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Abstract
We propose a novel approach to improve multi-
objective evolutionary algorithms by modifying
crossover operations. Our approach uses a modi-
fiable cross distribution and virtual point to rebal-
ance the probability distribution of all crossover
options. This design reduces runtime for typi-
cal pseudo-Boolean functions. Experiments and
analysis show our approach effectively optimizes
bi-objective problems COCZ and LOTZ in Θ(n)
time during crossover, outperforming conven-
tional crossover multi-objective evolutionary al-
gorithms (C-MOEA) which require O(n log n)
steps. For the tri-objective problem Hierarchical-
COCZ, our approach guarantees an expected run-
time of Θ(n2 log n), while C-MOEA needs at least
Ω(n2 log n) and at most O(n2 log2 n) steps.

1 Introduction
Multi-objective optimization (MOO) refers to the process of
optimizing multiple conflicting objectives simultaneously. In
real-world problems, it is often the case that multiple objec-
tives need to be considered, and these objectives may compete
with each other, making it challenging to find a single optimal
solution. Multi-objective evolutionary optimization (MOEO)
is a powerful approach that leverages the principles of evo-
lutionary algorithms to address these complex optimization
problems. Inspired by natural evolution, MOEO algorithms
employ a population of candidate solutions that evolve over
generations. These algorithms iteratively apply evolutionary
operators such as mutation and crossover to generate a diverse
set of potential solutions, known as the Pareto front or Pareto
set. The Pareto front represents the trade-off relationship be-
tween the objectives, where no solution can be improved in
one objective without sacrificing performance in another ob-
jective.

Crossover-enabled Evolutionary Algorithms (C-EAs) are a
class of EAs that mainly use the crossover operator [Spears,
1993] to combine beneficial traits from different parent so-
lutions. This produces novel offspring with improved fit-
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ness. The crossover operator enables C-EAs to efficiently ex-
plore complex, non-linear, non-convex solution spaces and
find near-optimal or optimal solutions [Doerr et al., 2012;
Neumann and Theile, 2010]. By balancing exploration
and exploitation, C-EAs can handle challenging optimization
problems. Thus, they have been widely adopted across vari-
ous fields.

Prior theoretical analysis has validated the superiority of
C-EAs over other optimization methods. For single-objective
problems, C-EAs outperform on numerous discrete opti-
mization problems [Doerr et al., 2012; Malalanirainy and
Moraglio, 2022]. In multi-objective optimization, Neu-
mann [Neumann and Theile, 2010] highlighted crossover’s
effectiveness in accelerating EAs for the all pairs shortest
path problem. Furthermore, Qian et al. [Qian et al., 2013]
analyzed the runtime of C-MOEAs on pseudo-Boolean func-
tions like COCZ, LOTZ, and Weighted LPTNO, finding that
C-MOEAs are more efficient than mutation-only MOEAs.
These studies demonstrate that crossover improves EAs for
both single- and multi-objective optimization across prob-
lems, affirming the benefits of incorporating crossover. Fur-
thermore, Huang et al. [Huang et al., 2019] analyzed a
simple C-MOEA called MOEA/D-C on four multi-objective
problems. Their runtime analysis showed MOEA/D-C finds
Pareto optimal solutions significantly faster with crossover.
This provides additional evidence that crossover improves C-
EAs, especially for multi-objective optimization.

However, C-EAs still face challenges. A major issue is the
lack of guidance for selecting appropriate crossover points,
making it difficult to generate optimized offspring. Unlike
deep learning algorithms that use gradient information to
identify optimal directions, C-EAs follow random directions.
This reliance on randomness has drawn criticism, especially
compared to gradient-based optimization.

In this paper, we propose a novel approach to reduce C-
EAs’ computational time. Inspired by Q-learning (a typical
Reinforcement Learning) algorithm that uses a Q-value ta-
ble to guide the action chosen, we propose to use a mod-
ifiable crossover distribution to guide evolution direction.
Specifically, we adjust the probabilities of crossover points
(to be chosen as split points) according to fitness evaluation
feedback. Our method prevents repeatedly reproducing non-
superior offspring, leading to reduction in expected runtime.
Our contributions are summarized as following:
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1. We propose a feedback-based schedule to adjust the
crossover operation, which is inspired by Q-Learning al-
gorithm. Our method reduces the preference scores of
split points that are verified to reproduce non-superior
child solutions, thereby can decrease repetitive failure
reproduction. Along with the design of virtual point, we
retain the stability of crossover distribution and prevent
probability backflow from restrained nodes to others.

2. We evaluated this approach on three Pseudo-Boolean
problems: COCZ, LOTZ, and Hierarchical-COCZ.

3. We provide a theoretical analysis of expected runtime on
the three considered Boolean functions.

2 Related Work

Balancing exploration and exploitation is a key challenge in
evolutionary algorithms (EAs). Overemphasizing either can
lead to sub-optimal solutions. Evolutionary operators drive
exploration by introducing novel solutions, but their effec-
tiveness depends on the mutation rate.

In recent years, several approaches have been proposed to
dynamically adjust the mutation rate and improve evolution-
ary optimization. For example, Böttcher et al. [Böttcher et al.,
2010] analyzed the optimal mutation rate for the LEADIN-
GONES function with size n, finding p ≈ 1.59/n reduced
time by 16% for (1 + 1) EA. Fitness-dependent mutation
rates have gained attention recently [Badkobeh et al., 2014;
Doerr et al., 2013; Doerr et al., 2021]. These adjust the sched-
ule based on the fitness of the current population. Success-
based schedules [Doerr et al., 2019; Lässig and Sudholt,
2011] and learning-based schedules [Doerr et al., 2016] also
adapt the rate based on past performance. These studies show
that self-adaptive mutation can effectively facilitate evolu-
tionary optimization.

Pursuing more efficient self-adaptive crossover rates has
long been a goal in EAs. Researchers have investigated dy-
namic methods to adjust the crossover probability, such as
tying it to the ratio of Euclidean distances between solu-
tions [Dong and Wu, 2009]. This promotes diversity by
involving all genes. However, distinct solutions with simi-
lar distances can still produce superior but rarely mated off-
spring. Recent work incorporated elitism by assigning lower
crossover rates to fitter individuals [Stanovov et al., 2023].
While reducing alteration of better genes, this schedule may
weaken exploration. Additional dynamic adaptation meth-
ods can be found in [Gong et al., 2014; Pan et al., 2015;
Zhou et al., 2017]. However, balancing exploration and ex-
ploitation remains an open challenge.

This paper proposes a new method to select crossover
points that balances diversity and exploration. Unlike previ-
ous methods, our approach utilizes feedback information dur-
ing optimization, successful or failed reproduction impacts
the crossover distribution, avoiding repeated failures.

3 Preliminary Knowledge
3.1 Multi-Objective Evolutionary Algorithms
Multi-objective optimization problems (MOPs) are defined as

max f(x) = [f1(x), f2(x), f3(x), · · · , fm(x)] (1)
s.t. x ∈ X (2)

where f is a function consists of m objective functions, X
is the solution space, x denotes a solution. The objective
functions in multi-objective optimization are often conflict-
ing - optimizing one erodes the others. Thus, there is no sin-
gle optimal solution that simultaneously optimizes all objec-
tives. Rather, there are trade-offs between objectives, mean-
ing multi-objective problems lack a definitive best solution.

Instead, the commonly used criterion in multi-objective op-
timization is called Pareto optimality. For x1, x2 ∈ X , we
say x1 dominates x2 if for all i ∈ {1, 2, · · · ,m}, fi(x1) ≥
fi(x2), and the inequality can be taken for at least one index,
we denote the dominating relationship as x1 ≻ x2. A solution
is Pareto optimal if there is no other solutions can dominate it,
the set of all Pareto optimal solutions is named as Pareto op-
timal Set (PS), and the set of objective vectors of the Pareto
optimal solutions is called Pareto Front [Van Veldhuizen et
al., 1998].

Multi-objective evolutionary algorithms (MOEAs) main-
tain a population of candidate solutions to solve multi-
objective problems [Zhou et al., 2011]. The algorithm iter-
atively mutates and crosses over selected solutions and then
eliminates any dominated ones. This evolutionary process re-
peats until a stopping criterion is met, like a maximum num-
ber of generations. Throughout, the MOEA maintains a di-
verse set of non-dominated solutions representing the Pareto
Front.

3.2 Reinforcement Learning
Reinforcement learning (RL) trains agents to maximize re-
wards through environmental interactions to achieve tasks,
rather than execute predefined commands [Kaelbling et al.,
1996; Sutton and Barto, 2018]. A common RL algorithm, Q-
learning [Clifton and Laber, 2020], suits problems with small
discrete state and action spaces. The agent learns via trial-
and-error to choose the best actions by updating its Q-value
function:
Q(s, a)← Q(s, a) + α(r + γ(max(Q(s′, a′)))−Q(s, a)),

(3)
where Q(s, a) is the value of taking action a in state s. The
agent gets a reward r, learns at rate α, and discounts future re-
wards by γ. By iteratively improving its decisions, the agent
maximizes long-term reward.

In this paper, we draw inspiration from the Q-learning al-
gorithm and develop a preference list similar to the Q-value
table. Based on the feedback from evolution and evaluation,
we iteratively update this list to adjust the optimization direc-
tion of the evolutionary operator.

4 Approach
In evolutionary optimization, crossover point selection is cru-
cial, as it affects the quality and diversity of offspring. Ran-
dom selection can reduce performance, as it cannot ensure

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

6924



Figure 1: Illustration of multi-parent diagonal-crossover. With 3
parents, 2 nodes will be chosen as crossover points for splitting the
chromosomes and reproducing 3 child solutions.

improved crossover results for each iteration. In particu-
lar, repeated random points may generate identical offspring
lacking diversity. Later in optimization, random selection
may also slow convergence or lead to sub-optimal solutions
as the feasible space (where superior or non-dominated solu-
tions are located) collapses. Overall, the lack of informative
guidance for choosing crossover points is a key cause of poor
performance in crossover-enabled algorithms.

4.1 Modifiable Cross Distribution
To improve multi-objective evolutionary optimization, we
introduce C-MOEA-MCD, which utilizes a modifiable
crossover distribution. Our approach borrows inspirations
from Q-leaning, by introducing a preference score list L indi-
cating the degree of preference for possible crossover option,
each option contains not limited to single (for single-point
crossover) but can expand to multiple points (for multi-point
crossover). To determine the selection probability within the
distribution, we use the Softmax function:

pi =
exp(li)∑n
j=1 exp(lj)

, li, lj ∈ L, (4)

where li ∈ L represents the preference score of the ith cross-
point.

Our approach adaptively adjusts the selection probability
using evolutionary feedback, as reinforcement learning alter
Q-values according to immediate rewarding. After each re-
production, we evaluate offspring quality. If the crossover op-
tion produces inferior offspring or acceptable offspring (but
immediately turns out to be unacceptable choice), we de-
crease its preference score for future iterations by

li ← li − α (5)

where α denotes the update step size. Note that for the
purpose to simplify theoretical analysis, we do not intro-
duce flexible update schedule, for m objectives with problem

Algorithm 1 Initialization (Phase 1)
Input: m solutions {xk}mk=1 randomly from solution space
Output: m local optimal solutions each is corresponding to
one of m objectives {fk}mk=1

1: while not find the optimal solution do
2: for each solution xk, randomly flip chosen bit (muta-

tion operation) to produce a child solution x′
k

3: if fk(x′
k) > fk(xk) then

4: xk ← x′
k

5: end if
6: end while

size n studied in this paper, we consider m-parents diagonal
crossover [Eiben and Smith, 2015], described as
Definition 1 (m-Parents Diagonal-Crossover). Given m
solutions whose problem size is n, randomly select m − 1
crossover points from n − 1 positions between adjacent bits,
and create m offspring solutions as follows. Denote the or-
der of the m parents as 1, 2, ...,m. The m offspring solutions
are generated by combining m components partitioned by the
m− 1 crossover points.

We let the decay parameter α = log
(
n−1
m−1

)
in Eq.(5). In

real scenarios, this parameter can be customized accordingly.
This adaptive feedback loop allows the algorithm to dynam-
ically adjust the selection probabilities based on the success
or failure of previous choices. This effectively balances ex-
ploration and exploitation.

4.2 Virtual Point
However, a key challenge is the potential for decreasing one
solution’s score to impact others. Reducing one preference
score reduces the sum of exp in the denominator of Softmax
function, causing undesired oscillations and instability.

To address this issue, we add a virtual point to maintain
the Softmax denominator during dynamic updates, prevent-
ing negative impacts on other candidates. Specifically, we
first normalize the preference values to obtain relative prefer-
ence scores:

L0 = {l01, l02, · · · , l0(n−1
m−1)
} (6)

where l0i = l0j , ∀1 ≤ i, j ≤
(
n− 1

m− 1

)
.

The superscript 0 indicates the first generation after initializa-
tion. Note that if m = 2, the length of L is n − 1, then the
crossover is one-point diagonal crossover.

Denoting G0 =
∑n

i=1 exp(l
0
i ) as initialized value of the

denominator in Softmax function, in later stages to keep the
denominator invariant, we add an extra virtual point with
score:

lvir = log

[
G0 −

n∑
i=1

exp(lti)

]
.

This prevents the phenomenon that alter one preference score
will affect other probabilities. When sampling, the virtual
point requires no evaluation and is skipped, avoiding runtime
cost.
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Algorithm 2 C-MOEA-MCD
Require: objective function f = (f1, f2, · · · , fm); crossover
threshold pr.
Initialize: preference score string L = {l1, l2, · · · , l(n−1

m−1)
}

Initialize: step size α, generation index t = 0

1: Initialization population P (Phase 1)
2: compute the crossover distribution p = Softmax(L)
3: while not find all Pareto solutions do
4: use the m local optimal solutions (derived from Algo-

rithm 1) as parent solution
5: sampling r ∈ Uniform[0,1]
6: if r < pr then
7: sampling m− 1 cross points according to p
8: if not contains the virtual point then
9: reproduce m child solutions by applying m − 1

parent diagonal crossover
10: else
11: skip to next generation
12: end if
13: record the crossover points τ in current cycle
14: else
15: reproduce m child solutions by flipping selected bit

on each parent solution
16: end if
17: for each child solution s do
18: if ̸ ∃z ∈ P s.t. z ⪰ s then
19: P = (P\{z ∈ P |s ≻ z}) ∪ {s}
20: end if
21: end for
22: Update lτt = lτt − α, for τt ∈ τ
23: if t ̸= 0: then
24: lvir = log [G0 −

∑
exp(lti)]

25: else
26: lvir = −∞
27: end if
28: p = Softmax(L), t = t+ 1
29: end while
30: return P .

To make the initial population diverse enough, we use the
same initialization setting as in [Qian et al., 2013], the ini-
tialization process is described in Algorithm 1. The whole
Pseudo-code is stated in Algorithm 2.

5 Runtime Analysis and Empirical Study
Runtime analysis is critical for understanding the efficiency
of EAs. Here, we compare the expected runtime between
C-MOEA-MCD and C-MOEA on the COCZ, LOTZ and
Hierarchical-COCZ problems.

5.1 Analyzed Problem
Definition 2. The COCZ problem of size n is to find n-bits
binary strings which maximize the function

f(x) = (
n∑

i=1

xi,

n/2∑
i=1

xi +
n∑

i=n/2+1

(1− xi)),

where n is even and xi denotes the i-th bit of x ∈ {0, 1}n.
The COCZ problem maximizes two linear functions: the

first maximizes overall 1-bits (the same as the OneMax prob-
lem [Droste et al., 2002]), while the second maximizes 1-bits
in the first half and 0-bits in the second half. The Pareto opti-
mal solutions are:

{1n
2 1i0

n
2 −i|0 ≤ i ≤ n

2
},

the size of the set is 2
n
2 , the Pareto front is

{(n, n
2
), (n− 1,

n

2
+ 1), · · · , (n

2
, n)}.

Definition 3. The LOTZ problem of size n is to find n-bits
binary strings which maximize

f(x) = (
n∑

i=1

i∏
j=1

xj ,
n∑

i=1

n∏
j=i

(1− xj)),

where xi denotes the i-th bit of x ∈ {0, 1}n.

For LOTZ, the first objective maximizes leading 1-bits
(same as the LeadingOnes problem), and the second max-
imizes trailing 0-bits. The Pareto front can be represented as:

{(0, n), (1, n− 1), · · · , (n, 0)},

and the set of Pareto optimal solutions are

{0n, 0n−11, · · · , 1n−10, 1n}.

A more sophisticated tri-objective problem is considered in
this study, which is defined as
Definition 4 (Hierarchical-COCZ).

H1-COCZ(x) = (f1(x), f2(x)) , (7)
H2-COCZ(x) = (H1-COCZ(x), f3(x)) , (8)

where

f1(x) =

n/2∑
i=1

xi +

2n/3∑
i=n/2+1

xi +
n∑

i=2n/3+1

(1− xi),

f2(x) =

n/2∑
i=1

xi +
∑

i∈(n/2,2n/3]
∪(5n/6,n]

(1− xi) +

5n/6∑
i=2n/3+1

xi,

f3(x) =

n/2∑
i=1

xi +

5n/6∑
i=n/2+1

(1− xi) +
n∑

i=5n/6+1

xi.

The objective of H1-COCZ is to optimize f1 and f2 simul-
taneously, the second is to optimize all the three f functions.

5.2 Runtime Analysis on COCZ
Runtime Analysis on Phase 1
The initialization of C-MOEA and C-MOEA-MCD is to opti-
mize the two objectives of COCZ, which have the same struc-
ture as the OneMax problem, by Theorem 11 in [Johannsen
et al., 2010], it is known that the running time of C-MOEA
and C-MOEA-MCD on Phase 1 are both Θ(n log n).
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Runtime Analysis on Phase 2
According to Theorem 6 in [Qian et al., 2013], the expected
running time of C-MOEA on Phase 2 of COCZ is Ω(n log n).

Our design balances the probabilities of selecting accept-
able (which reproduce better offspring) and unacceptable (re-
produce offsping not better) crossover points. Denoting the
probabilities at generation t as pta and ptun, respectively, the
ratio is rt = ptun/p

t
a. To reach the next generation by repro-

ducing better offspring, the expected fitness evaluations for a
given rt is ⌈rt⌉+1 due to Proposition 1. Omitting subscripts,
the key is the rate between pun and pa at the same step.

Proposition 1. Given the ratio r = pun
pa

, the expected runtime
from generation to the next is ⌈r⌉+ 1.

Proof 1 (Proof for Proposition 1). Given the ratio r, and the
probability for acceptable reproduction is pa, the expected
runtime for acceptable reproduction is

1

pa
=

pa + pun + pvir

pa
(9)

= 1 + r +
pvir

pa
. (10)

Since the virtual point is always skipped directly, thereby no
evaluation calls are made, thus the expected runtime for ac-
ceptable crossover operation is ⌈r⌉+ 1.

Theorem 1. For COCZ with problem size n and m = 2,
if let α = log(

(
n−1
m−1

)
) = log(n − 1), the expected runtime

of C-MOEA-MCD at the crossover procedure is Θ(n) with
probability almost 1.

Due to the fact that, virtual point is always be skipped
thereby contributing no fitness evaluation, considering the ra-
tio r in expected runtime estimation is enough. We will show
that, r is bounded by 2 with probability 1 − ( 12 )

n/4−2 where
n denotes the problem size.

Proof 2 (Proof for Theorem 1). After Phase 1, the initial-
ization procedure (see Algorithm 1), the two local optimal
solutions are {1n, 1

n
2 0

n
2 }. For COCZ problem, the crossover

used is one-point crossover due to the fact that COCZ prob-
lem is a bi-objective problem. There are n − 1 optional
crossover points. We have α = log(n − 1), an probabilis-
tic updating formula after one selection is as follows:

p′i =
exp(li − log(n− 1))

G0
= pi/(n− 1). (11)

At the beginning of crossover procedure, the initialized
preference score list is L0 = [l01, l

0
2, · · · , l0n−1], with identi-

cal elements. Each point has the same probability 1
n−1 to be

selected. The ratio r = n/2
n/2−1 ≈ 1.

Before optimization ends, consider an extreme case where
the algorithm only selects acceptable crossover points, con-
tinuously increasing ratio r. Denoting this event as A, the
probability is:

P (A) =

(n
2 − 1

Q

)
(

1

n− 1
)

n
2 −1−Q ≤ (

1

2
)

n
2 −1−Q, (12)

where Q ≥ 1 denotes the number of acceptable crossover
points that have never been selected. In this case, the size of
r can be expressed as a formula that involves Q by

r = [
n

2
× 1

n− 1
+ (

n

2
− 1−Q)× (

1

n− 1
)2]/

Q

n− 1
(13)

= [
n

2
+ (

n

2
− 1−Q)× (

1

n− 1
)]/Q (14)

This implies that the probability when event A occurs,
P (r ≥ n

2Q , A), is less than ( 12 )
n
2 −1−Q. If let Q = n

4 , we
have

P (r ≥ 2, A) ≤ (
1

2
)

n
4 −1. (15)

With larger problem size n, the probability of r ≥ 2 almost
equals to zero.

Based on the previous discussion of the extreme case A, we
will now consider a more general event B, till the situation
that there exists Q acceptable points have not yet selected,
the algorithm selects each time m1 unacceptable points. The
probability of event B is(n

2 − 1

Q

)
(

1

n− 1
)

n
2 −1−Q×

K∑
x=0

( n
2

m1 − x

)
(

1

n− 1
)m1−x ×

(n
2 − 1−Q

x

)
(

1

(n− 1)2
)x

≤
(n

2 − 1

Q

)
(

1

n− 1
)

n
2 −1−Q × 1

2m1
, (16)

where K = min(m1,
n
2 − 1 − Q). Note that the ratio r

expressed in Equation 13 is the upper bound of each event.
Thereby we have

P (r ≥ 2, B) ≤ (
1

2
)

n
4 −1 × 1

2m1
. (17)

The probability of general events (which contains more unac-
ceptable trails) decreases by factor 1

Ψ (Ψ ≥ 2), we can give
an upper bound of the joint probability as

P (r ≥ 2) =
∑
event

P (r ≥ 2, event) (18)

≤ 2× (
1

2
)

n
4 −1 = (

1

2
)

n
4 −2. (19)

Therefore, the ratio r is bounded by 2 across the entire opti-
mization. By ensuring this, we can control the expected num-
ber of fitness evaluations required from one generation to the
next to be under ⌈2⌉ + 1 = 3. Consequently, the expected
runtime of C-MOEA-MCD during the crossover procedure is
Θ(n) with probability 1. This concludes our proof.

We recorded the time series of the changes in r during the
experiments. The green area represents the range of fluctua-
tions in r during the crossover phase of 500 experiments on
COCZ, while the yellow area represents the corresponding
values for LOTZ. The solid lines represent the mean curves
for each experiment.
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Figure 2: The curve ratio r changes when optimizing COCZ (green
shadow area represents the empirical range of r) / LOTZ ( yellow
shadow area records the empirical range of r) with problem size
200, α = log(199). We repeat each experiment for 500 runs, the
line charts show the average trend. Empirically, the ratio is always
below 2, which supports our analysis.

5.3 Runtime Analysis on LOTZ
Runtime Analysis on Phase 1
The initialization of C-MOEA and C-MOEA-MCD is to opti-
mize the two objectives of LOTZ, which have the same struc-
ture as the LeadingOnes problem, by Theorem 13 in [Jo-
hannsen et al., 2010], it is known that the running time of
C-MOEA and C-MOEA-MCD on Phase 1 are both Θ(n2).

Runtime Analysis on Phase 2
According to [Qian et al., 2013], the expected running time
of C-MOEA on Phase 2 of LOTZ is at most O(n log n).
Theorem 2. On LOTZ, the expected runtime of C-MOEA-
MCD at the Phase 2 is Θ(n) with a probability of 1.
Proof idea is same as on the COCZ problem.
Proof 3 (Proof for Theorem 2). For LOTZ problem with prob-
lem size n, there are n−1 candidate crossover points, and the
crossover operator is one-point crossover too. As discussed
in the proof of COCZ problem, given the ratio r , from current
generation to next generation, the expected number of fitness
evaluations is ⌈r⌉+ 1.

After Phase 1, each crossover point has the same proba-
bility of 1

n−1 to be selected, and the two initialized Pareto
optimal solutions are {1n, 0n}. By now, it is easy to obtain
that r = 0.

The probability of unacceptable points in this problem
is growing by updating after performing an acceptable re-
production. Specifically, each time an acceptable repro-
duction operation is performed, it will convert an accept-
able crossover point into an unacceptable one. Meanwhile,
the probability of unacceptable points increases by at most

1
(n−1)2 , and the probability of acceptable points decreases
by 1

n−1 . Consider a general case, there exists Q accept-
able crossover points that have never been selected, then the

probability of unacceptable crossover points pun is at most
1

(n−1)2 × (n − 1 − Q), and pa = Q
n−1 , the ratio r can be

estimated by

r =
pun

pa
≤ n− 1−Q

Q
× 1

n− 1
≤ 1. (20)

Therefore, each generation can contribute at most ⌈1⌉+1 = 2
fitness evaluation calls, the expected runtime of the crossover
procedure on LOTZ is Θ(n) with a probability of 1.

5.4 Runtime Analysis on Hierarchical-COCZ
We compare our method with C-MOEA which adopt with
static crossover rate. On Phase 2, our approach reduces the
expected runtime from O(n log n) to Θ(n). However, when
taking the runtime of Phase 1 into account, the complexity of
the whole optimization remained at the scale of Θ(n log n).
Our method does not improve the efficiency significantly on
COCZ and LOTZ.

To highlight the effectiveness of our design, we considered
the more complex problem, Hierarchical-COCZ. We separate
the whole optimization procedure into 3 steps:

1. The first step is the initialization process, i.e., employing
mutation only to get the local optimal solution for each
function.

2. Secondly, applying C-MOEA-MCD to fulfill the Pareto
front of H1-COCZ(x). We denote the corresponding
Pareto set as P1.

3. Finally, select a non-dominated solution randomly from
P1, forming the parent group with the local optimal so-
lution of f3, then use one-point crossover with our de-
sign to fulfill the Pareto front for this dimension reduced
problem, loops until the whole Parent front is fulfilled.

First of all, the initialized optimal solutions for the three
single objective functions are 12n/30n/3, 1n/20n/61n/60n/6,
and 1n/20n/31n/6 respectively.

The Expected Runtime of C-MOEA
The overall runtime consists of the following three parts:

1. First, the initialization process contributes Θ(n log(n))
calls for each function.

2. Second, denote the initialized optimal solution for f3 as
xu, for H1-COCZ, the expected runtime of a general C-
MOEA is at least Ω(n) and at most O(n log n).

3. Finally, the size of P1 is n/3, the probability that a solu-
tion y ∈ P1 will be chosen is 3/n. To fulfill the Pareto
front between y and xu, a simple C-MOEA needs on av-
erage at least Ω(n) and at most O(n log n) calls for fit-
ness evaluation [Qian et al., 2013]. To fulfill the whole
Pareto front, with the probability 3/n to select a solu-
tion in P1, the expected number of trials to collect all
the solutions in P1 is∑

1 +
n/3

n/3− 1
+ · · ·+ n/3 = Θ(n log n).
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Figure 3: Empirical experiments on the three studied problems: COCZ, LOTZ, and Hierarchical-COCZ. On each problem size, we repeat
run the algorithms 500 times, shade area with color indicate the empirical runtime range recorded.

Thus, the overall expected runtime of a simple C-MOEA on
Hierarchical-COCZ is at least

Θ(n log n) + Ω(n) + Ω(n) ·Θ(n log n) = Ω(n2 log n).

and at most

Θ(n log n) +O(n log n) +O(n log n) ·Θ(n log n)

=O(n2 log2 n).

The Expected Runtime of C-MOEA-MCD
The overall runtime also consists of three parts:

1. First, as in simple C-MOEA, the initialization pro-
cess contributes Θ(n log(n)) fitness evaluations for each
function.

2. Second, according to our analysis on the original COCZ
problem, to fulfill the Pareto front of H1-COCZ, it needs
on average Θ(n) calls for evaluation.

3. Finally, to fulfill the Pareto front between each solution
y ∈ P1 and xu, our approach needs on average Θ(n)
calls for fitness evaluation. The expected number of tri-
als to collect all the solutions in P1 is Θ(n log n).

Thus, the overall runtime on Hierarchical-COCZ is

Θ(n log n) + Θ(n) + Θ(n)×Θ(n log n) = Θ(n2 log n).

5.5 Empirical Study

We conduct the corresponding experiments for the three prob-
lems studied to verify the theoretical analysis. For all the
problems, denote by n the problem size, we let α = log(n−
1), pr = 0.5, and we initialize the preference score list for
each (dimension reduced) bi-objective string as 1n−1. On
each problem size, we repeat 500 times and record the av-
erage runtime as the estimation of the expected runtime, the
empirical results are shown in Figure 3. We can find that
both the curves of C-MOEA-MCD on the three problems are
apparently lower, and notably, on the crossover procedure of
COCZ and LOTZ problem, the runtime increases with the
problem size linearly, which coincides with our theoretical
analysis.

6 Conclusion
We propose a simple yet effective method combining
crossover distribution modification and virtual points to bal-
ance reproduction probability. It utilizes interactive informa-
tion to regulate selection while ensuring diversity, and pre-
vents undesired probability backflow. This design signifi-
cantly reduces computational time per generation.

Our approach provides insights into using immediate feed-
back to adjust evolutionary direction and overcome obstacles.
On complex problems it risks probabilities of temporarily un-
acceptable actions approaching zero, getting trapped in local
optima. Resetting the distribution modification can address
this.

Overall, we hope our method and analysis inspire efficient
evolutionary algorithms leveraging interactive information to
steer optimization. Further exploration of generalized algo-
rithms is needed to fully address local optima challenges.
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