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Abstract

Neural Combinatorial Optimization (NCO) is an
emerging domain where deep learning techniques
are employed to address combinatorial optimiza-
tion problems as a standalone solver. Despite
their potential, existing NCO methods often suf-
fer from inefficient search space exploration, fre-
quently leading to local optima entrapment or re-
dundant exploration of previously visited states.
This paper introduces a versatile framework, re-
ferred to as Memory-Augmented Reinforcement for
Combinatorial Optimization (MARCO), that can
be used to enhance both constructive and im-
provement methods in NCO through an innova-
tive memory module. MARCO stores data col-
lected throughout the optimization trajectory and
retrieves contextually relevant information at each
state. This way, the search is guided by two com-
peting criteria: making the best decision in terms
of the quality of the solution and avoiding revisit-
ing already explored solutions. This approach pro-
motes a more efficient use of the available opti-
mization budget. Moreover, thanks to the parallel
nature of NCO models, several search threads can
run simultaneously, all sharing the same memory
module, enabling an efficient collaborative explo-
ration. Empirical evaluations, carried out on the
maximum cut, maximum independent set and trav-
elling salesman problems, reveal that the memory
module effectively increases the exploration, en-
abling the model to discover diverse, higher-quality
solutions. MARCO achieves good performance in
a low computational cost, establishing a promising
new direction in the field of NCO.

1 Introduction
The objective in Combinatorial Optimization (CO) problems
is to find the optimal solution from a finite or countable in-
finite set of discrete choices. These problems are prevalent
in many real-world applications, such as chip design [Mirho-
seini et al., 2021], genome reconstruction [Vrček et al., 2022]
and program execution [Gagrani et al., 2022].

In recent years, the field of Neural Combinatorial Opti-
mization (NCO) has emerged as an alternative tool for solving
such problems [Bengio et al., 2021; Mazyavkina et al., 2021;
Bello et al., 2016]. NCO uses deep neural networks to
address CO problems in an end-to-end manner, learning
from data and generalizing to new, unseen instances. Re-
searchers in this field have followed the steps of heuris-
tic optimization, proposing the neural counterparts of con-
structive methods [Bello et al., 2016; Kool et al., 2018;
Kwon et al., 2020] and improvement methods [Lu et al., 2019;
Chen and Tian, 2019; Wu et al., 2021].

Neural constructive methods quickly generate an approxi-
mate solution in a one-shot manner by means of a learnt neu-
ral model. While being simple and direct, constructive meth-
ods suffer from their irreversible nature, barring the possibil-
ity of revisiting earlier decisions. This limitation becomes
particularly pronounced in large problems where suboptimal
initial decisions in the construction of the solution can signifi-
cantly impact the final outcome. To improve the performance
of these methods, recent efforts have employed techniques
such as sampling, where instead of following the output of
the model deterministically, a random sample is taken from
a probability distribution given by the output, with the in-
tention of obtaining better solutions and break with the de-
terministic behaviour, obtaining a richer set of solutions; or
beam search [Choo et al., 2022], which maintains a collec-
tion of the highest-quality solutions as it explores the search
space based on the output of the neural network, i.e., the prob-
ability of adding an item to the partial solution that is be-
ing constructed. Similarly, active search [Bello et al., 2016;
Hottung et al., 2021] is used to update the model’s weights
(or a particular set of weights) during test time, in order to
overfit the model to the test instance to be solved.

Alternatively, neural improvement methods are closely
linked to perturbation methods, such as local search. They
start from a complete solution, and operate by iteratively sug-
gesting a modification that improves the current solution at
the present state. Unlike constructive methods, improvement
methods inherently possess the ability to explore the search
space of complete solutions. However, they often get stuck
in local optima or revisit the same states repeatedly, lead-
ing to cyclical patterns. Recent studies [Barrett et al., 2020;
Garmendia et al., 2023] have employed a variety of strate-
gies inherited from the combinatorial optimization literature
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to tackle these drawbacks. The method by [Barrett et al.,
2020] keeps a record of previously performed actions, while
the study in [Garmendia et al., 2023] maintains a tabu mem-
ory of previously visited states, forbidding the actions that
would lead to visit those states again.

Neural constructive methods, neural improvement meth-
ods, and most classical optimization proposals all face a sig-
nificant challenge: exploring efficiently the search space. To
address this, we introduce a new framework, referred to as
Memory-Augmented Reinforcement for Combinatorial Opti-
mization, or MARCO. This framework integrates a memory
module into both neural constructive and neural improvement
methods. The memory records the visited or created solutions
during the optimization process, and retrieves relevant histor-
ical data directly into the NCO model, enabling it to make
more informed decisions.

A key feature of MARCO is the ability to manage a shared
memory when several search threads are run in parallel. By
doing so, MARCO not only reduces the redundancy of stor-
ing similar data across multiple threads but also facilitates
a collaborative exploration of the search space, where each
thread benefits from a collective understanding of the in-
stance.

The main contributions of the paper are as follows: (1) in-
troducing MARCO as a pioneering effort in integrating mem-
ory modules within both neural improvement and construc-
tive methods. (2) Designing a similarity-based search mecha-
nism that retrieves past, relevant information to feed the mem-
ory and to better inform the model. (3) Presenting the paral-
lelism capabilities of MARCO, which enables a more effi-
cient and collaborative exploration process. (4) Illustrating
the implementation of the framework to three graph-based
problems: maximum cut, maximum independent set, and
travelling salesman problem. Experiments are then carried
out on these three problems with graphs up to 1200 nodes.
The empirical results indicate that MARCO surpasses some
of the recently proposed learning-based approaches, demon-
strating the benefits of using information regarding visited
solutions. The source code and supplementary material are
available online1.

2 Related Work
Various strategies have been developed to enhance the explo-
ration of the search space in NCO algorithms. Most of the
methods sample from the model’s logits [Bello et al., 2016;
Kool et al., 2018; Kwon et al., 2020], which introduces
stochasticity into the solution inference process. Beyond
sampling, entropy regularization has been implemented dur-
ing the training of NCO models [Kim et al., 2021], to ensure
the models are not overconfident in their output. Furthermore,
[Grinsztajn et al., 2024] proposed a multi-decoder system,
where each decoder is trained on instances where it performs
best, resulting in a set of specialized and complementary poli-
cies.

Despite these advancements, none of these methods exploit
any kind of memory mechanism, which has the potential to

1https://github.com/TheLeprechaun25/MARCO.

Figure 1: Optimization step in MARCO.

leverage previous experiences in the decision-making process
and promote exploration.

In the work by [Garmendia et al., 2023], a tabu search al-
gorithm [Glover and Taillard, 1993], known for its memory-
based approach to circumventing cyclical search patterns, is
layered on top of a neural improvement method. The algo-
rithm utilizes a tabu memory to track previously visited solu-
tions. However, this memory serves merely as an external fil-
ter, preventing the selection of tabu actions without integrat-
ing historical data into the neural model’s decision-making
process.

DeepACO [Ye et al., 2023] uses a neural network to learn
the underlying heuristic of an ant colony optimization algo-
rithm [Blum, 2005; Dorigo et al., 2006]. It maintains an
external pheromone matrix, indicative of promising variable
decisions. However, the integration of this pheromone data is
indirect; it is combined in a post-hoc fashion with the output
probabilities of the model rather than being an intrinsic part
of the learning process.

Closer to our work, ECO-DQN [Barrett et al., 2020] is
a neural improvement method that records the last occur-
rence of each action. This operation-based memory approach,
which simply tracks when actions were last taken, is com-
putationally efficient, requiring only minimal storage. The
drawback of this approach is that it only focuses on the ac-
tions, failing to consider the overall search context. The ef-
fectiveness of an action is often contingent on the broader
state of the optimization process, a fact that operation-based
memory fails to capture. Compared to this work, we save en-
tire solutions in memory, incorporating a more holistic view
of the search context to the system, at the cost of higher mem-
ory requirements.

3 MARCO: A Memory-Based Framework
This section introduces MARCO, the main contribution of
this paper. Although the framework can be used for arbi-
trary CO problems, we first focus on graph-based problems,
as they are ubiquitous in combinatorial optimization. In fact,
from the 21 NP-complete problems identified by Karp (1972),
ten are decision versions of graph optimization problems,
while most of the other ones can also be modeled over graphs.
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Let G = (V,E) be a simple graph composed of a set of
nodes V and a set of edges E. Finding a solution θ for graph
problems often involves finding subsets of nodes or edges that
satisfy specific criteria, such as minimizing or maximizing a
certain objective function.

Briefly, the idea of MARCO is to leverage both (1) a learnt
policy π defining how the current solution should be modi-
fied for exploring the search space, and (2) a memory mod-
uleM, providing information to build the policy. The policy
is typically parameterized with a neural network, and espe-
cially with a graph neural network [Kipf and Welling, 2016]
when operating on graph problems. Such an architecture has
been considered as highly relevant for combinatorial opti-
mization [Cappart et al., 2023]. Besides, the policy is it-
eratively called to modify the solution until a convergence
threshold has been reached. A typical optimization step with
MARCO is illustrated in Figure 1.

This mechanism can be integrated into both constructive
and improvement methods. The main difference relates to
how a solution is defined and how information is retrieved
from the memory. Let θt refer to a complete solution obtained
after t iterations, and θ̂t refer to a partial solution, i.e., a so-
lution where only t variables has been assigned, with at least
one variable not assigned. In constructive methods, MARCO
is capable of using a deterministic policy repeatedly, i.e., opt-
ing for the greedy action to generate multiple different con-
structions. Each construction starts from an empty solution
and each optimization step consists in extending the current
partial solution, i.e., assigning an unassigned variable in the
optimization problem. The policy takes as input both static
information (i.e., the graph instance G) and dynamic infor-
mation related to the current partial solution θ̂t). The memory
then stores a solution once it is completed, i.e., once all the
variables have been assigned. On the other hand, improve-
ment methods feature an iterative refinement of a complete
solution. Each step modifies a current (complete) solution
θt, transitioning it to a subsequent solution θt+1. In this sce-
nario, the dynamic information is the complete solution θt.
Each explored solution is recorded into the memory.

For both methods, the training is conducted through re-
inforcement learning. Each time a completed solution is
reached, a reward rt is obtained, denoting how good the ex-
ecuted optimization trajectory has been. The reward is de-
signed to balance two factors: (1) the quality of the solution
found and (2) the dissimilarity of the new solution compared
to previous solutions stored in memory.

3.1 Memory Module
As shown in Algorithm 1, the inference in MARCO starts
with the selection of an initial solution (refer to line 2). In
each optimization step, the memory module M is responsi-
ble for storing the visited solutions (line 6), and retrieving
aggregated historical data ht (line 7). The historical data (ht)
is aggregated with the current (partial) solution and the graph
features (G) to form the current optimization state st (line 8).
Subsequently, st is input into the model (line 9), which then
proposes a set of actions that generate new solutions (line 10).

The specific process of retrieval is shown in Algorithm 2.
To retrieve relevant solutions, MARCO employs a similarity-

based search. This involves comparing the current (partial)
solution (θ̂t or θt) with each stored solution (θt′ where t′ < t)
using a similarity metric (e.g., the inner product in line 4).
Intuitively, the idea is to fed the policy with the most similar
solutions to the current one for executing the next exploration
step. We carry out the retrieval using a k-nearest neighbors
search (line 5). Rather than simply averaging the k most sim-
ilar solutions, MARCO uses a weighted average approach,
where the weight given to each past solution is directly pro-
portional to its similarity to the current solution. This score is
normalized, ranging from 0 (completely different) to 1 (iden-
tical), to represent the level of similarity (see line 6).

Algorithm 1 Inference with MARCO

1: procedure MARCO(graph G, policy π, k,max steps)
2: θ0 ← INITIALIZESOLUTIONS
3: M← INITIALIZEMEMORY(k)
4: for t = 0 to max steps− 1 do
5: if θt is Completed then
6: M← STOREINMEM(θt)

7: ht ← RETRIEVEFROMMEM(M, k, θt)
8: st ← AGGREGATE(G, θt, ht) ▷ Get current state
9: at ← POLICY(π, st)

10: θt+1 ← STEP(θt, at) ▷ Get next solution

Algorithm 2 Action retrieval from memory

1: procedure RETRIEVEFROMMEM(M, k, θt)
2: v ← LENGTH(M)
3: k ← min(k, v)
4: simScore← INNERPRODUCT(θt, θt′ | t′ < t.)
5: ht ← KNN(k, simScore,M)

6: ĥt ← ht × NORM(simScore)

7: return ĥt ▷ Return relevant historical data

Collaborative Memory
An additional feature enabled by MARCO is the implemen-
tation of parallel optimization threads during its inference
phase. In this setup, multiple concurrent threads are run for
each problem instance, collaboratively exploring the solution
space. A key aspect of this functionality is the use of shared
memory across all threads. This collective memory stores all
the explored solutions by any thread, making it accessible to
the entire group.

4 Application of MARCO
In this study, we demonstrate the adaptability of MARCO to
various problem types, encompassing both constructive and
improvement methods. We specifically apply MARCO in
two scenarios: (1) a neural improvement method for prob-
lems with binary variables, such as the Maximum Cut (MC)
and the Maximum Independent Set problem (MIS); and (2)
a neural constructive method for permutation problems, such
as the Travelling Salesman Problem (TSP).
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Figure 2: MARCO for Neural Improvement methods for the Maxi-
mum Cut problem. Initially, multiple solutions are randomly gen-
erated for a given problem instance. Each solution is iteratively
improved, forming a thread. Throughout this process, the visited
solutions and corresponding actions are stored into a shared mem-
ory. This collective memory then updates the graph features fed to
the model.

4.1 Improvement Methods for Binary Problems
In binary optimization problems, a solution is formalized as a
binary vector, denoted as θ ∈ {0, 1}|V | for a problem with |V |
variables. Each variable xi represents a binary decision for
the ith variable. Neural improvement methods are designed
to optimize a problem by iteratively refining an initial com-
plete solution θ0, which can be generated either randomly or
through heuristic methods. In the case of binary problems, the
central operation is a node-wise operator that flips the value
of a node in θ. The memory records visited solutions and their
associated actions (e.g., a bit-flip action, consisting in flipping
the value of a variable). When a new solution is generated, the
model consults the memory to retrieve the actions performed
in similar previous scenarios. The importance of the stored
actions is given by the similarity between the current solu-
tion θt and previously stored solutions θt′ with t′ < t. We
compute the similarity using the inner product:

Similarity(θt, θt′) = ⟨θt, θt′⟩ =
∑
i∈V

(θt)i · (θt′)i (1)

In this case, the aggregated memory data (ht) is a vector of
size |V |, defined as the weighted average of the actions that
were executed in the k most similar solutions (if any). See
Figure 2 for a visual description of the inference in neural
improvement methods with MARCO.

The reward rt obtained by a neural improvement model
at each step t is defined as the non-negative difference be-
tween the current objective value of the solution, f(θt), and
the best objective value found thus far (f(θ∗)), i.e., rt =
max{f(θt) − f(θ∗), 0}. This reward structure, prevalent in
neural improvement methods [Ma et al., 2021; Wu et al.,
2021], motivates the model to continually seek better solu-
tions. To prevent the model from cycling through the same
states and encourage novel solution exploration, we incorpo-
rate a binary penalty term pr, activated when revisiting pre-
viously encountered solutions. The adjusted reward for each

Figure 3: MARCO for Neural Constructive methods. Travelling
Salesman example. Each solution in a batch begins with a distinct
initial node. Subsequently, every thread proceeds to iteratively con-
struct a solution, considering data gathered from the memory mod-
ule. Upon the completion of this construction process, the obtained
solution is stored within the memory, serving as a reference for sub-
sequent solution constructions.

step is thus r̂t = rt − wp × pr, where wp is a weight factor
for the penalty.

4.2 Constructive Methods for Permutations
The objective in permutation problems like the TSP is to
find a permutation of nodes in a graph that maximizes or
minimizes a specific objective function. Neural constructive
methods build the permutation incrementally, starting from
an empty solution and adding elements sequentially until a
complete permutation is formed.

In the context of permutation problems, the solution θ can
also be conceptualized as a binary vector θb ∈ {0, 1}|E|.
Each element in this vector corresponds to an edge eij in the
graph, indicating whether the edge is part of the solution, that
is, whether node i and node j are adjacent in the permutation.

At each step of the permutation building process, the model
operates on a partial solution, defined as a sequence θ̂bt =
(θbt [1], θ

b
t [2], . . . , θ

b
t [k]), where k < |V | is the current number

of nodes in the sequence. As the model progresses through
constructing the permutation, the memory data is used to
consider which edges have been selected in previously con-
structed solutions that are similar to θ̂bt . The similarity score is
performed by an inner product between the binary represen-
tations of the partial solution θ̂bt and the complete solutions
saved in memory θbt′ with t′ < t:

Similarity(θ̂bt , θ
b
t′) = ⟨θ̂bt , θbt′⟩ =

∑
i∈V

(θ̂bt )i · (θbt′)i (2)

Figure 3 showcases the inference in MARCO for neural con-
structive methods. Training involves computing a reward
once the solution is completed. The reward rt = f(θt), given
by the objective value of the solution, is adjusted by subtract-
ing a baseline value to stabilize training. A common approach
is to use the average reward across different initializations, as
done in POMO for the TSP [Kwon et al., 2020].
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Our initial experiments with constructive models showed
that exact solution repetitions are uncommon for large in-
stances. Therefore, instead of the binary penalty system
used in improvement methods, we apply a scaled penalization
based on similarity levels with stored solutions. The final re-
ward is calculated as r̂t = rt−wp×AVGSIM(θt, θt′), where
AVGSIM(θt, θt′) is the average of all the inner products be-
tween the constructed solution and the k most similar stored
solutions.

5 Model Architecture

Graph neural networks are particularly well-suited to param-
eterize policy π. We specifically use a Graph Transformer
(GT) [Dwivedi and Bresson, 2020] coupled with a Feed-
Forward Neural Network. GTs are a generalization of trans-
formers [Vaswani et al., 2017] for graphs. The fundamen-
tal operation in GTs involves applying a shared self-attention
mechanism in a fully connected graph, allowing each node
to gather information from every other node. The gathered
information is then weighted by computed attention weights,
which indicate the importance of each neighbor’s features to
the corresponding node.

Our model aims to be adaptable to various combinatorial
problems, requiring it to assimilate both the graph’s struc-
tural information and the attributes of its nodes and edges.
To achieve this, we modify the GT to incorporate structural
information encoded as edge features within the Attention
(Attn) mechanism. This adaptation is reflected in the follow-
ing equation.

Attn(Q,K, V ) =

(
softmax

(
QKT

√
dk

+E

)
·E

)
V (3)

In this equation, Q, K, and V stand for Query, Key, and
Value, respectively, which are fundamental components of
the attention mechanism [Vaswani et al., 2017] and dk is a
scaling factor. E = We · eij is a linear transformation of the
edge weights, where We ∈ R1×nheads is a learnable weight
matrix, and eij represents the edge features between nodes i
and j. E integrates edge information by being added to the
attention scores and used in a dot product.

The final step involves processing the output of the GT
through an element-wise feed-forward neural network to gen-
erate action probabilities. The output of the GT could be both
node- or edge-embeddings. The performed action depends
on the method in use. In our studied cases, we will use node
embeddings to generate node-based actions: node-flips for
improvement methods in binary problems and node addition
to the partial solution for the constructive method in permuta-
tion problems. However, MARCO is also applicable to edge-
based actions, such as pairwise operators (swap, 2-opt) for
permutation-based improvement methods.

We utilize the policy gradient REINFORCE algorithm
[Williams, 1992] to find the optimal parameter set, π∗, which
maximizes the expected cumulative reward in the optimiza-
tion process.

6 Experiments
6.1 Problems
We validate the effectiveness of MARCO across a diverse
set of CO problems both binary and permutation-based: the
Maximum Cut (MC), Maximum Independent Set (MIS) and
the Travelling Salesman Problem (TSP).

Maximum Cut (MC). The objective in MC [Dunning et
al., 2018] is to partition the set of nodes V in a graph G into
two disjoint subsets V1 and V2 such that the number of edges
between these subsets (the cut) is maximized. The objective
function can be expressed as: max

∑
(u,v)∈E δ[θu ̸=θv ] where

θu and θv are binary variables indicating the subset to which
nodes u and v belong, and δ is a function which equals to 1 if
θu and θv are different and 0 otherwise.

Maximum Independent Set (MIS). For the MIS prob-
lem [Lawler et al., 1980], the goal is to find a binary vec-
tor θ that represents a subset of nodes S ⊆ V in a graph G
such that no two nodes in S are adjacent, and the size of S
is minimized. The objective function can be formulated as:
min |S| such that (u, v) /∈ E for all u, v ∈ S

Travelling Salesman Problem (TSP). In TSP [Lawler et
al., 1986; Wang and Tang, 2021], given a set of nodes V
and distances du,v between each pair of nodes u, v ∈ V ,
the task is to find a permutation θ of nodes in V that
minimizes the total travel distance. This is expressed as:
min

∑|V |
i=1 d(θi, θi+1) with θ|V |+1 = θ1

6.2 Experimental Setup
Training For each problem, we train a unique model, us-
ing instances that vary in size. This helps the model to learn
strategies that can be transferable between differently sized
instances. For the MC and MIS, we used randomly generated
Erdos-Renyi (ER) [Erdős et al., 1960] graphs with 15% of
edge probability, and sizes ranging from 50 to 200 nodes. For
the TSP, fully connected graphs ranging from 50 to 100 nodes
were generated, in which cities were sampled uniformly in
a unit square. The total training time depends on the prob-
lem. The models for both MC and MIS required less than 40
minutes, while the one for the TSP required a significantly
longer training (4 days) to reach convergence. See the sup-
plementary material for a detailed description of the training
configuration used.

Inference To evaluate the performance of MARCO, we
have established certain inference parameters. For MC and
MIS, we set the neural improvement methods to execute with
50 parallel threads (processing 50 solutions simultaneously),
stopping upon 2|V | improvement steps. For the TSP, we use
100 parallel initializations (as done in POMO [Kwon et al.,
2020]) and 20 iterations (solution constructions) for each in-
stance. We have used k = 20 for the similarity search. A
more detailed description of the inference configuration used
is reported in the supplementary material. MARCO has been
implemented using PyTorch 2.0. A Nvidia A100 GPU has
been used to train the models and perform inference. Exact
methods and heuristics serving as baselines were executed in
a cluster with Intel Xeon X5650 CPUs.
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Evaluation Data Following the experimental setup of re-
cent works [Ahn et al., 2020; Böther et al., 2021; Zhang et
al., 2023], we will evaluate the MC and MIS problems in ER
graphs of sizes between 700-800, and harder graphs from the
RB benchmark [Xu and Li, 2000] of sizes between 200-300
and 800-1200. For TSP, we follow the setting from [Kool et
al., 2018] and use randomly generated instances, with uni-
formly sampled cities in the unit square. We use graphs of
sizes 100, 200 and 500.

Ablations We evaluate MARCO through several ablations
that help us understand the impact of its different compo-
nents. We begin by evaluating standalone models proposed
in this work: the Neural Improvement Method (NIM) and
Neural Constructive Methods (NCM), both of which operate
without any integrated memory module. Next, for improve-
ment methods, we add a NIM equipped with an operation-
based memory (Op-NIM), tracking the number of steps since
each action was executed lastly (imitating ECO-DQN [Bar-
rett et al., 2020]). Finally, we asses MARCO-ind, a variant
of MARCO that operates without shared memory, executing
multiple threads simultaneously but independently, with each
thread maintaining its own separate memory.

Baselines To assess MARCO’s performance, we conduct
a comprehensive comparison against a broad spectrum of
combinatorial optimization methods tailored to each specific
problem addressed. Our comparative analysis includes exact
algorithms, heuristics, and learning-based approaches

For the MC, our comparison includes the GUROBI
solver [Gurobi Optimization, LLC, 2023], the local search
enhanced heuristic BURER [Burer et al., 2002], and ECO-
DQN [Barrett et al., 2020], which is a neural improvement
method incorporating an operation-based memory.

For MIS, we also include GUROBI [Gurobi Optimization,
LLC, 2023], together with KAMIS [Lamm et al., 2016], a
specialized algorithm for MIS; and a constructive heuristic
(Greedy), that selects the node with minimum degree in each
step. Furthermore, we examine also a range of recently pro-
posed learning-based methods: DGL [Böther et al., 2021],
LwD [Ahn et al., 2020] and FlowNet [Zhang et al., 2023].

For the TSP, we report results of the well known conven-
tional solver Concorde [Applegate et al., 2006], the heuris-
tic LKH-3 [Papadimitriou, 1992], the Nearest Neighbor (NN)
heuristic; and the learning-based methods used are the neural
constructive POMO [Kwon et al., 2020] enhanced with sam-
pling and data augmentation, LEHD [Luo et al., 2024] which
reports the best results among neural methods and two of the
state-of-the-art neural improvement methods: DACT [Ma et
al., 2021] and NeuOPT [Ma et al., 2023].

6.3 Results
We present the results for each studied problem in a table di-
vided by three row-segments, the first one consisting of non-
learning methods (exact and heuristic), the second with recent
learning methods from the literature, and the third with the
methods (MARCO and ablations) proposed in this paper. We
report both the average objective value in the evaluation in-
stance set and the time needed for performing inference with
a unique instance (batch size of 1). We use ms, s and m to

denote milliseconds, seconds and minutes, respectively. For
learning methods, we report the results from the best perform-
ing configuration reported in the original paper. For exact
solvers, we report the best found solution when the optimal
solution is not achieved in a limit of 1 and 10 minutes per
instance.

MC In Table 1 we report the results for the MC. MARCO
significantly outperforms GUROBI and ECO-DQN, espe-
cially in larger problem instances (ER700-800, RB800-
1200). In addition, MARCO proves to be competitive against
the state-of-the-art heuristic, BURER, in the studied graph in-
stances. The ablation results show that using the proposed
memory scheme is superior to (1) not using any memory
module, and (2) using an operation-based memory. More-
over, using a shared memory slightly improves the perfor-
mance (with respect to MARCO-ind), while the computa-
tional cost is reduced. Compared to the ECO-DQN in com-
putational cost, MARCO reduces the time needed to perform
2|V | improvement steps.

ER700-800 RB200-300 RB800-1200
Method Obj. ↑ Time Obj. ↑ Time Obj. ↑ Time

GUROBI 23420.17 1m 2024.55 1m 20290.08 1m
GUROBIlong 24048.93 10m 2286.48 10m 23729.44 10m
BURER 24235.93 1.0m 2519.47 1.0m 29791.52 1.0m

ECO-DQN 24114.06 2.1m 2518.76 29s 29638.78 3.0m

NIM 24037.66 45s 2517.01 1.5s 29752.92 2.0m
Op-NIM 24081.18 47s 2518.34 1.6s 29751.87 2.1m
MARCO-ind 24203.11 52s 2519.46 2.3s 29778.84 2.7m
MARCO 24205.97 49s 2519.47 2.2s 29780.71 2.5m

Table 1: MC performance table. The best results overall and the best
results among learning-based methods are highlighted in bold.

MIS Table 2 summarizes the results for MIS. Here,
MARCO is also able to surpass the learning methods and
its ablations, obtaining a comparable performance to the ex-
act solver. Moreover, it reduces the gap to the specialized
KAMIS algorithm. While incorporating a memory module in
MARCO (NIM vs. MARCO) increases the time cost, it con-
tributes to achieving superior solutions, while NIM gets stuck
in suboptimal solutions (increasing the number of steps does
not increase the performance).

TSP Results for the TSP are reported in Table 3. MARCO
can obtain good inference performance in the studied in-
stances, reaching the best found solutions for N100 and
N200; and being second on N500, only surpassed by LEHD.
It is important to note that our basic NCM implementation
(without memory) obtains comparable results with the state-
of-the-art learning method while being orders of magnitude
faster. Also, MARCO improves over both NCM and the
method without sharing memory (MARCO-ind).

Generalization to Larger Sizes
Training NCO models with reinforcement learning is com-
putationally intensive, leading to a common practice in the
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ER700-800 RB200-300 RB800-1200
Method Obj. ↑ Time Obj. ↑ Time Obj. ↑ Time

GUROBI 43.47 1m 19.98 1m 40.90 1m
GUROBIlong 43.64 10m 20.03 10m 41.34 10m
KAMIS 44.98 1m 20.10 1m 43.15 1m
Greedy 38.85 50ms 18.41 4ms 37.78 54ms

DGL 38.71 11s 19.01 2s 32.32 3s
LwD 41.17 4s 17.36 1s 34.50 1s
FlowNet 41.14 2s 19.18 0.1s 37.48 0.5s

NIM 40.16 2s 19.26 0.5s 37.80 1s
Op-NIM 40.66 4s 19.70 1.2s 38.59 4s
MARCO-ind 43.72 19s 19.77 1.5s 39.94 7s
MARCO 43.78 17s 19.87 1.4s 40.13 6s

Table 2: MIS performance table. The best results overall and the
best results among learning-based methods are highlighted in bold.

N100 N200 N500
Method Obj. ↓ Time Obj. ↓ Time Obj. ↓ Time

Concorde 7.76 1m 10.72 1m 16.59 1m
LKH-3 7.76 1m 10.72 1m 16.59 1m
NN 9.69 1ms 13.45 2ms 20.80 5ms

POMO 7.81 0.1s 11.73 1s 21.88 2s
LEHD 7.76 2m 10.72 4m 16.63 10m
DACT 7.77 3m 14.23 5m 145.78 11m
NeuOPT 7.77 2m 10.73 4m 39.19 8m

NCM 7.76 0.1s 10.75 1s 16.90 2s
MARCO-ind 7.76 3s 10.73 11s 16.81 22s
MARCO 7.76 3s 10.72 11s 16.78 21s

Table 3: TSP performance table. The best results overall and the
best results among learning-based methods are highlighted in bold.

literature where models are often trained on smaller-sized in-
stances (up to 100). While this approach is understandable
due to resource constraints, it is important to consider the
ability of these models to generalize to larger instances. This
aspect is crucial for their applicability in real-world scenarios,
where problem sizes can vary significantly.

The data presented in Table 2 illustrate this point. Here,
even a basic greedy constructive method manages to out-
perform more complex learning-based methods (DGL, LwD,
and FlowNet) in the RB800-1200 instance. This observation
underlines the importance of using simple heuristics as a san-
ity check to assess whether advanced models are effectively
generalizing to unseen instances or larger sizes. Similarly,
Table 3 reveals that a simple Nearest Neighbour heuristic is
able to surpass POMO, DACT and NeuOPT in instances of
500 cities. Even though the underlying model of MARCO
has been trained on smaller instances (up to 200 for MC and
MIS, and up to 100 for TSP), it is able to maintain a good per-
formance in larger graphs with a lower time cost compared to
state-of-the-art heuristic solvers.

7 Limitations and Future Work
MARCO offers significant advancements in neural combina-
torial optimization. However, it has room for improvement.
A primary concern is the uncontrolled growth of its mem-
ory during the optimization process, as it continually stores
all the encountered states, leading to increased computational
and memory costs. To counter this, future work could fo-
cus on implementing mechanisms to prune the memory by
removing redundant information.

Another limitation is the substantial resource requirement
for storing entire edge-based solutions in memory (like in
TSP). This approach, particularly for large instances, can re-
sult in high memory consumption and slower retrieval pro-
cesses. A promising direction would be to represent solutions
in a lower-dimensional space using fixed-size embeddings,
effectively reducing the memory footprint while preserving
(or even incorporating) necessary information.

In terms of data retrieval, MARCO currently employs a
method based on a weighted average of similarity, which may
not fully capture the relationships between solution pairs. A
more advanced alternative to consider is the implementation
of an attention-based search mechanism. This method would
not only prioritize the significance of various stored solutions
but could also incorporate the objective values or other dis-
tinct characteristics of these solutions to compute their rele-
vance.

Additionally, while not a limitation, applying MARCO to
new problems or integrating it with different NCO methods
requires careful consideration in how memory information
is aggregated with instance features. The nature of the data
stored and retrieved can vary significantly depending on the
specific problem being addressed.

8 Conclusion
In this paper, we have introduced the Memory-Augmented
Reinforcement for Combinatorial Optimization (MARCO), a
framework for Neural Combinatorial Optimization methods
that employs a memory module to store and retrieve relevant
historical data throughout the search process. The experi-
ments conducted in the maximum cut, maximum independent
set and travelling salesman problems validate MARCO’s abil-
ity to quickly find high-quality solutions, outperforming or
matching the state-of-the-art learning methods. Furthermore,
we have demonstrated that the use of a collaborative parallel-
thread scheme contributes to the performance of the model
while reducing the computation cost.
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