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Abstract

Runtime analysis, as a branch of the theory of AI,
studies how the number of iterations algorithms
take before finding a solution (its runtime) depends
on the design of the algorithm and the problem
structure. Drift analysis is a state-of-the-art tool for
estimating the runtime of randomised algorithms,
such as evolutionary and bandit algorithms. Drift
refers roughly to the expected progress towards
the optimum per iteration. This paper considers
the problem of deriving concentration tail-bounds
on the runtime/regret of algorithms. It provides
a novel drift theorem that gives precise exponen-
tial tail-bounds given positive, weak, zero and even
negative drift. Previously, such exponential tail
bounds were missing in the case of weak, zero, or
negative drift.
Our drift theorem can be used to prove a strong con-
centration of the runtime/regret of algorithms in AI.
For example, we prove that the regret of the RWAB
bandit algorithm is highly concentrated, while pre-
vious analyses only considered the expected regret.
This means that the algorithm obtains the optimum
within a given time frame with high probability,
i.e. a form of algorithm reliability. Moreover, our
theorem implies that the time needed by the co-
evolutionary algorithm RLS-PD to obtain a Nash
equilibrium in a BILINEAR max-min-benchmark
problem is highly concentrated. However, we also
prove that the algorithm forgets the Nash equilib-
rium, and the time until this occurs is highly con-
centrated. This highlights a weakness in the RLS-
PD which should be addressed by future work.

1 Introduction
Drift analysis is a powerful technique in understanding the
performance of randomised algorithms, particularly in the
field of runtime analysis of heuristic search. For more re-
cent overviews of drift analysis in evolutionary computation,
see [Doerr and Neumann, 2019; Neumann and Witt, 2010;
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Jansen, 2013; He and Yao, 2001; Hajek, 1982]. The ma-
jority of existing drift theorems provide an upper bound on
the expected runtime needed to reach a target state, such as
an optimal solution set [He and Yao, 2001]. By identifying
an appropriate potential function and demonstrating a posi-
tive drift towards the target state, the expected runtime can
be bounded by the reciprocal of the drift multiplied by the
maximum distance from the target state.

The focus of concentration tail-bound analysis is on quan-
tifying the deviation of the runtime of randomised algorithm
T , from its expected value. By providing insights into the
distribution of T , this approach offers a more detailed un-
derstanding of an algorithm’s performance [Kötzing, 2016;
Lehre and Witt, 2021; Doerr and Goldberg, 2013]. The con-
centration tail-bound analysis has gained significant inter-
est due to its potential for delivering tighter upper bounds
on the runtime of various algorithms. For instance, an ex-
ponential tail bound is used to bound the expected runtime
of RLS on separable functions [Doerr et al., 2013]. More-
over, in the case of (1+1)-cooperative co-evolutionary al-
gorithms, concentration tail-bound analysis can establish a
Θ(n log(n)) bound for the runtime of the cooperative co-
evolutionary algorithm on linear functions [Lehre and Lin,
2023]. The concentration tail-bound analysis is also useful
in the context of restarting arguments; for example [Case and
Lehre, 2020]. More precise runtime estimation can be valu-
able in optimising and comparing different algorithms, poten-
tially leading to improved algorithm design and performance
[Bian et al., 2020; Dang et al., 2021; Zheng et al., 2022;
Doerr and Qu, 2023].

Concentration tail bounds are not only used in runtime
analysis to help us understand evolutionary algorithms, in-
cluding simple genetic algorithms or coevolutionary algo-
rithms [Kötzing, 2016; Lehre and Lin, 2023], but can also be
used in regret analysis of reinforcement learning algorithms.
A typical example is using concentration inequality (Azuma-
Hoeffding inequality) to provide precise bounds for regret.
Concentration inequalities are used in the development of op-
timal UCB family algorithms, incorporating the concept of
optimism in the face of uncertainty [Auer et al., 2002].

1.1 Related Work
Researchers use drift analysis to analyse not only the run-
time of evolutionary algorithms but also other randomised
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algorithms like Random 2-SAT [Göbel et al., 2022] or the
expected regret of simple reinforcement learning algorithms
on bandit problems [Larcher et al., 2023]. We would like to
explore more advanced drift analysis tools to provide more
precise estimates of runtime and regret. Various extensions
of drift theorems have been proved, including multiplica-
tive drift [Doerr et al., 2010], variable drift [Baritompa and
Steel, 1996; Johannsen, 2010; Mitavskiy et al., 2009], and
negative drift [Oliveto and Witt, 2012]. The multiplicative
drift theorem [Doerr et al., 2010] refines the original additive
drift theorem by considering the current state, resulting in a
more precise bound when using the same potential function.
Variable drift [Baritompa and Steel, 1996; Johannsen, 2010;
Mitavskiy et al., 2009] generalises the multiplicative drift
concept to incorporate an increasing positive function, h. On
the other hand, negative drift [Oliveto and Witt, 2012] is em-
ployed to provide a lower bound for the expected runtime,
often used to demonstrate that an algorithm has an exponen-
tial expected runtime, thereby proving its inefficiency.

In recent years, researchers have been exploring advanced
drift theorems that focus on the tail bound of the run-
time [Kötzing, 2016; Lehre and Witt, 2021; Doerr and Gold-
berg, 2013]. Researchers are also interested in the applica-
tions of concentration inequalities, like the Azuma-Hoeffding
inequalities [Azuma, 1967]. They provide deeper insights
into the behaviour and performance of randomised algorithms
[Doerr and Künnemann, 2013].

1.2 Our Contributions
This paper provides a novel perspective on analysing tail
bounds by introducing a classic recurrence strategy. With the
help of the recurrence strategy, this paper presents a sharper
bound for all possible drift cases with a simpler proof. In par-
ticular, we provide an exponential tail bound under constant
variance with negative drift. Refining an existing method, we
also show a more precise exponential tail bound for the tra-
ditional cases with additive drift and for the cases in which
there is constant variance but weak or zero drift.

Finally, we illustrate the practical impact of our findings
by applying our theorems to various algorithms. The anal-
ysis brings us stronger performance guarantees for these
algorithms. In particular, we prove the instability of the
co-evolutionary algorithm (CoEA) on maximin optimisation
(BILINEAR problem instance) occurs with high probability.
Moreover, we show that the randomness of the reinforcement
learning algorithm RWAB can help to find the optimal pol-
icy for the 2-armed non-stationary bandit problem with high
probability. This paper is the first tail-bound analysis of both
random local search with pairwise dominance (RLS-PD) and
the bandit learning algorithm RWAB.

2 Preliminaries
For a filtration Ft, we write Et(·) := E(· | Ft). We denote
the 1-norm as |z|1 =

∑n
i=1 zi for z ∈ {0, 1}n and 1E by

indicator function, i.e. 1E = 1 if event E holds and 0 other-
wise. With high probability,” will be abbreviated as ”w.h.p.”.
We say an event En with problem size n ∈ N occurs w.h.p.
if Pr(En) ≥ 1− 1/poly(n). We defer pseudo-codes of algo-
rithms and tables in the appendix.

We define the k-th stopping time, also called k-th hitting
time, which will be used in later proofs.

Definition 1. (k-th stopping time) Given a stochastic process
(Xt)t≥0 on a state space in R. Let the target set A be a finite
non-empty subset of R, and then for any k ≥ 0, we define
Tk = min{t ≥ k | Xt ∈ A}. In particular, T0 is the first
hitting time at A.

We first provide a formal definition of variance-dominated
and variance-transformed processes.

Definition 2. (Variance-dominated processes) A sequence
of random variables X0, X1, · · · ∈ [0, n] is a variance-
dominated process with respect to the filtration F0,F1, . . .
if for all t ∈ N, the following conditions hold:

(1) E(Xt+1 −Xt | Ft) ≥ 0;

(2) ∃δ > 0 such that E
(
(Xt+1 −Xt)

2 | Ft

)
≥ δ.

Definition 3. (Variance-transformed processes) A sequence
of random variables X0, X1, · · · ∈ [0, n] is a variance-
transformed process with respect to the filtration F0,F1, . . .
if for all t ∈ N, the following conditions hold:

(1) 0 > E(Xt+1 −Xt | Ft) ≥ − c
n ;

(2) ∃δ > 0 such that E
(
(Xt+1 −Xt)

2 | Ft

)
≥ δ.

This paper mainly focuses on random processes which
consist of positive, weak (almost zero) or even a small neg-
ative drift with a constant second moment since these pro-
cesses exhibit more complicated dynamics [Kötzing et al.,
2015; Friedrich et al., 2016; Göbel et al., 2022; Doerr and
Zheng, 2020]. A general polynomial tail bound is provided
for these in [Kötzing, 2016], but any general exponential tail
bounds for these processes are still missing.

In the following sections, we exploit the Optional Stopping
Time Theorem to obtain our exponential tail bound. This the-
orem is crucial for proving the original additive drift theo-
rem, as highlighted by [He and Yao, 2001]. This recurrence
method can provide a different perspective to derive the ex-
ponential tail bound in runtime analysis. We defer the state-
ments of Optional Stopping Time Theorems in the appendix.

2.1 Previous Works and Discussion
With the development of runtime analysis, researchers have
established several concentration tail bounds for EAs. For
example, [Lehre and Witt, 2021] provides an exponential tail
bound for the basic (1+1)-EAs on OneMax functions, which
is a well-studied benchmark function to analyse the perfor-
mance of EAs. To the best of our knowledge, the current best
general tail bounds for both processes under the additive drift
and variance-dominated processes can be found in [Kötzing,
2016; Lehre and Witt, 2021].

[Kötzing, 2016] shows that the runtime is at most quadratic
in n with probability 1 − p for any p > 0. If we replace
1/pℓ log(c) by r > 0 and rewrite it in terms of an upper tail
bound, then the original bound becomes that given two con-
stants 1 ≤ c < n, ℓ > 0 and for any r > 0,

Pr
(
T ≥ rn2

)
≤ (

1

r
)1/ℓ log(c). (1)
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Although we have established a tail bound for variance-
dominated processes that concentrate on the expectation in a
polynomial order with respect to r in Equation (1), it is worth
exploring whether a more precise concentration tail bound
can be derived for such processes, such as an exponential tail.
A sharper exponential tail bound can improve the expected
runtime estimation and thus provide useful insights into ran-
domised algorithms.

3 A Recurrent Method in Upper Tail Bound
Next, we explore how to derive a general framework for pro-
viding exponential tail bound for randomised algorithms, in-
cluding evolutionary algorithms which satisfy certain condi-
tions. We explore the exit time of Xt out of some interval
[0, b], using the same set-up as [Kötzing, 2016].

In the proof of McDiamid inequality, [McDiarmid, 1989]
also uses the Hoeffding lemma and conditions on the past
events to establish the recurrence. [Doerr and Goldberg,
2013] uses the multiplicative drift condition directly to build
up the exponential recurrence relation and hence obtain an ex-
ponential tail bound. We want to borrow these ideas to derive
an exponential tail bound for variance-dominated processes.
To do this, we introduce the k-th hitting time of the target
state, which is also used in the theorem (Theorem 2.6.2) of
[Menshikov et al., 2016]. We combine this recurrent method
with the extended Optional Stopping Time theorem.

3.1 Variance Overcomes Negative Drift W.H.P.
We proceed to prove our main theorem by considering the
most general variance drift theorem which overcomes some
negative drift. Following the setting of [Hevia Fajardo et al.,
2023], in variance-transformed cases, we focus on the first
hitting time of a discrete-time stochastic process Xt at 0 given
that Xt ∈ [0, b]. The proof of Theorem 1 uses Lemma 1.

Lemma 1. Let (Xt)t≥0 be random variables over R≥0,
each with finite expectation. Let T be any stopping time of
Xt. If there exist constants r, η > 0 with respect to j, t
such that for any j ≥ 0, E

(
1{T>t}1{|Xt−Xt+1|≥j} | Ft

)
≤

r/(1 + η)j , then there exists a positive constant c such that
E
(
|Xt+1 −Xt| · 1{T>t} | Ft

)
≤ c for all t ∈ N ∪ {0}.

By using Lemma 1, we now satisfy condition (4) in the Op-
tional Stopping Time Theorem, enabling us to proceed with
the main proof (details in the appendix). Utilising the ex-
tended Optional Stopping Time Theorem, we follow a clas-
sic approach for generalisation, which also frees us from
the fixed step size condition and the need for the Azuma-
Hoeffding inequality for sub-Gaussian supermartingales. 1

We further construct a new stochastic process Yt = b2 − (b−
Xt)

2 + δt, connected to the original process and the variance
of the drift. By employing the idea of the k-th hitting time
from [Menshikov et al., 2016], we obtain the upper bound for
the k-th hitting time, allowing us to construct the recurrence.
We present the main theorem of this paper.

1The proofs in [Kötzing, 2016] mainly rely on Azuma-Hoeffding
inequality for sub-Gaussian supermartingales.

Theorem 1. Let (Xt)t∈N be a sequence of random variables
in a finite state space S ⊆ R adapted to a filtration (Ft)t∈N,
and let T = inf{t ≥ 0 | Xt ≤ 0}. Suppose
(A1) there exist δ > 0 such that for all t < T , it holds that

Et

(
(Xt+1 −Xt)

2 − 2(Xt+1 −Xt)(b−Xt)
)
≥ δ

(A2) and for all t ≤ T , it holds that 0 ≤ Xt ≤ b.
Moreover, for all t ≥ 0, assume there exist con-
stants r, η > 0 with respect to j, t, for any j ≥ 0,
E
(
1{T>t}1{|Xt−Xt+1|≥j} | Ft

)
≤ r/(1 + η)j . Then, for

τ > 0, Pr(T > τ ) ≤ e−τδ/eb2 .
Our main result (Theorem 1) allows the increased tolerance

of negative drift rather than non-negative drift tendency and
only necessitates a constant second moment of drift, instead
of variance, as outlined in [Kötzing, 2016]. Consequently,
we can establish a more precise exponential tail bound for
stochastic processes with a constant second moment of the
drift, even under weak, zero, or negative drift.

3.2 Standard Variance Drift
This section presents the standard variance drift scenario
(Theorem 2) as a corollary of Theorem 1. More precisely,
we now restrict to the non-negative drift tendency. We first
define several conditions which will be used later.

(C1*) There exist constants r, η > 0 with respect to j, t, such
that for any j ≥ 0 and for all t ≥ 0,

E
(
1{T>t}1[|Xt−Xt+1|≥j} | Ft

)
≤ r

(1 + η)j
.

(C1) There exists a constant c > 0 such that |Xt−Xt+1| <
c for all t ≥ 0.

(C2) E(Xt+1 −Xt | Ft) ≥ 0 for all t ≥ 0.
(C3) There exists some constant δ > 0 such that

E
(
Xt+1 −Xt)

2 | Ft

)
≥ δ for all t ≥ 0.

Theorem 2. Let (Xt)t≥0 be random variables over R≥0,
each with finite expectation, such that conditions (C1∗), (C2)
and (C3) hold. For any b > 0, define T = inf{t ≥ 0 | Xt ≥
b}. If X0 ∈ [b], then E(T ) ≤ (b2 −X2

0 )/δ. Moreover, for
τ > 0, Pr(T ≥ τ) ≤ e−τδ/eb2 .

Theorem 2 tells us that under the standard variance drift
case as discussed in [Kötzing, 2016], we can derive an expo-
nential tail bound for the runtime and such a process exhibits
a high concentration around the expectation.

Now, we present a corollary which consists of the fixed
step size condition.
Corollary 3. Let (Xt)t≥0 be random variables over
R≥0, each with finite expectation which satisfy conditions
(C1), (C2) and (C3). For any b > 0, define T = inf{t ≥ 0 |
Xt ≥ b}. Given that X0 ∈ [0, b], then E(T ) ≤ (b2 −X2

0 )/δ.
Moreover, for τ > 0, Pr(T ≥ τ) ≤ e−τδ/eb2 .

Furthermore, we derive a tail bound for the variance-
dominated processes with two absorbing states. Following
the setting of Theorem 10 in [Göbel et al., 2022], we will
prove the next theorem.
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Theorem 4. Let (Xt)t≥0 be random variables over R≥0,
each with finite expectation such that (C1∗), (C3) and
E(Xt+1 −Xt | Ft) = 0 hold. For any b > 0, define
T = inf{t ≥ 0 | Xt ∈ {0, b}}. If X0 ∈ [0, b], then
E(T ) ≤ (X0(b−X0))/δ.

Moreover, for τ > 0, Pr(T ≥ τ) ≤ e−2τδ/eb2 .

This proof is similar to Theorem 1 except that we use a
different stochastic process Yt = Xt(b−Xt) + δt and show
that Yt is a super-martingale. Unlike the proof of Theorem 1,
the proof of Theorem 4 uses the extended Optional Stopping
Time Theorem for super-martingale [Williams, 1991]. We
defer the proof to the appendix.

3.3 Standard Drift
If a stochastic process has drift ε where ε > 0 is some positive
constant, then we can give a different proof for the upper tail
bound for additive drift from the proof in [Kötzing, 2016].
This provides a more precise exponential upper tail bound.

Theorem 5. Let (Xt)t≥0 be random variables over R, each
with finite expectation which satisfy condition (C1∗) and
E[Xt+1 − Xt | Ft] ≥ ε for some ε > 0. For any b > 0,
define T = inf{t ≥ 0 | Xt ≥ b}. If X0 ∈ [0, b], then
E(T ) ≤ b−X0

ε . Moreover, for τ > 0, Pr (T ≥ τ) ≤ e−τε/eb.

We recover the exponential upper tail bound for the addi-
tive drift theorem. The bound we obtain gets rid of the coef-
ficients 1/8c2 in [Kötzing, 2016]. Theorem 2.5.12 of [Men-
shikov et al., 2016] provides a similar result and uses a sim-
ilar recurrence proof idea. While our result generalises the
result in [Menshikov et al., 2016] by releasing the fixed step
size, we provide a meaningful bound on the first hitting time
instead of bounding it above by infinity.

In summary, we have discovered a simple alternative to the
Azuma-Hoeffding inequality that provides an exponential tail
bound by only relying on basic martingale theory. This re-
sult can be applied to the random local search (RLS) type
algorithms that make finite steps at each iteration, as well
as other randomised algorithms including evolutionary algo-
rithms (EAs) that account for the possibility of large jumps
occurring. Another benefit from Theorem 1 is that it allows
the tolerance of the negative drift up to −Ω(1/b).

4 Applications to Random 2-SAT and Graph
Colouring

In this section, we illustrate our theorems on practical exam-
ples. We consider the examples provided by [McDiarmid,
1993; Mitzenmacher and Upfal, 2005; Göbel et al., 2022].
which include variance-dominated processes. We first dis-
cuss the Random 2-SAT problem.

4.1 Applications to Random 2-SAT
The 2-SAT Algorithm is designed to solve instances of the 2-
SAT problem, where a formula consists of clauses and each
of them contains exactly two literals (either variables or nega-
tions). In each iteration, the algorithm selects an unsatisfied
clause and picks one of the literals uniformly at random. The
truth value of the variable corresponding to this literal is then

inverted. Repeat the process until either we meet the stopping
criteria or a valid truth assignment is found.

[Papadimitriou, 1991] firstly provided a time complexity
analysis on such a simple randomised algorithm that returns
a satisfying assignment of a satisfiable 2-SAT formula ϕ with
n variables. Later, [Göbel et al., 2022] recovered the results
using drift analysis tools which we put in the Appendix.

By applying Theorem 2 with a variance bound 1, we can
bound the number of function evaluations of order O(n4)
with an upper exponential tail bound.
Theorem 6. Given any r ≥ 0, the randomised 2-SAT algo-
rithm, when run on a satisfiable 2-SAT formula over n ∈ N
variables, terminates in at most rn4 time with probability at
least 1− e−r/e.

4.2 Applications to Graph Colouring
Now we consider graph colouring, which has already been
studied by [McDiarmid, 1993] and [Göbel et al., 2022]. The
recolour algorithm generates a 2-colouring mapping with the
condition that no monochromatic edges can be found. The
algorithm assumes a subroutine called SEEK, which, given a
2-colouring of the points, outputs a monochromatic edge if
one exists. If there are no monochromatic edges, then the al-
gorithm terminates. Otherwise, the algorithm repeats picking
a point uniformly at random from the given monochromatic
edge and changes its colour.

[Göbel et al., 2022] provided a simpler proof of the O(n4)
expected runtime of the recolouring algorithm for finding a
2-colouring with no monochromatic triangles on 3-colorable
graphs. Following the setting and the proof of [Göbel et al.,
2022], by using Theorem 4, we can derive the following:
Theorem 7. Given any r ≥ 0, the randomised Recolouring
algorithm on a 3-colorable graph with n ∈ N vertices over
n ∈ N variables, terminates in at most rn4 time with proba-
bility at least 1− e−4r/3e.

5 Applications to Coevolutionary Algorithms
Next, we consider a slightly complicated example: compet-
itive co-evolutionary algorithms (CoEAs). Competitive co-
evolutionary algorithms are designed to solve maximin op-
timisation or adversarial optimisation problems, including
two-player zero-sum games [Popovici et al., 2012; Lehre,
2022]. There are various applications, including CoEA-GAN
[Toutouh et al., 2019], competitive co-evolutionary search
heuristics on cyber security problem [Lehre et al., 2023] and
enhanced GANs by using a co-evolutionary approach for im-
age translation [Shu et al., 2019].

We are interested in whether competitive CoEAs can help
find Nash equilibrium efficiently. We use the formulation in
[Nisan et al., 2007] to define Nash equilibrium. This paper
focuses on Pure Strategy Nash Equilibrium (abbreviated NE).
Definition 4. ([Nisan et al., 2007]) Consider a two-player
zero-sum game. Given a search space X × Y and a payoff
function g : X × Y → R, if for all (x, y) ∈ X × Y

g(x, y∗) ≤ g(x∗, y∗) ≤ g(x∗, y).

then (x∗, y∗) is called a Pure Strategy Nash Equilibrium of a
two-player zero-sum game.
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The pairwise dominance relation has been defined and in-
troduced into a population-based CoEA in [Lehre, 2022].
Definition 5 (Pairwise dominance). Given a function g =
X × Y → R and two pairs (x1, y1), (x2, y2) ∈ X × Y , we
say that (x1, y1) dominates (x2, y2) with respect to g, denoted
(x1, y1) ⪰g (x2, y2), if and only if g(x1, y2) ≥ g(x1, y1) ≥
g(x2, y1).

There is a single-pair CoEA called Randomised Local
Search with Pairwise Dominance (RLS-PD) [Hevia Fajardo
et al., 2023]. It has been shown that RLS-PD can find the
NE of a simple pseudo-Boolean benchmark called BILIN-
EAR in expected polynomial runtime. The processes induced
by RLS-PD on the BILINEAR problem is exactly a variance-
transformed process. We would like to use Theorem 1 to
show the exponential tail bound for the runtime.

RLS-PD samples a search point (a pair of point (x1, y1) ∈
X ×Y) uniformly at random. In each iteration, RLS-PD uses
the local mutation operator to generate the new search point
where the local mutation operator is sampling a random Ham-
ming neighbour. If the new search point dominates the orig-
inal search point in a pairwise-dominance manner, then the
original search point is replaced by the new one. Otherwise,
the original search point remains the same.

5.1 The BILINEAR Problem
In this section, we consider a simple class of discrete max-
imin benchmark called BILINEAR, which was first proposed
by [Lehre, 2022]. In this work, we use a variation of BI-
LINEAR as [Hevia Fajardo et al., 2023] to simplify our cal-
culation and illustrate applications of our main theorem. It
has been empirically shown in [Hevia Fajardo et al., 2023]
that RLS-PD behaves similarly on the original definition of
BILINEAR and the revised definition. In this paper, we only
consider this variation of BILINEAR.
Definition 6. ([Hevia Fajardo et al., 2023]) The BILINEAR
function is defined for two parameters α, β ∈ (0, 1) by

BILINEARα,β(x, y) := |y|1 (|x|1−βn)−αn |x|1+E1+E2

with the error terms E1 := max{(αn − |y|1)2, 1}/n3 and
E2 := −max{(βn − |x|1)2, 1}/n3. We also denote the set
of Nash equilibria as OPT, where OPT := {(x, y) | |x|1 =
βn ∧ |y|1 = αn}.

We consider OPT as our solution concept and the problem
setting α = 1/2±O(1/

√
n) and β = 1/2±O(1/

√
n) as in

[Hevia Fajardo et al., 2023]. We now derive the exponential
tail bound of RLS-PD to find the Nash equilibrium.

5.2 RLS-PD Solves BILINEAR Efficiently W.H.P.
Theorem 8. Consider α ∈ [1/2 − A/

√
n, 1/2 + A/

√
n]

and β ∈ [1/2 − B/
√
n, 1/2 + B/

√
n], where A,B > 0

are constants and 3(A + B)2 ≤ 1/2 − δ′ for some constant
δ′ > 0. The expected runtime of RLS-PD on BILINEARα,β is
O(n1.5). Moreover, given any r ≥ 0, the runtime is at most
2rn1.5, with probability at least 1− e−Ω(r).

We defer the proof of Theorem 8 to the appendix.
Theorem 8 shows that RLS-PD can find the Nash Equilib-

rium in O(n1.5) with overwhelmingly high probability. The

exponential tail bound provides a stronger performance guar-
antee up to the tail of the runtime than the sole expectation.

5.3 RLS-PD Forgets the Nash Equilibrium W.H.P.
After the algorithm finds a Nash Equilibrium efficiently, the
inherent characteristics of the function cause the algorithm
not only to forget the Nash Equilibrium but also move away
from it by a distance Ω(

√
n) in O(n) iterations w.h.p. This is

shown by the following theorem.

Theorem 9. Let α = 1/2 ± A/
√
n and β = 1/2 ± B/

√
n,

where A,B > 0 are constants. Consider RLS-PD on
BILINEARα,β . Then, for any initial search points (x0, y0),
the expected runtime that the search point firstly moves away
from OPT by a Manhattan distance at least (A + B)

√
n is

O(n). Moreover, given any r > 0, the runtime is at most rn,
with probability at least 1− e−Ω(r).

Theorem 9 illustrates how drift analysis can expose weak-
nesses in algorithms, suggesting what needs to be improved
in new algorithms. In particular, we can see even though
RLS-PD can find the optimum in polynomial time, it can still
suffer from evolutionary forgetting (i.e. forget the optimum
found in previous iterations) with high probability. So only
the expected runtime estimate might be insufficient to deter-
mine whether a coevolutionary algorithm is good or not. This
highlights the weakness of RLS-PD and the need to under-
stand coevolutionary dynamics further.

6 Applications to Regret Analysis of a Bandit
Learning Algorithm

We start with a brief introduction of bandit problems. Sup-
pose we have K decisions or ”arms”, where we obtain the
corresponding reward ra when we choose one specific de-
cision a. The goal of the bandit algorithm is to maximise
cumulative reward among time horizon T [Lattimore and
Szepesvári, 2020; Sutton and Barto, 2018]. In this paper, we
consider the quantity called regret (missed reward), which is
the difference between the reward of the chosen arm and the
optimal arm at each iteration. We provide a formal definition
of regret as follows.

Definition 7. ([Lattimore and Szepesvári, 2020; Larcher et
al., 2023]) Given time horizon T , each arm a is associated
with a probability distribution D(a), which we assume to be
over [0, 1] and for which the mean is denoted as µ(a); when-
ever arm a is pulled, the agent receives a reward distributed
according to D(a). The regret (missed reward) of the agent
at round t ∈ N is defined as Rt = ra∗ − rat , where at is the
arm chosen at round t, ra is the reward obtained from reward
distribution D(a) and a∗ = arg max{µ(a) | a ∈ [K]}. The
goal of the agent is to minimise the total regret R =

∑T
t=1 Rt

or the total expected regret E(R).

This paper focuses on the non-stationary 2-armed bandit
problem, in which the reward distributions may swap over
time and K = 2. More precisely, the agent receives a reward
according to a reward distribution D(a1) by pulling arm a1
and another reward according to another reward distribution
D(a2) by pulling arm a2. We assume that two distributions

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6944



D(a1) and D(a2) are fixed, and they will swap if a change
occurs along the time horizon. To simplify the calculation,
we assume both distributions over [0, 1]. We present the ap-
plication of our drift theorem (concentration tail bound) on
regret analysis of a simple reinforcement learning algorithm
for such a bandit problem. We defer the pseudo-code for Ran-
dom Walk with Asymmetric Boundaries (RWAB) proposed by
[Larcher et al., 2023] to the appendix.

Note that RWAB is designed to balance the exploration
and exploitation for non-stationary bandit problems. RWAB
mainly relies on the CHALLENGE operator to determine
which arm we prefer to pull or whether we swap the arms.
The CHALLENGE operator is designed to use the random
walk of action value S on [−

√
T/L, 1]. [Larcher et al.,

2023] shows that the expected regret of RWAB is Θ
(√

LT
)

where T is the time horizon and L is the number of changes.
We want stronger performance guarantees for the regret of
RWAB, i.e. a concentration tail bound for the regret estimate.
We would like to characterise the distribution of the regret.

Next, we present the main theorem for the regret of RWAB
algorithm. In this theorem, we assume L = o(T ).

Theorem 10. Given any ε ≥ 1, the regret of Algorithm
RWAB is at most 480ε(L +

√
LT ) with probability at least

1− 2e−
√
ε/e.

The proof of Theorem 10 is deferred to the Appendix.
By Theorem 10, RWAB Algorithm has regret at most or-

der O
(√

LT
)

for a 2-armed non-stationary bandit problem

w.h.p. By using minimax lower bound [Bubeck et al., 2012],
any algorithm on K-armed stationary bandit problems has re-
gret at least

√
Kn/20 for time horizon n. In particular, for

K = 2, the lower bound for the expected regret of any algo-
rithm on bandit stationary bandit problems is Ω(

√
n) for time

horizon n. [Larcher et al., 2023] showed that by consider-
ing L changes and each change of average steps T/L, RWAB

has expected regret at least Ω
(
L ·

√
T/L

)
= Ω

(√
LT

)
.

Theorem 10 confirms that RWAB is optimal with overwhelm-
ingly high probability, and we propose a new perspective of
analysing a bandit algorithm by using drift analysis, which is
rarely employed by the reinforcement learning community.

7 Experiments
To complement our asymptotic results with data for concrete
problem sizes, we conduct the following experiments.

7.1 Empirical Evidence of RLS-PD on BILINEAR

We conduct experiments with the RLS-PD for the max-
imin BILINEAR problem. The problem setup is (α, β) =
(0.5, 0.5), (0.3, 0.3), (0.3, 0.7), (0.7, 0.3), (0.7, 0.7). These
five scenarios cover the cases when the optimum lies in four
different quadrants and the centre of the search space. We
set the mutation rate χ = 1 and problem size n = 1000. We
run 1000 independent simulations for each configuration. For
each run, we initialise the search point uniformly at random.

Figure 1 displays the density plot for the runtime distri-
bution of RLS-PD on BILINEAR. The x-axis represents the
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(c) α = 0.7, β = 0.7
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(d) α = 0.3, β = 0.7
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(e) α = 0.7, β = 0.3

Figure 1: Runtime distribution for RLS-PD for various α and β.

runtime, the y-axis represents the frequency or density, and
the red dotted line represents the average value of the runtime
for each problem setting. As x increases, Figure 1 shows
that we have an exponentially decaying tail for the runtime of
RLS-PD on each problem configuration. It is very unlikely
that the runtime of RLS-PD on BILINEAR deviates too much
from the mean or the expected runtime from Figure 1 for each
problem configuration. From the statistics (figures and tables
in the appendix), we can see for each configuration, the fre-
quency that the actual runtime bounded above by the mean
runtime converges to 1. When (α, β) = (0.5, 0.5), the empir-
ical results are consistent with our theoretical bounds in the
sense of asymptotic order. The results for other problem con-
figurations raise a conjecture about whether our theoretical
results can also hold for all α, β ∈ [0, 1].

7.2 Empirical Evidence of RWAB Algorithm
We conduct experiments with the RWAB Algorithm for the
2-armed non-stationary bandit problem. The environment is
set up as two Bernoulli bandits with means µ1 = 0.2, µ2 =
0.8 and the number of changes L = 5, 10, 20, 40, 80, 100.
The changes are set up uniformly at random along the time
horizon T = 1000. 1000 independent simulations are run for
each configuration.

Figure 2 displays the regret distribution of RWAB. The x-
axis represents the regret of RWAB, the y-axis represents the
frequency or density, and the red dotted line represents the
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Figure 2: Regret distribution for various values of T and L.

average regret for each problem setting. As x increases, Fig-
ure 2 shows that we have an exponentially decaying tail for
the regret of RWAB on 2-armed non-stationary bandit prob-
lem with respect to the changes L. Figure 2 shows the con-
centration of regret around the empirical mean or the ex-
pected regret and it is also unlikely that the regret of RWAB
deviates too much from the expectation. The tables (deferred
in the appendix) suggest that our theoretical tail bound is
asymptotically tight regardless of the leading coefficient. Ta-
bles and figures for regret distributions show that for each
configuration, the frequency that the actual regret bounded
above by the mean regret is asymptotic to 1 as the increases
in the multiplicative factors of the upper bounds. Moreover,
the convergence rate is significantly faster than the counter-
part in the case of RLS-PD on BILINEAR. This means that
the theoretical bound (i.e. the leading coefficient) obtained
has room to improve. One conjecture may be the process
governing the dynamics of runtime for RLS-PD on BILIN-
EAR relies heavily on the high variance needed to overcome
the negative drift, while the process governing the dynamics
of regret induced by RWAB already exhibits positive drift ev-
erywhere before reaching the target state. Thus, it yields a
faster convergence.

8 Conclusion
This paper proves a more general and stronger drift theorem
(tail-bound). Our theorems can be used to analyse the first
hitting time of different random processes. As a sub-product,
this paper also resolves the open problem left in [Kötzing,

2016], which asks for a suitable replacement for the Azuma-
Hoeffding inequality to improve the tail bounds for random
processes. We apply our theorems to several practical ex-
amples, including Random 2-SAT, Recolouring, competitive
CoEAs and RWAB. To the best of our knowledge, it is the
first tail-bound drift analysis of RLS-PD and RWAB. Our drift
theorems provide more precise information on how the run-
time concentrates and a stronger performance guarantee. In
practice, it shows the limitation of the current coevolutionary
algorithm on maximin optimisation. It suggests a need for
a deeper understanding of the mechanism of CoEAs, which
may help to design a more stable CoEA. Moreover, our re-
sults confirm that randomness in RWAB can be helpful for
stochastic non-stationary bandit problems.

For future studies, both runtime analysis of CoEA on max-
imin optimisation and regret analysis of stochastic reinforce-
ment learning algorithms via drift analysis are still poorly un-
derstood and unexplored areas. In particular, on the technical
side, can we derive more precise bounds for RWAB since the
leading coefficient seems not to be optimal from empirical re-
sults or can we use these results to analyse more complicated
CoEAs or bandit algorithms? On the practical side, we could
try to use such concentration bound to design more efficient
algorithms. For example, we could try to design more sta-
ble CoEAs or develop a general optimal bandit algorithm by
using the random-walk design analysed in this work.
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Künnemann. How the (1+λ) evolutionary algorithm op-
timizes linear functions. In Proceedings of the 15th An-
nual Conference on Genetic and Evolutionary Computa-
tion, GECCO ’13, page 1589–1596, New York, NY, USA,
2013. Association for Computing Machinery.

[Doerr and Neumann, 2019] Benjamin Doerr and Frank
Neumann. Theory of Evolutionary Computation: Recent
Developments in Discrete Optimization. Natural Comput-
ing Series. Springer Nature, 2019.

[Doerr and Qu, 2023] Benjamin Doerr and Zhongdi Qu.
Runtime analysis for the nsga-ii: Provable speed-ups from
crossover. In AAAI, 2023.

[Doerr and Zheng, 2020] Benjamin Doerr and Weijie Zheng.
Sharp bounds for genetic drift in estimation of distribution
algorithms. IEEE Transactions on Evolutionary Compu-
tation, 24(6):1140–1149, 2020.

[Doerr et al., 2010] Benjamin Doerr, Daniel Johannsen, and
Carola Winzen. Multiplicative drift analysis. In Proceed-
ings of the 12th annual conference on Genetic and evolu-
tionary computation, pages 1449–1456, 2010.

[Doerr et al., 2013] Benjamin Doerr, Dirk Styled, and
Carsten Witt. When do evolutionary algorithms optimize
separable functions in parallel? In Proceedings of the
Twelfth Workshop on Foundations of Genetic Algorithms
XII, FOGA XII ’13, page 51–64, New York, NY, USA,
2013. Association for Computing Machinery.

[Doob, 1971] Joseph Leo Doob. What is a Martingale? The
American Mathematical Monthly, 78(5):451–463, 1971.
Publisher: Mathematical Association of America.

[Friedrich et al., 2016] Tobias Friedrich, Timo Kötzing, and
Martin S. Krejca. Edas cannot be balanced and stable.
In Proceedings of the Genetic and Evolutionary Compu-
tation Conference 2016, GECCO ’16, page 1139–1146,

New York, NY, USA, 2016. Association for Computing
Machinery.

[Göbel et al., 2022] Andreas Göbel, Timo Kötzing, and Mar-
tin S Krejca. Intuitive analyses via drift theory, 2022.

[Grimmett and Stirzaker, 2001] Geoffrey Grimmett and
David Stirzaker. Probability and Random Processes.
Oxford University Press, Oxford ; New York, 3rd ed
edition, 2001.

[Hajek, 1982] Bruce Hajek. Hitting-time and occupation-
time bounds implied by drift analysis with applications.
Advances in Applied probability, 14(3):502–525, 1982.

[He and Yao, 2001] Jun He and Xin Yao. Drift analysis and
average time complexity of evolutionary algorithms. Arti-
ficial Intelligence, 127(1):57–85, March 2001.

[Hevia Fajardo et al., 2023] Mario Alejandro Hevia Fajardo,
Per Kristian Lehre, and Shishen Lin. Runtime analysis
of a co-evolutionary algorithm: Overcoming negative drift
in maximin-optimisation. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion,
GECCO ’23, New York, NY, USA, 2023. Association for
Computing Machinery.

[Jansen, 2013] Thomas Jansen. Analyzing Evolutionary Al-
gorithms: The Computer Science Perspective. Springer
Publishing Company, Incorporated, 2013.

[Johannsen, 2010] Daniel Johannsen. Random combinato-
rial structures and randomized search heuristics. PhD the-
sis, Saarland University, 2010.

[Kötzing et al., 2015] Timo Kötzing, Andrei Lissovoi, and
Carsten Witt. (1+1) ea on generalized dynamic onemax.
In Proceedings of the 2015 ACM Conference on Founda-
tions of Genetic Algorithms XIII, FOGA ’15, page 40–51,
New York, NY, USA, 2015. Association for Computing
Machinery.

[Kötzing, 2016] Timo Kötzing. Concentration of First
Hitting Times Under Additive Drift. Algorithmica,
75(3):490–506, July 2016.

[Larcher et al., 2023] Maxime Larcher, Robert Meier, and
Angelika Steger. A simple optimal algorithm for the 2-arm
bandit problem. In Symposium on Simplicity in Algorithms
(SOSA), pages 365–372. SIAM, 2023.
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