Shaowei Cai1,2∗
1 Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of

Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
2 School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing,

China
{linpeng, zoumc, chenzh, caisw}@ios.ac.cn,

Abstract
The integer linear programming (ILP) problem is a
fundamental research topic in operations research,
and the local search method is an important class
of algorithms for quickly solving many combinato-
rial optimization problems. With rapidly increas-
ing computing power, parallelism turns out to be
a promising approach to enhancing the efficiency
of problem-solving. However, rare studies inves-
tigate parallel local search algorithms for solving
the general ILP problem. We propose the first par-
allel local search framework (ParaILP) for solv-
ing the general ILP problem, based on two novel
ideas: a new initialization method named polarity
initialization to construct different initial solutions
for local search threads and a cooperative evolu-
tion mechanism for managing and generating high-
quality solutions using information shared by dif-
ferent threads. Extensive experiments demonstrate
that ParaILP is significantly better than the state-
of-the-art academic parallel solvers FiberSCIP and
HiGHS, and is competitive with the state-of-the-art
commercial parallel solver Gurobi. Experiments
are also conducted to analyze the parallelization
scalability and the effectiveness of our techniques.

1 Introduction
The integer linear programming (ILP) describes the optimiza-
tion problem of a linear objective function over variables that
are restricted to being integers and constrained by linear con-
straints. The ILP problem is known to be NP-hard [Kannan
and Monma, 1978], and due to its strong expressive abil-
ity, many NP-hard problems, such as FJSP [Roshanaei et al.,
2013] and TSP [Dantzig et al., 1954], can be formalized in
the form of ILP and solved efficiently by ILP solvers. In ad-
dition, ILPs are widely used in real industry and have close
ties to operation research applications [Wolsey, 2020].

Previous studies have explored both complete and heuristic
algorithms for ILP. As for complete solving, the branch-and-
bound framework [Land and Doig, 2010; Lawler and Wood,
1966] is commonly admitted and is the primary framework

∗Corresponding author

used in modern commercial complete solvers. However, the
worst-case exponential running time of complete solving al-
gorithms makes complete solving suffer from long running
time as the problem size increases, limiting the use of com-
plete algorithms for large-scale instances [Genova and Gu-
liashki, 2011].

Local search is a typical heuristic algorithm for many com-
binatorial optimization problems and is suitable for scenarios
requiring obtaining a good solution for large-scale instances
quickly [Jacobs and Brusco, 1995; Vaessens et al., 1996;
Merz and Freisleben, 1997; Dorne and Hao, 1998; Stützle,
2006]. However, there are few local search works for general
ILP problem-solving. To the best of our knowledge, there are
only [Verachi and Prestwich, 2008] and [Lin et al., 2023] that
studied local search for general ILP.

Meanwhile, with the increasing computing power of multi-
core computer structures, algorithm design adapted to paral-
lel environments brings excellent benefits to problem-solving
in modern computing architectures. For parallel ILP solving,
the most common approach is divide-and-conquer, where the
original problem is decomposed into sub-problems, and each
solver solves some sub-problems [Bixby et al., 1995]. The
node-level and sub-tree parallelizations of the branch-and-
bound framework belong to this type and were adopted by
most commercial solvers, such as Gurobi and CPLEX. Due
to the large size of the search tree, these complete parallel al-
gorithms are still incompetent to solve large instances within
short time limits [Xu et al., 2009]. However, to the best of
our knowledge, local search algorithms, which are known to
solve many hard problems efficiently, have not been investi-
gated for solving general ILP in parallel.

In this work, we propose the first parallel local search
framework for ILP, dubbed ParaILP. It is based on a novel ini-
tialization method named polarity initialization, and a cooper-
ative evolution mechanism that manages and generates high-
quality solutions throughout the search process. ParaILP uses
the state-of-the-art sequential local search algorithm Local-
ILP [Lin et al., 2023] as a subroutine, but any other sequential
local search algorithm could be plugged in as well.

Experiments conducted on the MIPLIB dataset show the
effectiveness of ParaILP in finding a high-quality feasible so-
lution quickly for large-scale hard ILP problems. We com-
pare ParaILP with the state-of-the-art parallel ILP solvers, in-
cluding academic and commercial solvers. The experimen-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6949

tal results demonstrate the excellent performance of ParaILP,
which significantly outperforms academic solvers and is com-
petitive with commercial solvers. We also compare ParaILP
with the state-of-the-art local search algorithm Local-ILP,
indicating a significant improvement. Experiments are also
conducted to analyze the effectiveness of each component in
ParaILP and the scalability of parallel solvers when adopting
different numbers of threads.

The main contributions of this work are as follows:
1. We propose the first parallel local search framework and

develop an efficient parallel solver for solving general
ILP (ParaILP). Our framework could be easily extended
by plugging other sequential local search algorithms as
a subroutine to create new solvers.

2. We propose a new initialization method, named polar-
ity initialization, that makes use of the influence of vari-
ables on the objective function and constraints, to decide
whether to assign larger or smaller values to variables.

3. We propose a cooperative evolution mechanism based
on population maintenance policy and solution evolution
process to manage and generate high-quality solutions.

4. Experiments show that ParaILP significantly outper-
forms the state-of-the-art academic parallel solvers
FiberSCIP and HiGHS, and is competitive with the
state-of-the-art commercial parallel solver Gurobi.

2 Preliminaries
2.1 Integer Linear Programming
Let m,n ∈ N+,A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and l,u ∈
Rn. The optimization problem described by:

min c⊤x

subject to: Ax ≤ b

l ≤ x ≤ u

x ∈ Zn

(1)

is an instance of general integer linear programming (ILP).
We call c⊤x the objective function. l and u are called

the lower and upper bounds of the variables x. We call
lj ≤ xj ≤ uj the global bounds, Ax ≤ b the linear con-
straints, and x ∈ Zn the integrality constraints of the ILP.
A row Ai of the matrix A is identified with the linear con-
straint Aix ≤ bi. The coefficient of xj in Aix ≤ bi is
Aij , and Aix ≤ bi contains xj if Aij ̸= 0. Integer linear
programming aims to minimize the objective function while
satisfying all constraints. A maximization problem can easily
be transformed into this minimization formulation.

A complete solution (solution for short) s of an ILP in-
stance is a vector of values assigned for each variable, and sj
denotes the value of xj . s satisfies Aix ≤ bi if Ais ≤ bi. s
is a feasible solution if and only if it satisfies all constraints.

2.2 Local Search and Evolutionary Algorithm
The local search algorithm and the evolutionary algorithm
both play vital roles in solving combinatorial optimization
problems. Local search starts with a given solution; and
then, iteratively implements local modifications to explore the

Figure 1: Our parallel local search framework for solving general
integer linear programming with cooperative evolution mechanism.

neighborhood of the current solution and move towards a bet-
ter one, to find a high-quality feasible solution.

In contrast to the local search focusing on the current solu-
tion, the evolutionary algorithm maintains a set of solutions
called a population, and generates offspring through opera-
tors that resemble natural evolution, such as mutation and
crossover actions. A fitness function is designed to evaluate
the quality of solutions and decide whether they could stay in
the population.

These two methods are integrated into our framework: we
utilize local search to find new solutions, and use evolution
mechanism to manage and generate high-quality solutions.

3 Parallel Framework for Solving ILP
As shown in Figure 1, we propose an efficient parallel
framework for solving integer linear programming problems,
which takes an ILP instance as an input and outputs the
highest-quality feasible solution found through the search
process. The framework includes a master thread, NT worker
threads, and a collaboration thread. Each type of thread has
its own functionalities, which are explained in the following.

Master thread. The master thread reads the problem in-
stance and constructs shared data structures, including ba-
sic information about variables and constraints. The mas-
ter thread also assigns parameters and initial solutions for
each local search worker thread. Here, diversity strategies are
adopted to initialize workers with different settings to explore
a broader search space and strengthen the framework’s ro-
bustness. We proposed a new method to generate initial solu-
tions named polarity initialization to construct NT different
initial solutions, which are distributed to each worker thread.
When the solving time limit is reached, the master thread col-
lects the best feasible solutions found by each thread and out-
puts the feasible solution with the highest-quality objective
function value.

Worker threads. Each worker thread performs a local
search algorithm to explore the search space. It starts with
the initial solution received from the master thread and iter-
atively modifies the current solution to find high-quality so-
lutions. Whenever a worker finds a new feasible solution, it
passes the solution to the collaboration thread, trying to put it

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6950

into the population. Whenever a worker thread is trapped in
a local optimum and cannot find a better solution for enough
steps, the worker will get a solution shared from the collab-
oration thread as a starting point and restart the local search
process. At the end of the time limit, each worker thread syn-
chronizes its history-best feasible solution with the master.

Collaboration thread. The collaboration thread is respon-
sible for performing the cooperative evolution mechanism.
It collects feasible solutions from worker threads, and man-
ages a population balancing quality and diversity. In addi-
tion, it attempts to produce new promising solutions through
the solution evolution process by exploiting information from
high-quality solutions in the population. When a worker
struggles to make progress, it also shares a high-quality so-
lution to help the worker escape from the local optimum.

In the following two sections, we present the details of po-
larity initialization and cooperative evolution mechanism.

4 New Initialization Method
As for solving ILP in parallel, we propose a novel approach
called polarity initialization, to construct different initial so-
lutions for each local search worker thread. We try to gener-
ate high-quality solutions by considering the polarity of vari-
ables, which refers to their negative or positive influence to
the objective function and constraints. The provided informa-
tion is utilized to compute the initial values of the variables.

4.1 Influence Factors and Polarity
We try to capture the influence of every variable to the objec-
tive function and constraints. For the objective function c⊤x
or a constraint Aix ≤ bi, we regard the influence of a vari-
able xj as the product of the difference between its upper and
lower global bounds (i.e., uj−lj), multiplied by its coefficient
(i.e., cj or Aij). This quantity reflects the range of difference
that the change of this variable may bring to c⊤x or Aix.
To evaluate the relative importance of a variable among all
variables, we take the ratio of a variable’s influence over all
variables in the objective function or a constraint, deriving the
concept of the influence factor:
Definition 1. The influence factor of variable xj in the ob-
jective function c⊤x, denoted as IOj , is defined as

IOj =
(uj − lj) · cj∑n

k=1 (uk − lk) · |ck|
(2)

Similarly, the influence factor of variable xj in constraint
Aix ≤ bi, denoted as ICij , is defined as

ICij =
(uj − lj) ·Aij∑n

k=1 (uk − lk) · |Aik|
(3)

For the objective function c⊤x or a constraint Aix ≤ bi,
the influence factor of the variables possesses the following
properties: (1) If the sign of the influence factor of xj is pos-
itive (i.e., IOj > 0 or ICij > 0), a smaller value of xj

is more favorable for improving the quality of the objective
function or satisfying the constraint, and vice versa. (2) xj

with a larger absolute value of the influence factor causes a
larger change in c⊤x or Aix, indicating a more significant

Algorithm 1: Polarity Initialization
Input: Integer linear programming instance Q
Output: the set of NT initial solutions S for Q

1 for j ← 1 to n do
2 Calculate the polarity Pj according to Eq. 4
3 foreach k ← 1 to NT do
4 Let s be the k-th solution in S
5 if Pj < 0 and uj ̸= +∞ then
6 sj ← uj

7 else if Pj > 0 and lj ̸= −∞ then
8 sj ← lj

9 else
10 sj ← the integer closest to 0 within [lj , uj]

11 if 0 ∈ [lj , uj] and random(0, 1) < dp then
12 sj ← 0

13 return the resulting set of NT initial solutions S

impact of xj on the objective function or the constraint, and
vice versa.

When constructing initial solutions, to decide whether to
assign a larger or smaller value to a variable, we consider
both its influence to the objective function and also the con-
straints; thus, we propose the idea of the polarity of variables
to summarize the influences:
Definition 2. Let mj denote the number of constraints con-
taining xj , the polarity of variable xj , denoted as Pj , is de-
fined as

Pj =

∑m
i=0 ICij

mj
+ IOj (4)

The polarity Pj synthesizes the influences of xj on relevant
constraints and the objective function. If the polarity of xj is
negative, taking the maximization of xj brings overall advan-
tageous influences to relevant constraints and the objective
function, and vice versa.

4.2 Polarity Initialization
Based on the influence factors and polarity, the master per-
forms the polarity initialization to construct NT different ini-
tial solutions and distributes them to each local search worker.

Algorithm 1 details polarity initialization in pseudo-code.
For each variable, polarity initialization assigns it to one of
its global bounds based on its polarity (lines 3-8). Note that if
the polarity of a variable equals 0 or the preferred assignment
is unbounded, it is assigned to the integer closest to 0 within
the global bound, as 0 is the simplest value (lines 9-10). To
diversify the search space of each local search worker thread,
we introduce random perturbations to generate different ini-
tial solutions: if 0 is within its global bounds, with probability
dp, it is randomly assigned to 0, where dp is a parameter that
controls the degree of perturbation (lines 11-12).

5 Cooperative Evolution Mechanism
We now present our cooperative evolution mechanism based
on population maintenance and solution evolution. It uses a

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6951

population to store the feasible high-quality solutions found
by each worker, and tries to produce better solutions by evo-
lutionary operations on solutions in the population. The co-
operative evolution mechanism comprises the information ex-
changing scheme, the solution evolution process, and the pop-
ulation maintenance policy. We then present each component.

5.1 Information Exchanging Scheme
The collaboration thread is responsible for performing the co-
operative evolution mechanism. Here we introduce the infor-
mation exchanging scheme between the collaboration thread
and the local search worker threads, including the receiving
and sharing process.

For receiving, whenever a local search worker finds a new
feasible solution, it transfers the solution to the collaboration
thread. Based on the population maintenance policy, the co-
operative evolution mechanism determines whether to accept
it as a new individual into the population (see Section 5.3).

For sharing, whenever a worker thread fails to improve its
solution for L iterations, the collaboration thread shares a so-
lution with that worker thread as the restarting point for its
local search, where L is a parameter. To balance feasibility
and diversity, we design two sharing schemes:

Elite sharing: The collaboration thread shares a randomly
selected solution from the population with the worker. Given
that the population maintenance policy ensures that all solu-
tions in the population are of high quality and feasible, the
worker can explore new solutions based on feasibility.

Offspring sharing: The collaboration thread performs the
evolution operations (see Section 5.2) to produce an offspring
solution and shares it with the worker. The offspring may
not be a feasible solution, but it is derived from crossover
and mutation, thus reflecting the exploitation of high-quality
information and the exploration of new search areas.

The collaboration thread selects one of the sharing schemes
with equal probability and shares the solution with the
trapped local search worker thread.

5.2 Solution Evolution Process
Now, we present the solution evolution process of the cooper-
ative evolution mechanism that generates new solutions from
high-quality solutions in the population. Our strategy consists
of three steps: random parent selection, uniform crossover,
and bound-aware mutation.

Random parent selection. Since all solutions in the pop-
ulation are highly competitive, to enhance the diversity of the
system, we randomly select two solutions s1 and s2 as par-
ents instead of favoring those with higher quality.

Uniform crossover. To leverage the information from two
selected parents, we employ uniform crossover to produce an
offspring so. Specifically, for variable xj , if s1j = s2j , the as-
signment from the parents is retained, i.e., s0j = s1j = s2j ; oth-
erwise, s0j is randomly assigned as either s1j or s2j . Through
crossover, s0 carries information from the parents.

Bound-aware mutation. The mutation is applied to s0 to
explore new promising search space. To prevent excessive
mutation that deviates too far from the feasible regions, we
require that the mutation satisfy the basic global bounds of

Algorithm 2: Solution Evolution Process
Input: Population P
Output: An offspring solution so

1 Randomly Select 2 solution s1 and s2 from P
2 for j = {1, ..., n} do
3 if s1j = s2j then
4 Inherit the same value: soj ← s1j

5 else
6 Uniform crossover: randomly assign soj to

either s1j or s2j
7 if random(0, 1) < mp then
8 Bound-aware mutation: assign soj to an

random integer value within [lj , uj]

variables, i.e., l ≤ x ≤ u. For variable xj , with probability
mp, s0 is randomly assigned an integer value within [lj , uj],
where mp is a parameter that controls the degree of mutation.
The detailed pseudo-code is shown in Algorithm 2.

5.3 Population Maintenance Policy
The population maintenance policy controls the admission of
a solution into the population. It is activated in two situa-
tions: when a solution is received from a local search worker
thread and when an offspring solution is produced by evolu-
tion process. To determine whether to accept a new individual
joining the population, we consider three factors to evaluate a
solution: the objective value, the informative degree, and the
differences from other solutions.

We use Q(s) to measure a solution’s objective quality and
informative degree. To capture the character of the quality
of the solution, Q(s) is initially set to −obj(s). Then we
use a penalty mechanism to make Q(s) also consider the in-
formative degree: whenever a solution’s information is uti-
lized (i.e., shared as a feasible solution in elite sharing with
worker threads, or selected as a parent in offspring sharing
for producing offspring), Q(s) is penalized. Specifically, if
Q(s) > 0, Q(s) is updated as Q(s)× (1− β); if Q(s) < 0,
Q(s) is updated as Q(s) × (1 + β); if Q(s) = 0, Q(s) is
unchanged, where β is a given parameter to adjust the degree
of punishment. We see that the more times a solution is used,
the more its Q(s) is reduced.

We now analyze the influence and the proposed way to up-
date Q(s): Assuming there are few population updates but
many solutions shared with workers, this may result in pre-
mature convergence. Our penalty mechanism penalizes so-
lutions participating in elite sharing and offspring sharing,
decreasing their Q(s) values. As a result, the threshold for
population updating gets lower, thus increasing the frequency
of population updating and balancing the exploitation of elite
solutions and the exploration of new search areas.

We use D(s) to measure the difference between a solution
s and other solutions in the population:

D(s) =
∑

s′∈Population,s′ ̸=s

n∑
j=1

|sj − s′j | (5)

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6952

Let RQ(s) be the rank of Q(s) value when comparing s
with all solutions in the population, and RD(s) the rank of
D(s), respectively. We define the fitness function to evaluate
the overall quality of a solution as follows:

R(s) = RQ(s) · p+RD(s) · (1− p) (6)

where p is a parameter to adjust the weight of two factors.
We now introduce the population maintenance policy

based on the fitness function R(s). As shown in Algorithm 3,
initially, the population is empty. When a new feasible solu-
tion is received from a local search worker or is produced dur-
ing the solution evolution, it can be added to the population
until the population size reaches ps, where ps is a parameter
to control population size. Afterward, the population is kept
at the size of ps. Specifically, when a new solution attempts
to join the population, it is evaluated by the fitness function
R(s) to decide whether to accept it as a new member of the
population or not. If its fitness is better than the worst solution
in the current population, it will replace that solution.

Algorithm 3: Population Maintenance Policy

Input: Population P and a new feasible Solution s0

Output: Updated population P
1 Tentatively add s0 to population P : P ← P ∪ s0;
2 if |P | <= ps then return ;
3 for each solution si in population P do
4 Calculate the fitness value R(si) according to

Eq. 6
5 Identify the worst sw with the least fitness value:

sw = arg min{R(s)|s ∈ P};
6 if sw ̸= s0 then Replace sw with s0 : P ← P \ sw ;
7 else
8 Expel s0 which failed to update P : P ← P \ s0;

6 Experiments
To evaluate the performance of the proposed framework
ParaILP, we compare ParaILP with the state-of-the-art paral-
lel ILP solvers, including academic and commercial solvers.
The experimental results demonstrate the excellent perfor-
mance of our proposed algorithm for the ability to find a high-
quality feasible solution quickly, which significantly outper-
forms academic solvers and is competitive with commercial
solvers. We also compare ParaILP with the state-of-the-art
sequential local search algorithm Local-ILP by adopting the
same number of threads, indicating a significant improve-
ment. The results also show the effectiveness of each compo-
nent in ParaILP, including the polarity initialization, and the
cooperative evolution mechanism. Additionally, experiments
are conducted to analyze the scalability of parallel solvers
when adopting different threads.

6.1 Experimental Setup
ParaILP is implemented in C++ and compiled in g++. We use
the sequential local search algorithm Local-ILP1 [Lin et al.,

1https://github.com/shaowei-cai-group/Local-ILP/

2023] as a subroutine to implement the worker threads. There
are six parameters in ParaILP: mp for evolution mutation, L
for worker thread restart, β for fitness punishment, p for fit-
ness weight, dp for perturbation degree, and ps for population
size. We tuned parameters with the automatic configuration
tool irace [López-Ibáñez et al., 2016] on 20% randomly sam-
pled instances, with parameter domains as follows: [0.1,1] for
mp, [1000, 10000] for L, [1e-6,1] for β, [0.1,1] for p, [0.1,1]
for dp, and [5, 20] for ps. Finally, the default settings of these
parameters are as follows: mp = 0.25, L = 2000, β = 1e-4,
p = 0.2, dp = 0.5, and ps = 7 for all benchmarks. Detailed
results and the sourced code are reported in github2.

We tested the algorithms on MIPLIB, the standard bench-
mark for ILP, selecting the ILP instances marked hard and
open on a union dataset of MIPLIB 20033 [Achterberg et
al., 2006], MIPLIB 20104 [Koch et al., 2011], and MIPLIB
20175 [Gleixner et al., 2021]. As ParaILP is not a complete
solver, we excluded the infeasible instances, resulting in a
benchmark of 121 instances. Each instance is calculated by
each algorithm with time limits of 10, 60, and 300 seconds,
which is consistent with the settings in [Lin et al., 2023]. By
default, the number of physical threads is set to 32, the same
as the setting of the latest parallel track of SAT competition6.

We use 3 widely used metrics in comparison to evaluate
the ability to find a high-quality feasible solution quickly:

#Feas: the number of instances where a solver can find a
feasible solution within the given time limit.

#Win: the number of instances in which the solver yields
the best solution among all the solvers.

P(T): the primal integral P(T) [Berthold, 2013] is a well-
established measure to evaluate the performance of ILP
solvers, which depends on the quality of solutions found dur-
ing the solving process as well as on the time points when
they are found. It can be interpreted as the average solution
quality during a time limit. Smaller values indicate that high-
quality solutions were found earlier.

All experiments are carried out on a server using two AMD
EPYC 7763 CPUs @ 2.45GHz with 128 physical cores and
1TB RAM, running the Ubuntu 20.04 Linux operation sys-
tem. The best results in the tables appear in bold.

6.2 Comparisons with Parallel ILP Solvers
We compare ParaILP with three state-of-the-art parallel ILP
solvers according to the latest result of Hans Mittelmann’s
Benchmark7, which is a famous professional solver rating
website. There are 2 academic solvers (i.e., HiGHS8 and
FiberSCIP9) and a commercial solver (i.e., Gurobi10):

HiGHS [Huangfu and Hall, 2018]: a high-performance
parallel solver for large-scale sparse ILP (version 1.5.3).

2https://github.com/shaowei-cai-group/ParaILP
3https://miplib2010.zib.de/miplib2003/index.php
4https://miplib2010.zib.de
5https://miplib.zib.de
6https://satcompetition.github.io/2023/tracks.html
7https://mattmilten.github.io/mittelmann-plots/
8https://github.com/ERGO-Code/HiGHS
9https://ug.zib.de

10https://www.gurobi.com/solutions/gurobi-optimizer/

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6953

Benchmark Domain #Ins

#Feas #Win P(T)

HiGHS FiberSCIP ParaILP HiGHS FiberSCIP ParaILP HiGHS FiberSCIP ParaILP

10s 60s 300s 10s 60s 300s 10s 60s 300s 10s 60s 300s 10s 60s 300s 10s 60s 300s 10s 60s 300s 10s 60s 300s 10s 60s 300s

Singleton 2 2 2 2 2 2 2 2 2 2 1 0 0 0 0 1 1 2 1 0.788 0.473 0.324 0.485 0.371 0.188 0.109 0.088 0.081
Aggregations 2 0 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1.000 0.615 0.523 0.672 0.531 0.508 0.761 0.633 0.555
Bin Packing 2 0 2 2 0 1 1 1 2 2 0 2 0 0 0 1 1 0 1 1.000 0.905 0.715 1.000 1.000 0.993 0.979 0.923 0.773
Equation Knapsack 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Knapsack 4 3 3 3 3 3 3 4 4 4 1 1 2 1 1 0 2 2 2 0.529 0.388 0.304 0.412 0.316 0.282 0.111 0.071 0.048
Set Packing 5 2 4 4 3 4 4 4 4 4 1 1 1 0 0 1 3 3 2 1.000 0.802 0.609 0.759 0.549 0.323 0.369 0.260 0.219
Cardinality 6 1 1 2 1 1 2 2 2 3 0 0 1 0 0 1 2 2 1 0.958 0.820 0.746 0.866 0.830 0.753 0.628 0.571 0.522
Hybrid 7 3 3 4 2 4 4 4 5 5 0 0 1 0 0 0 4 5 5 1.000 1.000 1.000 1.000 1.000 0.699 0.689 0.548 0.524
Mixed Binary 8 0 0 0 2 2 2 4 5 6 0 0 0 1 2 2 4 4 5 1.000 1.000 1.000 1.000 0.980 0.976 0.890 0.861 0.762
Set Partitioning 9 1 2 4 3 4 6 4 6 7 0 0 0 0 2 3 4 4 4 1.000 0.999 0.927 0.930 0.884 0.805 0.887 0.827 0.765
Set Covering 11 5 6 8 5 8 7 9 10 10 2 0 2 0 5 6 7 5 3 0.861 0.780 0.656 0.780 0.648 0.523 0.733 0.650 0.610
Precedence 13 1 3 4 10 11 12 12 12 12 0 0 0 1 1 2 11 11 10 0.996 0.974 0.860 0.889 0.813 0.653 0.576 0.454 0.345
General Linear 15 3 4 6 7 7 9 10 10 10 2 2 4 2 1 3 6 7 7 0.780 0.700 0.591 0.712 0.575 0.425 0.355 0.317 0.301
Variable Bound 16 7 9 9 11 13 13 14 15 15 0 0 1 0 0 2 14 15 14 0.895 0.784 0.653 0.851 0.688 0.472 0.381 0.278 0.228
Invariant Knapsack 18 4 7 11 10 11 13 12 13 13 2 1 3 2 3 2 12 12 11 0.924 0.847 0.736 0.778 0.706 0.664 0.549 0.475 0.421
Total 121 32 47 60 60 72 79 83 91 95 9 7 16 8 16 24 71 72 67 0.911 0.831 0.730 0.818 0.724 0.610 0.582 0.508 0.452

Table 1: Performance evaluation between SOTA academic solvers HiGHS, FiberSCIP and ParaILP.

Benchmark Domain #Ins

#Feas #Win P(T)

Gurobicomp Gurobiheur ParaILP Gurobicomp Gurobiheur ParaILP Gurobicomp Gurobiheur ParaILP

10s 60s 300s 10s 60s 300s 10s 60s 300s 10s 60s 300s 10s 60s 300s 10s 60s 300s 10s 60s 300s 10s 60s 300s 10s 60s 300s

Singleton 2 2 2 2 2 2 2 2 2 2 0 2 1 1 0 1 1 1 0 0.237 0.113 0.042 0.240 0.115 0.045 0.109 0.088 0.081
Aggregations 2 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0.514 0.502 0.500 0.519 0.503 0.501 0.761 0.633 0.555
Bin Packing 2 2 2 2 2 2 2 1 2 2 2 2 0 2 2 1 0 0 1 0.963 0.748 0.303 0.963 0.757 0.305 0.979 0.923 0.773
Equation Knapsack 3 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1.000 1.000 0.952 1.000 1.000 1.000 1.000 1.000 1.000
Knapsack 4 3 3 4 3 3 4 4 4 4 1 2 2 1 1 4 2 2 1 0.317 0.271 0.100 0.315 0.274 0.093 0.111 0.071 0.048
Set Packing 5 4 4 4 4 4 4 4 4 4 2 1 2 3 2 2 1 2 2 0.408 0.271 0.231 0.407 0.271 0.230 0.369 0.260 0.219
Cardinality 6 2 3 3 2 3 3 2 2 3 1 2 1 0 1 3 1 1 0 0.741 0.543 0.364 0.741 0.543 0.359 0.628 0.571 0.522
Hybrid 7 4 5 5 4 5 5 4 5 5 1 1 2 1 1 3 3 5 2 0.777 0.660 0.548 0.784 0.664 0.546 0.689 0.548 0.524
Mixed Binary 8 2 3 3 2 3 3 4 5 6 1 0 1 1 1 1 4 4 5 0.986 0.975 0.960 0.986 0.970 0.958 0.890 0.861 0.762
Set Partitioning 9 7 7 7 7 7 7 4 6 7 4 4 3 5 4 4 2 2 2 0.815 0.748 0.625 0.815 0.738 0.617 0.887 0.827 0.765
Set Covering 11 9 9 9 9 9 9 9 10 10 5 5 4 2 6 7 4 2 2 0.616 0.384 0.291 0.613 0.371 0.264 0.733 0.650 0.610
Precedence 13 12 12 12 12 12 12 12 12 12 4 3 4 1 4 9 8 6 2 0.684 0.529 0.350 0.688 0.534 0.361 0.576 0.454 0.345
General Linear 15 9 11 11 8 11 11 10 10 10 6 5 6 3 8 8 4 3 3 0.421 0.286 0.251 0.460 0.295 0.254 0.355 0.317 0.301
Variable Bound 16 14 14 14 13 14 14 14 15 15 2 4 7 2 5 5 12 10 8 0.612 0.430 0.297 0.595 0.399 0.291 0.381 0.278 0.228
Invariant Knapsack 18 12 12 15 12 12 15 12 13 13 6 6 7 4 6 7 9 10 9 0.699 0.602 0.367 0.700 0.604 0.367 0.549 0.475 0.421
Total 121 83 88 93 81 88 92 83 91 95 36 38 42 26 42 56 51 48 38 0.653 0.526 0.398 0.656 0.522 0.396 0.582 0.508 0.452

Table 2: Performance evaluation between SOTA commercial solver Gurobi (both the exact and heuristic version) and ParaILP.

FiberSCIP [Shinano et al., 2018]: a parallel branch-and-
bound ILP solver (version 1.0.0, using SCIP 8.0.3 and Soplex
6.0.3 as its internal ILP and LP solver, respectively.).

Gurobi [Gurobi Optimization, 2022]: the most powerful
commercial ILP solvers (version 10.0.2). We use both its
complete and heuristic versions, denoted by Gurobicomp and
Gurobiheur, respectively.

The binaries of all competitors are downloaded from their
websites, and default configurations are used. In MIPLIB
dataset, each instance may contain various types of con-
straints11, including knapsack, set covering, and others. We
classified all instances based on the type of the dominant con-
straint class (i.e., the constraint class with the largest number
of constraints), resulting in 15 benchmark domains. Note that
an instance containing multiple dominant constraint classes is
labeled as hybrid.

Comparisons with Academic Solvers. We first compare
ParaILP with the state-of-the-art academic solvers, i.e.,
HiGHS and FiberSCIP, and the results are shown in Table 1.
For all time limits, ParaILP performs best for 14 domains for
#Feas, 11 domains for #Win and P(T). For the total instances,

11https://miplib.zib.de/statistics.html

ParaILP performs best in all 3 metrics for each time limit.
The results indicate that the solving power of ParaILP is sig-
nificantly better than that of HiGHS and FiberSCIP, at finding
a high-quality feasible solution quickly.

Comparison with Commercial Solver. Further, we com-
pare ParaILP with Gurobi, the state-of-the-art commercial
ILP solver, and the result is shown in Table 2. In terms of
#Feas, ParaILP performs best with 12 domains for the 10s
time limit, 11 domains for 60s, and 13 domains for 300s.
In terms of #Win, ParaILP performs best with 8 domains for
10s, 7 domains for 60s, and 6 domains for 300s. In terms
of P(T), ParaILP performs best with 10 domains for 10s, 8
domains for 60s, and 6 domains for 300s. For the total in-
stances, ParaILP performs best in #Feas for all time limits,
and in #Win and P(T) for both 10s and 60s time limits. In
general, ParaILP outperforms Gurobi in some settings for 3
metrics, indicating that ParaILP is competitive with the state-
of-the-art commercial solver.

6.3 Comparisons with the Basic Parallelization of
Local-ILP

We compare ParaILP with the state-of-the-art sequential local
search solver Local-ILP, which is also a subroutine in our

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6954

Time Limit
Local-ILP32 seeds ParaILP

#Feas #Win P(T) #Feas #Win P(T)
10s 80 19 0.648 83 77 0.582
60s 89 19 0.570 91 80 0.508
300s 90 16 0.510 95 88 0.452

Table 3: Comparison of Local-ILP32 seeds and ParaILP on the
benchmark for 10s, 60s, and 300s time limits.

framework. Since it is a sequential algorithm, we construct a
basic parallel version of Local-ILP by adopting the diversity
strategy on random seeds, executing it in 32 threads using 32
different random seeds, and selecting the best solution as the
final output, which is denoted as Local-ILP32 seeds.

The comparative results are depicted in Table 3, which sub-
stantiates that ParaILP outperforms Local-ILP when employ-
ing the same number of threads. Particularly, the #Win in-
stances of Local-ILP are 3.1-4.5 times greater than those of
Local-ILP, indicating a significant improvement and confirm-
ing the effectiveness of our entire parallel framework.

6.4 Ablation Study
We perform ablation studies to validate the efficacy of our
ideas. We first compare ParaILP with two variants to eval-
uate the proposed polarity initialization. The first one is
ParaILPinit 1, a variant of ParaILP using random initializa-
tion, which randomly assigns each variable an integer within
its global bound. The second one is ParaILPinit 2, a variant
of ParaILP that replaces the polarity initialization with the
initialization method used in Local-ILP, in which variables
are assigned to their bounds or 0 according to the signs of
their bounds. As shown in Table 4, our proposed method sig-
nificantly outperforms the other two initialization methods,
confirming the effectiveness of polarity initialization.

We further compare ParaILP with two other variants to
evaluate the cooperative evolution mechanism. The first one
is ParaILPpop, a variant of ParaILP that sets the population
size ps to 0, which actually removes the cooperative evolu-
tion mechanism from the framework and makes each local
search worker thread solve separately. The second one is
ParaILPevo, a variant of ParaILP that removes the solution
evolution process from the cooperative evolution mechanism
and makes the population only collect the solutions from local
search worker threads. As shown in Table 5, ParaILP outper-
forms other variations, indicating that the cooperative evolu-
tion mechanism is effective and necessary.

Time Limit
ParaILPinit 1 ParaILPinit 2 ParaILP

#Feas #Win P(T) #Feas #Win P(T) #Feas #Win P(T)
10s 65 20 0.651 79 20 0.610 83 62 0.582
60s 82 25 0.571 90 28 0.521 91 62 0.508
300s 89 30 0.494 93 33 0.454 95 67 0.452

Table 4: Comparison with ParaILPinit 1 and ParaILPinit 2.

6.5 Scalability of ParaILP
Robust scalability is the ability to increase the algorithm’s
performance proportionally when parallel resources are in-

Time Limit
ParaILPpop ParaILPevo ParaILP

#Feas #Win P(T) #Feas #Win P(T) #Feas #Win P(T)
10s 83 20 0.616 83 19 0.594 83 77 0.582
60s 91 24 0.543 91 33 0.517 91 78 0.508
300s 95 22 0.501 95 29 0.471 95 76 0.452

Table 5: Comparison with ParaILPpop and ParaILPevo.

Figure 2: Comparison of HiGHS, FiberSCIP, Gurobi and ParaILP
on the ratio P (T)N

P (T)base
when adopting different processors.

cremented while the problem size remains fixed. As the pri-
mal integral P(T) is a well-established and independent mea-
sure to evaluate the performance of ILP, we apply the ratio
of P(T) between different processor configurations and 1 pro-
cessor configuration to evaluate the scalability of the parallel
solver. Let P (T)N denote the primal integral P(T) obtained
by using N processors, and P (T)base denote the baseline
configuration by using 1 processor. We test each solver with
the number processors in {2, 4, 8, 16, 32}, and use the ratio
P (T)N

P (T)base
to observe the improvement between different pro-

cessors and 1 processor. We compare the ratio P (T)N
P (T)base

ob-
tained by each parallel solver on the benchmark for the time
limit of 300s. The results are shown in Figure 2, indicat-
ing that the scalability of ParaILP is better than the academic
solvers HiGHS and FiberSCIP, but not as good as the com-
mercial solver Gurobi.

7 Conclusions
This paper proposed a parallel local search framework called
ParaILP for solving general integer linear programming (ILP)
problems. We proposed the polarity initialization to construct
different initial solutions for local search threads. Moreover,
we proposed a cooperative evolution mechanism that man-
ages and generates high-quality solutions found throughout
the search process. To the best of our knowledge, this is
the first parallel local search framework for the general ILP
problem. We performed extensive experiments to measure
the ability to find a high-quality feasible solution quickly.
Experiments show that ParaILP is significantly better than
the state-of-the-art academic solvers FiberSCIP and HiGHS,
and is competitive with the state-of-the-art commercial solver
Gurobi. Additionally, ParaILP significantly improves the
state-of-the-art sequential local search algorithm Local-ILP.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6955

Acknowledgments
This work is s supported by National Key R&D Program of
China (2023YFA1009500).

References
[Achterberg et al., 2006] Tobias Achterberg, Thorsten Koch,

and Alexander Martin. MIPLIB 2003. Oper. Res. Lett.,
34(4):361–372, 2006.

[Berthold, 2013] Timo Berthold. Measuring the impact of
primal heuristics. Oper. Res. Lett., 41(6):611–614, 2013.

[Bixby et al., 1995] Robert E Bixby, William Cook, A Cox,
and Eva K Lee. Parallel mixed integer programming. Rice
University Center for Research on Parallel Computation
Research Monograph CRPC-TR95554, 1995.

[Dantzig et al., 1954] George B. Dantzig, D. Ray Fulker-
son, and Selmer M. Johnson. Solution of a large-scale
traveling-salesman problem. Oper. Res., 2(4):393–410,
1954.

[Dorne and Hao, 1998] Raphaël Dorne and Jin-Kao Hao. A
new genetic local search algorithm for graph coloring. In
A. E. Eiben, Thomas Bäck, Marc Schoenauer, and Hans-
Paul Schwefel, editors, Parallel Problem Solving from Na-
ture - PPSN V, 5th International Conference, Amsterdam,
The Netherlands, September 27-30, 1998, Proceedings,
volume 1498 of Lecture Notes in Computer Science, pages
745–754. Springer, 1998.

[Genova and Guliashki, 2011] Krasimira Genova and Vas-
sil Guliashki. Linear integer programming methods and
approaches–a survey. Journal of Cybernetics and Infor-
mation Technologies, 11(1), 2011.

[Gleixner et al., 2021] Ambros M. Gleixner, Gregor Hendel,
Gerald Gamrath, Tobias Achterberg, Michael Bastubbe,
Timo Berthold, Philipp Christophel, Kati Jarck, Thorsten
Koch, Jeff T. Linderoth, Marco E. Lübbecke, Hans D.
Mittelmann, Derya B. Özyurt, Ted K. Ralphs, Domenico
Salvagnin, and Yuji Shinano. MIPLIB 2017: data-driven
compilation of the 6th mixed-integer programming library.
Math. Program. Comput., 13(3):443–490, 2021.

[Gurobi Optimization, 2022] LLC Gurobi Optimization.
Gurobi optimizer ref. manual. https://www.gurobi.com,
2022. Accessed: 2023-10-28.

[Huangfu and Hall, 2018] Qi Huangfu and J. A. J. Hall. Par-
allelizing the dual revised simplex method. Math. Pro-
gram. Comput., 10(1):119–142, 2018.

[Jacobs and Brusco, 1995] Larry W Jacobs and Michael J
Brusco. Note: A local-search heuristic for large set-
covering problems. Naval Research Logistics (NRL),
42(7):1129–1140, 1995.

[Kannan and Monma, 1978] Ravindran Kannan and Clyde L
Monma. On the computational complexity of integer pro-
gramming problems. In Optimization and Operations Re-
search: Proceedings of a Workshop Held at the Univer-
sity of Bonn, October 2–8, 1977, pages 161–172. Springer,
1978.

[Koch et al., 2011] Thorsten Koch, Tobias Achterberg, Er-
ling Andersen, Oliver Bastert, Timo Berthold, Robert E.
Bixby, Emilie Danna, Gerald Gamrath, Ambros M.
Gleixner, Stefan Heinz, Andrea Lodi, Hans D. Mittel-
mann, Ted K. Ralphs, Domenico Salvagnin, Daniel E.
Steffy, and Kati Wolter. MIPLIB 2010. Math. Program.
Comput., 3(2):103–163, 2011.

[Land and Doig, 2010] Ailsa H. Land and Alison G. Doig.
An automatic method for solving discrete programming
problems. In Michael Jünger, Thomas M. Liebling,
Denis Naddef, George L. Nemhauser, William R. Pul-
leyblank, Gerhard Reinelt, Giovanni Rinaldi, and Lau-
rence A. Wolsey, editors, 50 Years of Integer Programming
1958-2008 - From the Early Years to the State-of-the-Art,
pages 105–132. Springer, 2010.

[Lawler and Wood, 1966] Eugene L. Lawler and D. E.
Wood. Branch-and-bound methods: A survey. Oper. Res.,
14(4):699–719, 1966.

[Lin et al., 2023] Peng Lin, Shaowei Cai, Mengchuan Zou,
and Jinkun Lin. New characterizations and efficient lo-
cal search for general integer linear programming. arXiv
preprint arXiv:2305.00188, 2023.

[López-Ibáñez et al., 2016] Manuel López-Ibáñez, Jérémie
Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari,
and Thomas Stützle. The irace package: Iterated racing for
automatic algorithm configuration. Operations Research
Perspectives, 3:43–58, 2016.

[Merz and Freisleben, 1997] Peter Merz and Bernd
Freisleben. Genetic local search for the tsp: New
results. In Proceedings of 1997 Ieee International Con-
ference on Evolutionary Computation (Icec’97), pages
159–164. IEEE, 1997.

[Roshanaei et al., 2013] V Roshanaei, Ahmed Azab, and
H ElMaraghy. Mathematical modelling and a meta-
heuristic for flexible job shop scheduling. International
Journal of Production Research, 51(20):6247–6274, 2013.

[Shinano et al., 2018] Yuji Shinano, Stefan Heinz, Stefan
Vigerske, and Michael Winkler. Fiberscip - A shared
memory parallelization of SCIP. INFORMS J. Comput.,
30(1):11–30, 2018.

[Stützle, 2006] Thomas Stützle. Iterated local search for
the quadratic assignment problem. Eur. J. Oper. Res.,
174(3):1519–1539, 2006.

[Vaessens et al., 1996] Rob J. M. Vaessens, Emile H. L.
Aarts, and Jan Karel Lenstra. Job shop scheduling by local
search. INFORMS J. Comput., 8(3):302–317, 1996.

[Verachi and Prestwich, 2008] Stefania Verachi and Steven
Prestwich. Constructive vs perturbative local search for
general integer linear programming. In Proceedings of the
Fifth International Workshop on Local Search Techniques
in Constraint Satisfaction (LSCS), 2008.

[Wolsey, 2020] Laurence A Wolsey. Integer programming.
John Wiley & Sons, 2020.

[Xu et al., 2009] Y. Xu, Ted K. Ralphs, Laszlo Ladányi, and
Matthew J. Saltzman. Computational experience with a

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6956

https://www.gurobi.com

software framework for parallel integer programming. IN-
FORMS J. Comput., 21(3):383–397, 2009.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6957

	Introduction
	Preliminaries
	Integer Linear Programming
	Local Search and Evolutionary Algorithm

	Parallel Framework for Solving ILP
	New Initialization Method
	Influence Factors and Polarity
	Polarity Initialization

	Cooperative Evolution Mechanism
	Information Exchanging Scheme
	Solution Evolution Process
	Population Maintenance Policy

	Experiments
	Experimental Setup
	Comparisons with Parallel ILP Solvers
	Comparisons with the Basic Parallelization of Local-ILP
	Ablation Study
	Scalability of ParaILP

	Conclusions

